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ABSTRACT 

A generic cardiovascular (CV) model for subjects under 

physical stress, based on luczak first and second models, is 

presented in this paper. A measured heart rate (HR) and blood 

pressure (BP) signals for 16 healthy subjects were used from a 

previous research, the  measured data were divided into two 

groups: 12 subjects (Group (1)) for parameters estimation and 

neural network training, while the other 4 subjects (Group (2)) 

for model validation. The parameters were estimated via the 

parameter estimation toolbox (pattern search method) within 

the environment of Matlab®. The best parameters for each 12 

subject were used as a target for an intelligent neural network 

layer, which used to interpolate the input features for an 

unknown subject to these parameters. The output of the 

generic model was validated by comparing the measured HR 

and BP signals of Group (2) and the estimated one in the 

frequency and time domains. Finally, the presented generic 

model with its intelligent neural network layer was found to 

be able to simulate the HR and BP signals for the unknown 

subjects under test with a good accuracy.   

General Terms 

Neural Networks and Signal Processing. 

Keywords 

Luczak model, cardiovascular system, parameter estimation, 

pattern search method, neural network, physical stress. 

1. INTRODUCTION 
Modeling and simulation are now a stand-alone methodology 

of similar value to laboratory investigations and clinical trials 

[1].  In this paper our work on modeling and simulation of the 

CV system is continued. We started with modelling the CV 

for healthy subjects at rest based on luczak’s first model [2] , 

but it was not able to simulate the subjects under physical 

stress so some modifications were done to produce a second 

version [3] of that model to reach our target. Although, the 

second version showed better results, it still has an important 

disadvantage which is the estimated model parameters are 

specified for each subject. That means each subject has a 

unique model. Hence, in this paper we discuss the ability to 

construct a generic model that will be able to represent the 

behavior of a wide range of subjects’ dynamics under physical 

stress. In order to build this model an intelligent layer should 

be included whose role will be mapping some selected 

characterizing features for the subject under test and 

predicting the corresponding model parameters representing 

this subject. The proposed generic model will be suitable for 

subjects with age of (35±7 years) and weight of (75.5±6 Kg). 

The estimated parameters for each subject of Group (1) were 

used from our previous work [3] as an output for the 

intelligent neural network layer while its input will be the 

measured features (resting HR, resting BP, age and weight) 

from the subjects. The output of the proposed generic model 

was validated by comparing the measured real time HR and 

BP signals for a group of 4 subjects [Group (2)] against the 

estimated HR and BP signals in time and frequency domains. 

The actual real time HR and BP signals for the 4 subjects of 

Group (2) were acquired from a previous research [4, 5]. 

Figure 1 shows the block diagram of the proposed generic CV 

model.  
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Fig 1: The block diagram of the proposed generic CV 

model 

2. STRUCTURE OF THE PROPOSED 

INTELLIGENT LAYER 
The function of this layer is to map the features which will be 

extracted from the actual measurements of the new subject, to 

the parameters which were estimated during the optimization 

procedure of the proposed model, (see Figure 2). Since it is 

required to have a high accuracy in the training phase, 

because the parameters should be exactly estimated, neural 

networks were selected to construct such a layer because they 

can afford such accuracy [6], as will be discussed later in this 

paper.                   

 

Fig 2: The Proposed intelligent neural network structure. 

A detailed study was carried out to select the most appropriate  

type and structure of the neural network in constructing the 

proposed intelligent layer [6]. The most recommended neural 

networks types that are believed to construct such layer are as 

follows: 

a. Feedforward neural network. 

b. Generalised regression neural network (GRNN). 

c. Radial basis neural network. 

The previously mentioned neural networks types were 

evaluated by E. ElSamahy [5]. The evaluation results showed 

that the GRNN outperformed the other two neural networks 

types. 
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2.1 Generalized regression neural network 
The GRNN was introduced by Nadaraya [7] and Watson [8] 

and rediscovered by Specht [9] to perform general (linear or 

nonlinear) regressions. The GRNN was applied to solve a 

variety of problems like prediction, control, plant process 

modeling, general mapping problems and classification [10]. 

Therefore, the GRNN was used to construct the proposed 

intelligent layer.  

Moreover, the GRNN can be considered a kind of radial basis 

network that is often used for function approximation. A 

typical radial basis function is the Gaussian which is shown in 

Figure 3 and represented by Equation 1. 

 

Fig 3: Radial Basis Transfer function [11]. 

                                                                  (1)                                                                       

Where: 

   c: is the center. 

  δ: is the spread (width). 

It worth noting that the GRNN has four layers which are input 

layer, radial basis layer, special linear layer (summation layer) 

and output layer. 

The structure of the GRNN is based on calculating the 

distance between the input features vector and all the features 

of the training group which are stored during the training 

phase. The resultant vector of distances is then multiplied by 

the bias of radial basis layer which is 0.8326/spread (δ), such 

that for a smaller spread the large distances became much 

larger to decrease their weights in the output. Furthermore, the 

resultant vector is passed through the radial basis function 

with width equal to (δ). Hence, for smaller values of the 

spread (δ), a very steep function will be obtained and that 

results in much larger output for the input vector that is close 

to one of the feature vectors. Finally, the network will tend to 

respond with the target vector associated with the nearest 

vector to that input vector. In other words, for large values of 

spread (δ), a smoother function will be obtained, and the 

network then behaves as if it is calculating a weighted average 

between the target vectors which are close to the input vector. 

Conversely, for small values for the spread (δ) parameter, the 

output will be exactly equal to one of the stored vectors in the 

network structure, which are the target vectors. Therefore, a 

small value of the spread (δ) parameter should be used to 

satisfy a good accuracy over the training group (Group (1)). 

It is worth noting that the output set of parameters for any new 

set of features will be one of the stored sets within the neural 

network structure. Therefore, the intelligent layer function is 

to select a combination from the 19 parameters from the 12 

subjects of Group (1) that are stored in the intelligent layer for 

the new subjects. Each vector is the best matched one to the 

new subject according to his extracted features, which 

eventually can provide a qualitative behavior for that subject.  

The proposed intelligent layer was introduced to the second 

version of the CV model under physical stress and was 

constructed with the Simulink® toolbox as shown in Figure 4. 

 

Fig 4: The proposed generic model after adding the intelligent layer. 
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2.2 Choosing the spread parameter “δ” 

value for the GRNN structure 
The choice of the spread parameter (δ) value has a great 

influence on controlling the generalization performance of the 

constructed GRNN. It represents the width of the radial basis 

functions which exist in the first hidden layer. The larger (δ) 

is, the smoother the function approximation will be. In other 

words, to fit the data closely the spread should be set to a 

value smaller than the typical distance between input vectors. 

Conversely, a larger spread value will fit the data more 

smoothly and enhance the performance towards unknown 

subject data. So a further analysis was carried out to 

determine the best value for the spread parameter (δ). 

Ten different values of the spread parameter (δ) were chosen 

to cover small values as well as large values. These values are 

as follows: 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5, 10, 20, and 100. The 

effect of each spread parameter was investigated by 

calculating the mean squared error (MSE) of the actual and 

estimated HR and BP signals for the 4 subjects of Group (2). 

More details about the actual measurement and features of 

each subject in Group (2) can be found in the work done by 

E.ElSamahy et.al [4, 5]. the MSE is calculated as shown in 

Equation 2 [5]. 





N

k

p
k

y
k

y
N

MSE
1

2)(
1                                             (2)              

Where: 

   yk: is the actual output at sample instant k. 

  yp
k: is the predicted output at the sample instant k. 

    N: is the number of samples. 

The MSE for the actual and estimated HR and BP signals of 

the 4 subjects in Group (2) are shown in Table 1. 

Table 1.The MSE for HR and BP signals corresponding to different spread parameter values (δ)   

  Subject 1 Subject 2 Subject 3 Subject 4 

  HR BP HR BP HR BP HR BP 

S
p

re
a

d
 (

δ
) 

0.5 172.09 455.19 395.61 454.76 214.26 430.53 139.19 1.47e+3 

0.6 172.09 455.19 395.61 454.76 214.26 430.53 170.23 914.3491 

0.7 172.09 455.19 395.61 454.76 214.26 430.53 111.22 1.23e+3 

0.8 172.09 455.19 395.61 454.76 214.26 430.53 186.68 407.10 

0.9 172.09 455.19 395.61 454.76 182.60 356.92 136.27 578.52 

1 160.90 434.72 395.61 454.76 137.84 252.91 104.59 1.64e+3 

5 187.17 1.96e+4 397.76 992.60 170.44 1.08e+3 105.49 1.45e+4 

10 2.3e+3 3.98e+5 645.08 5.89e+5 3.27e+3 2.73e+5 2.33e+3 1.75e+5 

20 1.5e+3 1.16e+6 669.73 2.33e+6 3.16e+3 2.07e+6 1.91e+3 9.19e+5 

100 1.8e+3 2.98e+6 667.15 2.84e+6 2.01e+3 2.79e+6 1.84e+3 2.81e+6 
 

The results shown in Table 1 exhibits that the spread values 

have a great effect on the MSE for both HR and BP signals 

especially in the case of large values of (δ) (≥ 5) for most of 

the subjects, which proves the importance of its proper 

selection. Greater values show that the performance of the 

closed loop model was greatly affected, which resulted from 

the inaccuracy of the predicted parameters. Moreover, Figure 

5 shows the relation between the MSE values of the HR signal 

to the different spread parameter values. Also, Figure 6 shows 

the relation between the MSE values of the BP signal to   

different spread parameter values. 

 
Fig 5: The MSE of HR signal for subjects in Group (2). 

 
Fig 6: The MSE of the BP signal for subjects in Group (2).   
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As shown in Figure 5 and Figure 6, the MSE values for both 

BP and HR signals are nearly the same for the values less than 

or equal five, while it diverges to higher values for the spread 

parameter greater than five. However, by inspecting the 

results of Table 1, it can be seen that there is a considerable 

differences in MSE of HR and BP signals between (1) and (5). 

Therefore, setting the spread (δ) value to 5 will deteriorate the 

performance of the proposed generic model. Moreover, 

comparing the results of the MSE of HR and BP signals 

shown in Table 1 for the spread values less or equal to one, it 

can be seen that setting the spread value to 1 enhance the 

generic model performance over all the other spread values 

less than one except for the MSE of BP for subject 4. Hence, 

the spread (δ) value was chosen to be one. 

3. RESULTS AND DISCUSSION 
The physical extracted features of the 4 subjects in Group (2) 

were used as an input for the intelligent layer to predict the 19 

parameters of the model for each subject. Table 2 shows the 

predicted parameters for each subject of Group (2). 

Table 2.The predicted parameters of Group (2) 

  Subject 

  1 2 3 4 

P
a

ra
m

et
er

s 

Ao 788.9 1979.9 189.51 709.59 

D1 3.6861 4.4391 4.6891 3.61 

D2 2.0556 1.3125 0.9375 2.042 

HRo 110 110 110.99 110.01 

K10 1536.3 6.5 2514.99 1416.73 

K11 41.015 41.015 73.015 45.31 

K12 1 1 1 1 

K6 96.004 0.19501 107.36 85.065 

K7 -6.2484 -6.2484 -6.1234 -6.2484 

K8 1.091e+12 32.508 7331999.99 9.65e+11 

K9 8192.99 682.04 598.35 7373.45 

Po 50 50 59.99 50.02 

Rto 0.0479 0.2979 1.0479 0.091 

Tph 36 28.275 3355.99 35.23 

Ts 9.8125 26 26 11.7 

VSo 52.75 72.75 79.99 55.083 

K2 0.62499 2 0.37499 0.554 

w1 0.5 0.5 0.499 0.5 

w2 1.7125 1.7125 3.7125 1.7125 

 

The results of the generic model simulation for the 4 subjects 

in Group (2) were validated in both the time and frequency 

domains for both HR and BP signals. Moreover, a further 

analysis is carried out by calculating the correlation 

coefficient for the signals in time domain and the magnitude 

squared coherence estimate[12] for the signals in frequency 

domain. 

Subject (2) results will be discussed in details in this section.  

Figure 7 shows the actual against the estimated HR signals in 

time domain, while Figure 8 shows the actual against the 

estimated BP signals in time domain. Moreover, Figure 9 

shows the actual against the estimated HR signals in 

frequency domain, while Figure 10 shows the actual against 

the estimated BP signals in frequency domain.  

 
Fig 7: The measured (light) vs the estimated (dark) HR 

signals in time domain. 

 
Fig 8: The measured (light) vs the estimated (dark) HR 

signals in frequency domain. 

 
Fig 9: The measured (light) vs the estimated (dark) BP 

signals in time domain. 

 
Fig 10: The measured (light) vs the estimated (dark) BP 

signals in frequency domain.  

 

The frequency spectrum of Figure 10 shows how the 

estimated BP signal captured the most important dynamics, 

which existed in the actual (measured) ones. These dynamics 

are the workload frequency (0.091 Hz), which is an indication 

for the BP entrainment at that frequency. 

The magnitude squared coherence estimate of the actual and 

estimated HR signals is shown in Figure 11(a), while the 

magnitude squared coherence estimate of the actual and 

estimated BP signals is shown in Figure 11(b). 

Workload 
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Fig 11: The magnitude squared coherence estimate for 

subject (2) between (a) measured and estimated HR 

signals, and (b) actual and estimated BP signals 

Figure 11(a) and Figure 11(b) show good coherence estimate 

for both HR and BP signals in the LF band (almost 0.5), while 

for the HF frequency band the results were slightly low 

(almost 0.35). However, inspite of the small coherence 

estimate in the HF band, which is due to the high dynamics of 

respiratory module, the results still could be accepted of the 

generic model as a quantitative representation in the case of 

new subjects. 

Therefore, the generic model can be considered as being able 

to capture the dynamics of the baroreflex activity as well as 

the respiratory activity under physical stress for new subjects 

with accepted accuracy.   

Consequently, the proposed generic model also succeeded in 

estimating some other electrophysiological signals. These 

signals are very difficult to be acquired non-invasively and 

they require an invasive procedure to be extracted from the 

subject. Figure 12(a), (b) and (c) show some of these signals 

such as the sympathetic efferents, the parasympathetic 

efferents and the vasomotor impulses respectively. 

 
Fig 12: Some estimated electrophysiological signals from the proposed generic model under physical stress, (a) sympathetic 

efferent impulses, (b) parasympathetic efferent impulses, and (c) vasomotor impulses.

Figure 12 shows that the amplitude of the sympathetic signal 

is increased to produce increase in the HR signal and 

consequently the BP signal. On the other hand, there exist low 

dynamics in the parasympathetic signal due to the effect of the 

physical stress. Therefore, these results were found to agree 

with the physiology of the CV system under physical stress 

[13, 14]. Figure 13(a) and Figure 13(b) show the effect of 

removing the applied physical stress on the sympathetic and 

the parasympathetic impulses respectively. 

(b) 

(a) 

(a) 

(b) 

(c) 
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Fig 13: Some estimated electrophysiological signals from the proposed generic model with no physical stress, (a) sympathetic 

efferent impulses and (b) parasympathetic efferent impulses.

Figure 13(a) shows a decrease in the amplitude of the 

sympathetic signal, while Figure 13(b) shows an increase in 

the dynamics of the parasympathetic signal due to the removal 

of the applied physical stress, which leads to decrease in the 

HR and BP signals. These results were also found to agree 

with the physiology of the CV system. 

The correlation coefficient[15] was calculated for the actual 

against the estimated HR and BP signals for the subjects in 

Group (2) as shown in Figure 14. 

 
Fig 14: HR (rhr) and BP (rbp) correlation coefficients for 

the 4 subjects. 

Figure 13 shows that the estimated HR signals from the 

proposed generic model are highly correlated (greater than 

0.74) for all subjects. However, the estimated BP signals from 

the model and the actual BP signals show good correlation 

(greater than 0.5) for half of the subjects in Group (2). These 

results, as previously illustrated, are believed to be due to the 

existence of high dynamics which are found in the BP signals 

of the subjects. Moreover, these dynamics was very difficult 

to be modeled correctly by one model for all the 4 new 

subjects due to the differences existed between them. 

4. CONCLUSION 
Finally, a generic model for the CV system, which can be 

used for estimating the physiological state of unknown 

subjects under physical stress, was presented in this paper. 

The presented generic model with its intelligent neural 

network layer was found to be able to simulate the HR and BP 

signals for new subjects under physical stress with a good 

accuracy. Moreover, a time and frequency analyses were 

carried out on the model output signals, which revealed the 

ability of the model to simulate the baroreflex and respiratory 

activity with accepted accuracy. As a result of these analyses, 

the simulated HR signal was found to be modeled more 

accurate than the simulated BP signal, which is resulted from 

the high dynamics existed in the BP signal compared to the 

HR signal. In the future, a detailed study will be carried out on 

exploiting the constructed model in some useful medical and 

sport applications. 
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