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ABSTRACT 

Optimization of large gas trunk-lines known as IGAT results 

in reduced fuel consumption or higher capability and 

improves pipeline operation. In the current study, Single and 

Multi-objective optimizations were conducted for a 

compressor station comprising four similar compressor units 

driven by four similar gas turbines, four coolers of the same 

size and a pipeline section to the next station. This pipeline 

section is on the 2th major gas transmission pipeline of the 

National Iranian Gas Company, NIGC, or IGAT2 which is 

designed to move over 79 MMSCMD (2.8 BCFD) of natural 

gas from the Assaluyeh Gas Refinery to the ports. Genetic, 

Particle Swarm and SQP Algorithms were used in this 

optimization along with detailed modeling of the performance 

characteristics of compressors, aerial coolers, and downstream 

pipeline section. The results showed that, for stations having 

the same compressor in parallel, the minimum fuel (energy) 

consumption is reached when split flows in all compressors 

are the same. By the way, it can save fuel consumption in the 

order of 2-4 % by adjusting unit load sharing and coolers 

downstream temperatures slightly. It appears that most of the 

savings (around 70–75%) are derived from optimizing the 

load sharing between the four parallel compressors. Also PSO 

algorithm reached better and faster results than two other 

algorithms. 
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1. INTRODUCTION 
Oil and natural gas have been the most major resources of 

energy from past to present, as crude oil provides 33.6% and 

natural gas 24.2% of world energy consumption in the past 

year [1]. Arguably, the natural gas transmission pipeline 

infrastructure in the IRAN represents one of the largest and 

most complex mechanical systems in the world. High pressure 

natural gas transmission pipelines are very important because 

they are the most cost-effective ways for transmitting natural 

gas over long distances. A natural gas transmission system 

usually consists of receipt points, pipeline segments, 

compressor stations, and delivery sites. The compressor 

station is the principal component of any gas transmission 

system [2]. These stations are located along the pipeline to 

compensate for the pressure decrease due to friction, heat 

transfer and elevation losses and to maintain required delivery 

pressures and flows. Like case presented in this paper, most 

compression is powered by natural gas taken directly from the 

pipeline, Fuel and power costs for compressor operation 

approach a staggering half billion dollars per year in the 

United States alone. Every 1% saving in fuel consumption 

means up to 5 million dollars per year in economic benefits 

[2]. Lots of researchers have been working on optimization of 

gas transmission system in the world from past till now. Edgar 

et al (1988) used both NLP and Branch and bound scheme for 

optimal design of gas transmission systems [3]. Osiadacz 

(1994) used hierarchical system theory for Dynamic 

optimization of high-pressure gas networks [4]. Wolf and 

Smeers (2000) used Mixed integer nonlinear programming 

known as MINLP for fuel cost minimization [5]. Tabkhi 

(2007) applied MNLP for optimum design and fuel 

consumption minimization of gas transmission networks [6]. 

Chebuba et al (2009) first applied Ant Colony Optimization 

(ACO) for fuel consumption minimization problem in natural 

gas transportation systems For gas pipeline operation 

optimization the ant colony algorithm is a new evolutionary 

optimization method [7]. 

This paper presents application of Genetic Algorithm (GA) 

methodologies to multi-objective optimization of four similar 

units from a compressor station on the 2th major gas 

transmission pipeline of the National Iranian Gas Company, 

NIGC, or IGAT2 driven by similar gas turbine (N.P 

MS5002C) as well as four coolers of the same size with the 

familiar constraints of booster compressor operating 

boundaries, gas turbine performance limits. Results include 

single-objective optimization using SQP, GA and PSO to 

minimize fuel consumption for a given throughput and multi-

objective optimizations of minimum fuel consumption and 

maximum throughput.  

2. OPTIMIZATION METHODOLGY  
Optimization is the procedure of detecting attributes, 

configurations or parameters of a system, to produce desirable 

responses [8]. Typically, there are three fundamental objective 

functions pertaining to a gas pipeline network operation. 

These are total energy (fuel) consumption, throughput and 

linepack. The present paper deals with the first two objectives 

by optimization of single- vs. multi-compressor unit 

operations. For example, optimization of the energy (fuel) 

consumption can be formulated as follows [9]. 
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And other linear and non-linear constraints, where: 
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Maximum throughput (delivery or receipt), can be Maximum 

throughput (delivery or receipt), can be represented by: 
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Basically, optimization methods can be classified into two 

categories: gradient based methods and stochastic methods. 

Gradient based methods rely on the derivative of the function 

being optimized with respect to all control variables that 

define the system. There are several gradient-based 

optimization methods depending on the nature of the objective 

function and associated constraints, i.e. constrained and 

unconstrained linear, quadratic and non-linear programming. 

In this research, Sequential Quadratic Programming 

(Constrained Nonlinear Optimization Algorithm - fmincon 

SQP Algorithm) is used. In addition, stochastic methods, 

Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), are used too. The genetic algorithm is a technique based 

on the natural processes of evolution. Survival-of-the-fittest 

rules are used to select individual design cases out of a 

population of cases, which become the “parents” of a new 

population of design cases. As the algorithm evolves through 

generations (similar to iterations in a typical algorithm), the 

objective function tends towards an optimum value. Due to 

the pseudo-random nature of the algorithm and its 

independency from objective function gradients, it does not 

become fixed in a local optimum point. First application of 

GA to pipeline optimization has been introduced by Goldberg 

and Kuo where they demonstrated its application in a serial 

liquid pipeline system [10], [11]. Particle Swarm 

Optimization (PSO) is based on concepts and rules that 

govern socially organized populations in nature, such as bird 

flocks, fish schools, and animal herds [8]. The algorithm 

employs a population of search points that moves 

stochastically in the search space. Concurrently, the best 

position ever attained by each individual, also called its 

experience, is retained in memory. This experience is then 

communicated to part or the whole population, biasing its 

movement towards the most promising regions detected so 

far. The communication scheme is determined by a fixed or 

adaptive social network that plays a crucial role on the 

convergence properties of the algorithm [8]. This paper 

presents application of SQP, GA and PSO methodologies to 

single-objective optimization and application of GA to multi-

objective optimization of four similar units from a compressor 

station driven by similar gas turbine (N.P MS5002C) as well 

as four same size coolers. 

3. COMPRESSION POWER TRAIN 

SYSTEM  
A four-unit compressor station is considered as an example of 

a complex power train system. This system Operates on the 

2th nationwide gas transfer pipeline between (Farashband – 

Noorabad), which starts from the site of high pressure gas 

compressor in Farashband (S1) and runs up to the entrance of 

the high pressure gas compressor site in Noorabad (S2). Table 

1 shows this system consists of four similar compressor units 

(termed cent0001 to cent0004) driven by four similar gas 

turbines. Moreover, the station includes four aerial coolers 

with same size (termed cooler0001 to cooler0004), which are 

connected in parallel to all of the compressor units. The 

downstream section of the pipeline is composed of one line 

with a diameter of 56" and approximately 135.71 km to the 

next station. Figure 1 shows a schematic of the station and the 

downstream pipeline section which comprise the power train 

system as an example for the present optimization exercise. 

Table 1: Models of Four Similar Compressor Units and 

Gas Turbine Drivers 

Unit Compressor Unit Driver 

1 N.P BCL-605 N.P MS5002C 

2 N.P BCL-605 N.P MS5002C 

3 N.P BCL-605 N.P MS5002C 

4 N.P BCL-605 N.P MS5002C 

 

 

Fig 1: Schematic of the four-Unit Compressor Station and Downstream Pipeline Section under Study. 

 

Fig 2: Schematic and Dimensions of the Pipeline Sections Downstream of the Compressor Station. 

The downstream section of the pipeline to the next station 

(135.710 km downstream) is composed of 25 pipes as shown 

in Figs. 1 and 2. The compressor performance characteristics 

and associated driver’s heat rate map at ambient temperature 

(90 °F) are shown in Fig. 3. 
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Fig 3: Performance Characteristics of the Compressor and its Gas Turbine Driver at 90°F Ambient Temperature 

According to Fig.3, search space is in the range of 

performance curves and by this keen action so many wrong 

answers has been discarded. In a single-objective optimization 

for a given throughput, case-specific input parameters are 

shown in Table 2. The case study is based on the information 

of the 2th major gas transmission pipeline of the National 

Iranian Gas Company, NIGC, or IGAT 2 gas transmission 

pipeline. A total throughput of 79 MMSCMD of natural gas is 

transported from Assaluyeh refinery towards the city gate of 

Noorabad through a NPS 56 gas pipeline. There are 

significant elevation changes in the pipeline route (see Figure 

4). 

Table 2: Input Parameters for the Power Train System of 

Fig. 1. 

Input Parameters 

Suction Pressure (P1 ) 696.2 Psia 

Suction Pressure at Next Station (P4 ) 750 Psia 

Suction Temperature (T1 ) 35.14 °C 

Soil Temperature 10 °C 

Ambient Temperature 10 °C 

Gas Flow 79 MMSCMD 

The control variables are: 

 Compressor load sharing in terms of the Volume flow 

split to each compressor unit. 

 Downstream Temperature of Coolers. 

In this work, because of the continuous nature of the 

constraints, Constrained Nonlinear Optimization Algorithm -

fmincon SQP Algorithm- was used for single-objective 

optimization and results are compared with two stochastic 

methods GA and PSO. Table 3 shows the operators of GA and 

PSO in single-objective optimization as following: 

Table 3: Genetic and Particle Swarm Operators 

Genetic Particle Swarm 

population size 20 population size 20 

Elitism 2% C1 ( Social Attraction ) 1.25 

Directional 

crossover 
80% 

C2 ( Cognitive 

Attraction ) 
0.5 

Classical crossover 30% C0 ( particle inertia ) 0.5 

 

Table 4 gives the selected resolution for each of the control 

variables above, the range, and the corresponding required 

number of GA strings. It is shown that for such a single-
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objective exercise, the total number of GA strings is 76 and 

resulting search space is 7.6E+22. Similar GA data are shown 

in Table 5 for the case of multi-objective optimizations that 

include maximizing flow (means that maximizing flow is the 

other objective in this optimization). The corresponding 

number of GA strings in this case is 86 and the resulting 

search space is 7.7E+25. 

 

Table 4: Control Variables in Case of Single-Objective Optimizations with GA. 

Control Variable Min Max Resolution # of Cases # of String 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0001) 
0.13 0.30 0.001 171 8 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0002) 
0.13 0.30 0.001 171 8 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0003) 
0.13 0.30 0.001 171 8 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0004) 
0.13 0.30 0.001 171 8 

Cooler Downstream Temperature (°C) 

Cooler 0001 case 
50 70 0.01 2001 11 

Cooler Downstream Temperature (°C) 

Cooler 0002 case 
50 70 0.01 2001 11 

Cooler Downstream Temperature (°C) 

Cooler 0003 case 
50 70 0.01 2001 11 

Cooler Downstream Temperature (°C) 

Cooler 0004 case 
50 70 0.01 2001 11 

Total String Length 76 

Design Space 7.6E+22 

 

Table 5: Control Variables in Case of Multi-Objective Optimizations with GA. 

Control Variable Min Max Resolution # of Cases # of String 

Gas Flow (MMSCMD) 40 100 0.1 601 10 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0001) 
0.13 0.30 0.001 171 8 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0002) 
0.13 0.30 0.001 171 8 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0003) 
0.13 0.30 0.001 171 8 

Compressor Flow Split (MMSCMD) 

(fraction to Compressor Cent0004) 
0.13 0.30 0.001 171 8 

Cooler Downstream Temperature (°C) 

Cooler 0001 case 
50 70 0.01 2001 11 

Cooler Downstream Temperature (°C) 

Cooler 0002 case 
50 70 0.01 2001 11 

Cooler Downstream Temperature (°C) 

Cooler 0003 case 
50 70 0.01 2001 11 

Cooler Downstream Temperature (°C) 

Cooler 0004 case 
50 70 0.01 2001 11 

Total String Length 86 

Design Space 7.7E+25 
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Fig 4: Topology of the Downstream Pipeline Section under 

Study 

A custom-built computer program (Simulator) was used as 

simulator for modeling of the power train and downstream 

pipeline section described above. The model simulates the 

steady-state gas flow from the suction to the compressors to 

the downstream end of the pipeline section (i.e. to the next 

compressor station). The model is non-isothermal; it 

calculates the gas temperature variations across the aerial 

coolers and along the pipeline section and account for the heat 

exchange between the pipe and the ground. The pressure drop 

and temperature profile along the various pipeline sections are 

obtained from solving: 
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And AGA is used as a flow equation (Eq. 7) [12]. 
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Table 6 gives salient specifications of four aerial coolers, and 

their dimensionless performance characteristics in terms of 

pressure drop and degree of cooling are given in Figures 5 and 

6. 

Table 6: Specifications of the Aerial Coolers. 

Aerial Cooler 1 , 2 , 3, 4 

TYPE Forced Draft 

NO. OF PASSES 1 

NO. OF BAYS 8 

BARE SURFACE 

AREA/BAY (m2) 
308.8845 

NO. OF FANS PER BAY 3 

FAN DRIVE TYPE ELECTRIC MOTOR 

MAX FAN SPEED (RPM) 180 

MIN FAN FRACTION 

(RPM) 
Full speed (100% speed) 

AIR FLOW/FAN at 100% 

speed (kg/s) 
110 

Tube Materials (Carbon Steel) SA-179 

Fin Materials Aluminum 

Tube Length (mm) 12000 

Fan Power (DESIGN) 

(kW) ‐ for one fan 
40 

Fan Power (MOTOR) 

(kW) ‐ for one fan 
49.5 

NO. OF BUNDLES OF 

TUBES PER BAY 
2 

NO. OF TUBES PER BAY 400 

TUBE O.D (mm) 25.4 

TUBE WALL THICKNESS 

(mm) 
1.65 

TUBE I.D (mm) 19.56 

 

 

Fig 5: Pressure drop through coolers 

 

Fig 6: Dimensionless performance characteristics of 

coolers. 
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4. RESULTS OF SINGLE-OBJECTIVE 

OPTIMIZATION 
Several single-objective optimization simulations were 

conducted with GA at different fixed throughput ranging from 

40-100 MMSCMD and the results are shown in Fig. 8. A 

certain throughput of 79 MMSCMD in the mid-range of 

throughputs was selected for further analysis.  Particularly, it 

is compared with the best (optimum Pareto) case and the 

worst case on the far right end of the range (see Fig. 8). It 

should be noted that search space is in the ranges defined in 

Fig. 3 and this is the reason why the best case and the worst 

case are close to each other. 

 

Fig 8: Results of Single-Objective Optimizations at 

Different Throughputs 

Single-objective optimization simulations were conducted at 

fixed throughout 79 MMSCMD with SQP and the results are 

shown in Fig. 9, where the resulting total Fuel consumptions 

are shown on the y-axis, for each of the Iterations shown on 

the x-axis. This Single-objective optimization also conducted 

with two stochastic algorithms, GA and PSO, for comparison. 

The results are shown in Fig. 10 and 11 respectively. Table 7 

compares the results of these optimizations and it is obvious 

that, for stations having the same compressor in parallel, the 

minimum fuel (energy) consumption is reached when split 

flows in all compressor units are almost the same. 

Comparison between two cases (best and worst) is given in 

more details in Table 8. 0.017 MMSCMD of fuel saving 

equates to 3% saving in fuel consumption between the best 

and the worst case for this throughput case. 

 

Fig 9: Results of Single-Objective Optimizations with SQP 

 

Fig 10: Results of Single-Objective Optimizations with GA 

 

Fig 11: Results of Single-Objective Optimizations with PSO 

 

Table 7: Control Variables in Case of Single-Objective 

Results of SQP Results of GA Results of PSO 

Downstream Temperature 

(Cooler 0001) 
51 °C 

Downstream Temperature 

(Cooler 0001) 
51.36 °C 

Downstream Temperature 

(Cooler 0001) 
50 °C 

Downstream Temperature 

(Cooler 0002) 
51.6 °C 

Downstream Temperature 

(Cooler 0002) 
53.67 °C 

Downstream Temperature 

(Cooler 0002) 
50 °C 

Downstream Temperature 

(Cooler 0003) 
50 °C 

Downstream Temperature 

(Cooler 0003) 
50.58 °C 

Downstream Temperature 

(Cooler 0003) 
50 °C 

Downstream Temperature 

(Cooler 0004) 
50 °C 

Downstream Temperature 

(Cooler 0004) 
53.54 °C 

Downstream Temperature 

(Cooler 0004) 
50 °C 

Load Sharing 

(fraction to Compressor 

Cent0001) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0001) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0001) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0002) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0002) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0002) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0003) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0003) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0003) 

0.25 
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Load Sharing 

(fraction to Compressor 

Cent0004) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0004) 

0.25 

Load Sharing 

(fraction to Compressor 

Cent0004) 

0.25 

Total Fuel Consumption: 0.593485 

MMSCMD 

Total Fuel Consumption: 0.593082 

MMSCMD 

Total Fuel Consumption: 0.594509 

MMSCMD 

 

Based on simulations done on this system, cooling plays an 

efficient role in fuel consumption minimization, but it appears 

that most of the saving (75%) is derived from optimizing the 

load sharing among the parallel compressors, only 25% of the 

saving comes from optimizing the coolers. As mentioned 

earlier the comparison between the best (optimum Pareto) 

case and the worst case is shown in Table 8.  It appears that 

potential total fuel consumption saving of up to 3% can be 

realized from optimum load sharing and optimum 

downstream temperature of coolers. 

 

Table 8: Comparison between Best and Worst Feasible Case of Transporting 79 MMSCMD of Gas. 

 
Best case Worst case 

D
ifferen

ce
 

1 2 3 4 1 2 3 4 

Flow 19.75 19.75 19.75 19.75 23.621 18.091 18.565 18.723 

Cooler Downstream 

Temperature 

(°C) 

50 50 50 50 68.6 67.8 67.8 68.6 

Power Required (MW) 15.0043 15.041 15.041 15.041 19.7635 13.9058 14.3651 14.5205 

Head (m) 5299.34 5314.04 5314.04 5314.04 5612.35 5479.91 5491.26 5495.12 

Speed (RPM) 4057.25 4060.48 4060.48 4060.48 4498.33 3966.54 4004.31 4017.28 

Duty of Cooler (MW) 9.06646 9.37668 9.37668 9.37668 2.15003 0.452632 0.559237 0.597117 

Downstream Temperature to 

next station (T4) 
32.1273 °C 45.3894 

Total Power Required (MW) 60.12 62.56 

Total Duty (MW) 37.1966 3.759 

Total Fuel Consumption 

( MMSCMD ) 
0.594 0.6100 0.017 

 

5. RESULTS OF MULTI-OBJECTIVE 

OPTIMIZATION 
In this section, Multi-objective optimization simulations was 

conducted for minimum total fuel consumption (Minimum 

Energy) and maximum throughput instead of running the 

simulation as several single-objective simulations at different 

throughput. The outcome would be a Pareto front as shown in 

the results of Fig. 12. 

 

Fig 12: Results of Multi-Objective Optimizations of 

Throughput and Total Fuel Consumption. 

 

The purpose to do multi-objective optimization is to obtain 

the optimal operation conditions for minimizing the total fuel 

consumption and maximizing the throughput. The Pareto 

front, i.e. the optimum conditions are those represented by the 

far top left set of points of all of the points shown in the 

Figure. These points are plotted in Fig. 13 along with the 

individual single-objective simulations shown in Fig. 8. If 

both set of simulations are correct, the two sets should lie on 

top of each other, which is indeed the case as shown in Fig. 

13. 

 

Fig 13: Comparison between Results of Multi-Objective 

Optimizations vs. Individual Single-Objective 

Optimizations. 
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6. CONCLUDING REMARKS 
The following concluding remarks can be drawn from the 

present work: 

1. Single- and multi-objective optimization based on Genetic, 

Particle Swarm and SQP Algorithms was successfully 

developed for the entire power train of a multi-unit 

compressor station involving four similar units, four identical 

aerial coolers which are connected in parallel to all of the 

compressor units, and a pipeline section to the downstream 

station. 

2. Single and multi-objective optimization with GA results in 

8 and 9 decision variables and an optimization space of 

7.6E+22 and 7.7E+25 cases respectively 

3. Stations having the same compressor in parallel, the 

minimum fuel (energy) consumption is reached when split 

flow in all compressors is the same (Load sharing is equal in 

all compressors). 

4. Based on simulations done on this system, after cooling has 

an efficient role in fuel consumption minimization but It 

appears that most of the saving (75%) is derived from 

optimizing the load sharing among the parallel compressors, 

while 25% of the saving comes from optimizing the coolers. 

5. Based on two cases compared, it appears that a fuel savings 

of approximately 2-4% could be realized in the field by 

controlling the compressor flow split ratio and downstream 

temperature of coolers. 

7. NOMENCLATURE 
MMSCMD Million Standard Cubic Meters per Day 

BCFD Billion Cubic Foot per Day 

IGAT Iranian GA Trunk-lines 

SQP Sequential Quadratic Programming 

PSO Particle Swarm Optimization 

MNLP Mixed Non Linear Programming 

CP Specific heat capacity at constant pressure (Btu/lb.F) 

Q Actual inlet flow rate to a compressor unit (MMSCMD) 

U Overall heat transfer coefficient (Btu/h.ft2.F) 

Qb Gas flow rate at base conditions (MMSCMD) 

e Total energy consumption 

ṁ Mass flow rate 

Ps Suction pressure (psia) 

Pd Discharge pressure (psia) 

W Compressor power (MW) 

N Compressor speed (RPM) 

P1 Gas inlet pressure to the pipeline (psia) 

D Inside diameter of the pipeline (in) 

H Adiabatic head across a compressor unit 

N.P NUOVO PIGNONE 
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