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ABSTRACT 
The reactive power control has as its main objectives for 

reducing losses, increasing transmission capacity, and 

maintaining voltage within acceptable limits.  

This paper suggests using SVC (Static VAr Compensator) for 

Iraqi National Super High Voltage (SHV) Grid System (400 

kV). The aim is to improve voltage profile across the load 

nodes and enhance system stability as well as to reduce active 

power losses, which depends greatly on how these devices are 

placed in the system. The general problem to optimally 

determine the locations and sizes of SVC’s to be installed by 

following an optimization approach. GA, as one of the 

heuristic methods, will be used to solve the optimization 

problem. 
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1. INTRODUCTION 
The most common requirements for coordinated V/VAr 

control are the load compensation, controlling transformer and 

line loading, minimizing active power losses, and controlling 

the power factor.  

Load compensation is the management of reactive power 

sources to improve power quality, i.e. voltage profile and 

power factor. The reactive power flow is controlled by 

installing shunt compensating devices  (capacitors/reactors) at 

the load end resulting in a proper balance between generated 

and consumed reactive power [1]. 

In addition to shunt capacitors and reactors, Static VAr 

Compensators (SVC’s) are also commonly used for 

compensation for several reasons. Installing an SVC at one or 

more suitable points in the network can increase the transfer 

capability by increasing the maximum flow through 

transmission lines. Also, reduce power losses while 

maintaining a smooth voltage profile under different network 

conditions [2]. 

The purpose behind installing SVC’s is crucial in deciding 

where to install them and the sufficient number and size of 

each SVC. The locations of SVC’s have a significant impact 

on power flow control performance. 

In this paper, SVC was proposed to reduce the active power 

loss and solve voltage fall problem for the Iraqi National SHV 

Grid system during heavy reactive power conditions. 

The locations and sizes in MVAr of these devices will be 

calculated by means of one of the optimization algorithm, 

namely, “Genetic Algorithm” (GA). 

Nowadays, GA is one of the commonly used methods to solve 

several optimization problems. GA can be used only for the 

types of problems where solutions can be represented by 

chromosome. GA starts by a randomly generated population 

of solutions, which will be improved through a repetitive 

application of mutation, crossover, and selection operators. 

Individual solutions are selected through a fitness-based 

process, where the more adapted solution is typically more 

likely to be selected [3].  

MATLAB programming language will be used to simulate the 

power system and apply GA to find the best buses in the grid 

for installing a proposed number of SVC’s and the size of 

each SVC.  

Optimization tools are used for adjusting the power flows in a 

power network to achieve optimal values of predefined 

objectives. Some objectives are related to minimizing costs, 

while some others consider the stability and the quality of 

power systems. It should be noticed that optimization tools 

suggest the global setting of control such as capacitors, 

reactors, transformer tap, and so on. This setting conflicts 

sometimes with the local regulation assignment of these 

devices. Therefore, it is required to disable one function in 

some cases giving the priority to the other [4]. 

Two objectives are considered in this work for the Iraqi power 

grid: The active power losses and voltage deviation 

minimization.  

The unit transformers in the grid will be modelled considering 

the tap changers. The reason is to observe the reactive power 

values at generators terminals, and hence, to guarantee that 

the reactive power capabilities limits of the generators are not 

violated. 

2. GENETIC ALGORITHM 
Genetic Algorithm (GA) is a powerful stochastic search and 

optimization technique. It is the most commonly known type 

of evolutionary computation methods [5]. GA encodes the 

variables of the optimization function and runs a searching 

process that explores the searching space in parallel. The 

searching mechanism starts with an initial set of solutions 

generated randomly, called “Population”, which satisfy the 

equality and inequality constraints of the problem. Each 

individual solution in the population is called “Chromosome”. 

The movement of the algorithm towards the global point is 

directed by fitness function evaluation of the chromosomes. 

GA uses the criteria of natural selection to evolve the 

chromosomes through successive iterations called 

“Generations”. New chromosomes (offspring) are formed by 

crossover and/or mutation operators. And by continuous 

evaluation of each chromosome during each generation, and 

using selection techniques, a new generation is formed.  This 

way, the chromosomes with high fitness have high 

probabilities to be selected and survive over many generations 

while other chromosomes will be rejected. Thus, GA 



International Journal of Computer Applications (0975 – 8887)  

Volume 66– No.12, March 2013 

28 

converges to the best chromosome that may represent the 

optimum solution to the problem [6].    

3. GENETIC OPERATORS 

3.1 Individual (Chromosome) 
An individual within a population represents a single solution 

to the optimization problem at hand. It is also called a 

chromosome and represented by a binary bit string, real 

number, or a string of symbols [7]. The representation of the 

variables in GA environment is called “Genotype” which is 

the encoding of the solution. While the representation of these 

variables in the search space of the function is called 

“Phenotype”. The location of a gene within a chromosome is 

called “Locus” and it defines a particular characteristic 

represented by this gene. While the values of the genes are 

called “Alleles” [6]. The number of chromosomes in 

population defines the population size which was chosen 

equal to (60). 

3.2 Encoding 
Encoding means how individuals are represented in GA. It is 

the first step used in genetic computation and before applying 

genetic operators. Several methods are used to encode the 

individuals to obtain this representation [8]. Binary coding 

was used to represent the chromosomes in this paper. The 

decision variables are represented as strings of binary 

numbers and some constraints were included in the coding 

process. 

The variables of the introduced problem embrace the locations 

of SVC’s and the sizes of SVC’s. For the locations of SVC’s, 

the number of nominated buses is (13) noticing that SVC’s 

will be installed only at PQ buses. Therefore, 4 bits binary 

string is sufficient to represent the location of each SVC and 

all obtained solutions that are greater than (13) will be 

discarded.  

The number of bits for the size of SVC representation is 

calculated using the following formula: 

   
       

        

    
                                             

where RQ is the precision of injected reactive power changes 

and n is number of bits required for SVC size representation. 

The precision RQ was chosen equal to 5 MVAr, then, 5 bits 

are required to represent the size of the SVC. 

3.3 Crossover (Recombination) 
The use of crossover is the main distinguishing feature of a 

GA [3]. By crossover operator, the information of two 

parents’ genotypes is merged to produce one or two offspring 

genotypes. The new population, after this process may contain 

better individuals. The choice of what parts of each parent are 

combined is random, as well as the way of combining these 

parts. In other words, crossover is a stochastic operator, where 

a random appointing of crossover sites in the individual 

strings is implemented. The values following the selected 

cross site are swapped between the two strings.  

The crossover process will/will not occur depending on the 

value of crossover probability (Pc).  The crossover probability 

(Pc) was chosen equal to (1) in this work and the crossover 

was applied at multiple points within each chromosome.  

3.4 Mutation 
The process of replacing the gene value (allele) by another is 

called “Mutation”. The new value usually is a random value. 

Mutation maintains diversity in the population and the aim is 

to explore the whole search space to prevent the algorithm to 

be trapped in a local minimum. The crucial point here is to 

specify the mutation probability (Pm) which defines how often 

the mutation process will occur. As the mutation probability 

(Pm) increases, a large part of chromosome will change. For 

instance, if Pm is 100%, the whole chromosome will be 

changed, if it is 0%, nothing is changed.  It can be noted that 

if the mutation probability is large, the search will be faster, 

while the diversity of population will be less. This leads to 

more convergence toward some local optima [7] & [9]. The 

better performance has been obtained by Pm equal to (0.03). 

3.5 Selection 
It is the process of choosing the chromosomes from the 

population to contribute in crossover and mutation processes 

that lead to produce new offspring [6]. It is usually based on 

the fitness value, where parents are selected according to their 

fitness. In other words, the individual that has high fitness 

value will have more chance to be selected. The idea behind 

this is to select the best chromosomes from the parents in the 

hope that combining them will produce better offspring 

chromosomes. Therefore, selection is responsible for 

transferring the individuals that have higher fitness to the new 

population. Chromosomes are selected randomly from the 

initial population to be parents for reproduction. In this paper, 

Roulette Wheel Selection was used.   

4. OPTIMIZATION OBJECTIVES  
The performance of GA was studied on the SVC localization 

problem and the aim is to reduce the active power loss and 

voltage deviation. Hence, it is a multiobjective optimization 

problem. 

4.1 Power Losses 
Active power loss of the transmission lines is one of the 

common objectives of optimization problems in electrical 

power systems. The power loss (PL) of a transmission line is 

calculated by the following equation: 

           
      

 
                                    

Or the total active power loss of transmission lines [10] 

         
      

 
                     

  

   

              

where   is the number of lines in the system,    ,   are the 

magnitude and angle of line (L) admittance respectively,     , 

     are voltage magnitudes at bus   and   respectively, and   , 

   are voltage angles at bus   and  . 

4.2 Voltage deviation 
Voltage deviation is an indication for the security of power 

systems and it is a measure for the quality of service [11]. The 

following formula is used to calculate voltage deviation of the 

buses from their specified values [12]: 

    
         

    

  

   

                                

The reference voltage for PQ bus is one and for PV bus the 

voltage magnitude is fixed, thus, the equation becomes  
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5. Objective Function 
Not like single objective problems, multiobjective problems 

have no unique solution. A set of acceptable optimal solutions 

exists and is called “Pareto Front”. The vector of decision 

variables called “Pareto Optimal” and the operator selects the 

preferred solution from the Pareto set [13]. 

Several methods were introduced for solving multiobjective 

problems using single objective approximation such as  

weighted sum, ε-constraint, weighted metrics, Benson, 

lexicographic, etc. [14]. In this work, the weighted sum 

method is used and is explained below. 

The weighted sum method changes a weight multiplier among 

the objectives in the objective function to obtain the Pareto 

front. Then, the multiobjective optimization problem will take 

the following general form: 

                                        

       

     

 

   

 

The problem is solved several times for a different weight 

coefficients combination to find multiple solutions [14] & 

[15]. 

 Fitness function is used to normalize the objective function of 

the optimization problem normally to a range of 0 to 1. 

Fitness function maintains uniformity over various problem 

domains. It is in this way, a quality measure of genotypes. The 

selection of an individual for crossover process will depend 

on the fitness value calculated by fitness function of this 

individual in the population.    

Before formulating the objective function for this work, it is 

important to note the following:  

 The two objectives (power loss and voltage deviation) 

have different ranges of magnitudes, where total voltage 

deviation (VD) is much less than total power loss (PL) 

 The two objectives have – but not necessarily - an 

opposite effect on each other, since minimizing one of 

them leads to increasing in the other, and vice versa.   

Consequently, the objective function must consider these two 

cases. The first case can be overcome by normalizing the two 

values. The second one makes necessary to define a feasible 

space for the weight factors, in a way that, if the given weight 

multipliers lead to make one objective exceeds the desired 

limit, then, these weight multipliers are defined as infeasible 

space.     

According to the above considerations, objective function will 

take the following form: 

      
        

     
      

    
        

     
      

             

6. PROBLEM CONSTRAINTS 
Most of the optimization problems are constrained problems. 

The constraints are divided into equality and inequality 

constraints as was indicated by equation (4.2) and (4.3). The 

equality constraints are the active and reactive power 

equalities which are represented by the following power flow 

nonlinear equations:  

                    

  

   

                    

                                                     

                      

  

   

                    

                                                     

The inequality constraints include the limits on all control 

variables such as bus voltage constraints, generators reactive 

power constraints, capacitors and reactors reactive power 

capacities constraints, the transformer tap position constraints, 

and so on. Mathematically, the inequality constraints can be 

defined as in the following equations: 

                                                            

                                                       

                                                      

                                                   

                                                                        

Where    is the bus voltage magnitude,    is the number of 

buses in the system,    is the active power of the generator, 

   is the reactive power of the generator,    is the number of 

generators in the system,       is the reactive power of SVC, 

      is number of SVC’s,      is the current flow through the 

transmission line, and    is the number of transmission lines 

in the system. 

In additional to the above constraints, the algorithm restricted 

to the following parameters:  

 Number of SVC devices that will be installed = 4  

 The minimum and maximum limits of each SVC 

chosen as in follows: 

                                     

 Only one SVC is allowed to be installed at a 

nominated bus. 

 The SVC devices can be installed only at load buses 

(PQ). The slack bus and PV buses are excluded. 

 The SVC’s are considered to be reactive power 

controlled (inject the set point MVAr). 

 Population size (number of individuals Nind) =  60 

 Maximum number of generations GENmax = 80 

GA calls the load flow calculations subroutine for each 

individual to calculate its fitness. For each step of weighting 

coefficients increment the program is repeated several times 

and the most common obtained solution is considered. 

7. RESULTS  
The optimization problem was solved for the Iraqi national 

SHV grid system.  The grid includes 24 buses. The number of 

stations that comprise generation units (PV buses) is 11. 

While the load buses (PQ) are 13 and these are the nominated 

buses for the installation of SVC’s. Since, in this work, the 

network is modelled starting from generators terminals, i.e. 

the unit transformers were included, the busbar before the 

transformers (from generators side) were considered to be the 

PV node. While the busbar after the transformers were 

considered as PQ node. For the generators located at one 

station and have different voltage setting, they were modelled 

separately and considered being connected to separate nodes. 
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For the above considerations, the number of PV buses became 

13 and the number of PQ buses was 24.  

In this paper, six cases were taken for the weight multipliers 

(w1, w2), as shown in Table 1 For the cases 1 and 6, only one 

objective is considered because one of the two multipliers is 

zero. Then, the minimum possible active power loss is 

obtained from installing SVC’s according to the results from 

case 6. In the same way, the minimum voltage deviation is 

obtained from installing SVC’s according to the results from 

case 1. 

Table 1. Selected weights for the two objectives 

w1 0 0.2 0.4 0.6 0.8 1 

w2 1 0.8 0.6 0.4 0.2 0 
 

where w1 is the weight coefficient for active power loss (PL) 

and w2 is the weight coefficient for voltage deviation (VD). 

Table 2 shows the nominated buses for the 4 SVC’s by GA 

for the mentioned six cases and Table 3 shows the size of each 

SVC. Table 4 shows the resulted voltage deviation and active 

power loss for each case. 

Table 2. Nominated buses for SVC’s obtained by GA for 

each case of weight coefficients 

Case 

No. 
w1 w2 

SVC1 

Node 

SVC2 

Node 

SVC3 

Node 

SVC4 

Node 

case1 0 1 2 7 8 13 

case2 0.2 0.8 2 7 12 13 

case3 0.4 0.6 1 7 12 13 

case4 0.6 0.4 1 2 7 12 

case5 0.8 0.2 1 2 7 12 

case6 1 0 1 2 7 12 
     

Table 3. Obtained sizes of the 4 SVC’s by GA in each case 

Case No. 
SVC1 

(MVAr) 

SVC2 

(MVAr) 

SVC3 

(MVAr) 

SVC4 

(MVAr) 

case1 -70 80 80 80 

case2 -65 80 80 75 

case3 80 80 80 60 

case4 80 -70 80 80 

case5 80 -65 80 80 

case6 80 -60 80 80 

    

Table 4. Calculated voltage deviation and active power 

loss for each case  

Case No. VD (p.u.) PL (MW) 

case1 0.143 8.7570 

case2 0.147 8.6655 

case3 0.165 8.5280 

case4 0.202 8.3080 

case5 0.204 8.3054 

case6 0.206 8.3050 

The values in Table 4 represent the non-dominated solutions 

and can be represented by pareto optimal front. In all the 

cases, voltage deviation and active power loss were reduced in 

comparison to the uncompensated system. That means, all the 

solutions in Table 3 satisfy the goal and the operator can 

choose one of these solutions depending on the importance of 

each objective. 

From Table 2, it can be seen that bus 7 appears in all cases as 

a nominated bus for installing the SVC. Bus 2 and bus 12 

appear in 5 cases and bus 1 appears in 4 cases.  This may also 

help to decide which case among the studied six cases is 

chosen. In other words, the cases that combine these buses (1, 

2, 7, and 12) are preferred for being chosen. The same thing 

can be said regarding the size of SVC. 

Figure 1 shows the pareto front for the two objectives and 

Figure 2 visualizes, in three dimension, the value of the two 

objectives against the value of the fitness function for the six 

cases.  

 

Figure 1. Pareto front for the two objectives 

 

 
 

Figure 2. The two objectives versus fitness function value 

In the SVC localization problem, it was noticed that the 

algorithm find the solution after around 40 generation. 

Nevertheless, the number of generations in each case is set to 

be 80 to explore all search space and prevent the algorithm 

from falling in local minima. For the case number 4, the 

evolution of the best individual (minimum objective function 

value) for each generation of GA is shown in Figure 3 and 

Figure 4 shows bus voltage magnitude in (p.u.) for all cases. 
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Figure 2. Best individual evolution for each generation in 

GA 

 

Figure 2. Bus voltage magnitude in (p.u.) for all cases 

 

In term of reducing operation costs and from economical 

view, reducing active power loss is more important than 

reducing voltage deviation, while reducing voltage deviation 

is important in term of improving service quality. As a 

conclusion, the resulted active power loss and voltage 

deviation before and after installing the SVC’s according to 

case 4 are indicated in Table 5. 

Table 5. Results of power loss and voltage deviation for 

optimized and unoptimized system  

Objective Unoptimized SVC installed 

power loss  

(MW) 
8.88117 8.30804 

% - 6.45% 

voltage deviation 

(p.u.) 
0.3568 0.20227 

% - 43.31% 
 

Figure 5 shows the bus voltage magnitude of the system 

before and after installing the 4 SVC’s according to the 

locations and sizes obtained from case 4. 

8. CONCLUSION 
In this work, GA was proposed as an algorithm to find the 

best locations and sizes of SVC devices. The algorithm was 

applied on the Iraqi National SHV Grid system. Considering 

the unit transformers in the grid modelling made the algorithm 

restricts to the exact reactive power limits of the generators 

taking into account the added or absorbed reactive power by 

the transformers.  

GA was used to solve the multiobjective optimization 

problem. The application of the algorithm successfully found 

the optimum location and the size of each SVC to reduce the 

active power losses of the grid as well as to enhance voltage 

profile by reducing voltage deviation from its nominal value 

for all load nodes. This was done by the reactive power 

support of SVC devices.  

The following points were concluded from the overall results: 

1. The algorithm tends to find the best size of each SVC to 

minimize the objective function, therefore, the obtained 

sizes were mostly hit the proposed limits of SVC’s. 

2. With the proposed number and sizes of SVC’s, it has 

been noticed that the reduction in voltage deviation is 

significantly higher than the reduction in power loss. 

 

 

Figure 2. Bus voltage magnitude of the system before and after installing 4 SVC’s according to case 4 
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