
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.10, March 2013

23

Module based Partial Reconfiguration on Bitstream
Relocation Filter

 M. Angelin Ponrani G. Manoj R. Rajesvari

 M.Tech student Assistant professor Assistant professor
 Karunya University Karunya University Karunya University

ABSTRACT

The concept of partial bit stream relocation activity, the run

time relocation can be obtained by using a system component.

It is able to update the bitstream information and moving the

reconfigurable module to a desired position. In Dynamic

partial reconfiguration, it provides the possibility to change

certain parts of the hardware while the other parts of the

system remain in use. It provides a methodology to generate

bitstreams for removal of old hardware modules, and

placement and routing of new hardware modules. Relocation

filter is implemented as a software component. The data errors

can be detected and corrected by using the cyclic redundancy

check and it is then fed into a system. Reconfiguration process

is done over here by keeping cyclic redundancy check as a

static part and bitstream relocation filter as a reconfigurable

one. Finally the area require to store the Bitstream is

analysed. Using module based partial reconfiguration; we can

dramatically increase the functionality of a single FPGA in

terms of the memory that is used to store the bitstreams.

Important applications for this technology include

reconfigurable communication and cryptographic systems.

Keywords

Partial relocation, Bit stream Relocation Filter, cyclic

redundancy check.

1. INTRODUCTION

Partial Reconfiguration is the process of changing a portion of

reconfigurable hardware circuitry while the other part is still

running/ operating. Field programmable gate arrays are often

used as a support to partial reconfiguration. Partial

reconfiguration allows for critical parts of the design to

continue operating while a controller either on the FPGA or

off of it loads a partial design into a reconfigurable module.

Partial reconfiguration also can be used to save space for

multiple designs by only storing the partial designs that

change between designs. Partial reconfiguration is the

cornerstone for power- efficient, cost effective software-

defined radios (SDRs).

Through the JTRS Program, SDRs are becoming a reality for

the defense industries as an effective and necessary tool for

communication. Partial reconfiguration can also be used in

many other applications. Another example is in mitigation and

recovery from single-event upsets. In-orbit, space-based, and

extra-terrestrial applications have a high probability of

experiencing SEUs. By performing partial reconfiguration, in

conjunction with read back, a system can detect and repair

SEUs in the configuration memory without disrupting its

operations or completely reconfiguring the FPGA. (Read back

is the process of reading the internal configuration memory

data to verify that current configuration data is correct.)

From the functionality of the design, partial reconfiguration

can be divided into two groups:

 Dynamic partial reconfiguration, also known as an

active partial reconfiguration - permits to change the

part of the device while the rest of an FPGA is still

running.

 Static partial reconfiguration - the device is not active

during the reconfiguration process. While the partial

data is sent into the FPGA, the rest of the device is

stopped (in the shutdown mode) and brought up after

the configuration is completed. There are two styles of

partial reconfiguration of FPGA devices from Xilinx:

 Module- based partial reconfiguration

 Difference-based partial reconfiguration

Module-based partial reconfiguration permits to reconfigure

distinct modular parts of the design. Module-based partial

reconfiguration requires performing a set of specific

guidelines during at the stage of design specification. Finally

for each reconfigurable module of the design, separate bit-

stream is created. Such a bit-stream is used to perform the

partial reconfiguration of an FPGA.

Difference-based partial reconfiguration can be used when a

small change is made to the design. It is especially useful in

case of changing LUT equations or dedicated memory blocks

content. The partial bit-stream contains only information

about differences between the current design structure (that

resides in the FPGA) and the new content of an FPGA.

To obtain partial reconfiguration it is necessary to provide a

configuration file called bitstream. It is necessary to assign

each module at design time, a placement on target device.

Therefore a designer can define the shape that has to be used

to implement the desired core and its placement on the device.

This paper is organized as follows. Section II gives an

overview of some related works of various reconfiguration

technique used to relocate the Bitstream while Section III

presents the design methodology followed in order to attain

the partial reconfiguration process. Section IV presents the

implementation of the Bitstream relocation filter. The results

are shown and analyzed in the Section V and then we

conclude with the work done in section VI.

2. RELATED WORK

There are different types of relocation filters found in

architecture. However, it is important to note that the memory

resources are utilized can be much low as possible. Partial

reconfiguration allows the modification of hardware

functionalities at runtime. It provides the possibility for great

improvements in the concept of reconfigurable computing.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.10, March 2013

24

Column-wise partial reconfiguration can be realized by means

of a space allocation manager that determines the columns

where single modules should be placed and a component

which modifies the bitstream to place it in the correct

position. It describes the development of such component in

the form of the Bitstream Relocation Filter [1].

The possibility of dynamically change the functionalities

hosted on the device only when needed and while the rest of

the system keeps working. It describes and compares two

different solutions, hardware and a software one, to perform

Bitstream relocation: BiRF and Banco de Materials Light

[2].The feature of partial reconfiguration provided by Field

Programmable Gate Arrays (FPGAs) makes it possible to

change hardware modules while others keep working. The

combination of this feature and the high gate capacity enables

the integration of dynamic systems that can be adapted to

changing demands during runtime.In order to prevent any

extra configuration overhead for the relocation process, the

REPLICA filter is used [3].

Dynamically reconfigurable system-on-chips can change

its hardware as well as software functionalities during run-

time. A co-design and coverification methodology is proposed

for dynamically reconfigurable SoC. First it is modeled using

unified modeling language and then it is mapped to the

systemC SoC using a functional architecture co design

methodology [4].Adaptive FIR filter system design uses

dynamic partial reconfiguration. It is responsible for providing

the best solution for realization and autonomous adaptation of

FIR filters [5].

3. DESIGN METHODOLOGY

The various design methodologies to generate bit streams

are to remove the old hardware modules and placement and

routing of new hardware modules within a FPGA. It is

possible to replace a hardware core with another one by

manipulating only the Bitstream. But it is a lengthy process.

To avoid this inconvenience we are going for the partial

reconfiguration process. Because of this technique it is

possible to change a portion of the circuit while the other parts

are still running. Hence for performing the partial

reconfiguration process we assigned cyclic redundancy check

as a static part and the Bitstream relocation filter as a

reconfigurable one. The CRC generator is used to generate the

partial bitstreams.

3.1 Systematic flow of reconfiguration

Fig 1: Block diagram of system reconfiguration

These bitstreams are fed into the bitstream relocation filter for

reconfiguration is shown in Figure 1.

3.2 Cyclic Redundancy Check

The Cyclic Redundancy Check (CRC) is an efficient

technique for detecting errors during digital data

transmissions between a source and a destination. The

destination device calculates the CRC of the received data. If

the CRC calculated by the destination device does not match

the one calculated by the source device, then the received data

contains an error. This technique is used in a wide variety of

applications from Ethernet transmission to daily file transfers.

It provides quick and easy insurance of data integrity within

digital communication systems.

The CRC is based on polynomial manipulations which

treat each received message as a binary number. The received

message is then divided by a fixed value, also known as the

generator polynomial, using modulo-2 arithmetic. The

characteristic of the CRC implementation is determined by the

generator polynomial selection. The generator polynomials

are selected to maximize the error detection capability without

using too many resources.

CRCs are based on the theory of cyclic error-correcting

codes. Cyclic codes are not only simple to implement but

have the benefit of being particularly well suited for the

detection of burst errors, contiguous sequences of erroneous

data symbols in messages. This is important because burst

errors are common transmission errors in

many communication channels, including magnetic and

optical storage devices. The length of the remainder is always

less than the length of the generator polynomial, which

therefore determines how long the result can be. In practice,

all commonly used CRCs employ the finite field. This is the

field of two elements, usually called 0 and 1, comfortably

matching computer architecture. The simplest error-detection

system, the parity bit, is in fact a trivial 1-bit CRC: it uses the

generator polynomial x+1.

3.3 Designing CRC Polynomials

The selection of generator polynomial is the most

important part of implementing the CRC algorithm. The

polynomial must be chosen to maximize the error-detecting

capabilities while minimizing overall collision probabilities.

The most important attribute of the polynomial is its length

(largest degree (exponent) +1 of any one term in the

polynomial), because of its direct influence on the length of

the computed check value.The most commonly used

polynomial lengths are:

 9 bits (CRC-8)

 17 bits (CRC-16)

 33 bits (CRC-32)

 65 bits (CRC-64)

The design of the CRC polynomial depends on the maximum

total length of the block to be protected (data + CRC bits), the

desired error protection features, and the type of resources for

implementing the CRC, as well as the desired performance.

http://en.wikipedia.org/wiki/Cyclic_code
http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Burst_error
http://en.wikipedia.org/wiki/Communication_channel
http://en.wikipedia.org/wiki/Parity_bit

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.10, March 2013

25

3.4 Functional Description

A polynomial called generator polynomial must be

chosen before the user computes the CRC of a transmitted

message. The generator polynomial must have a degree

greater than zero and a non-zero coefficient in the MSB and

LSB positions. The selection of generator polynomial is the

most important part of implementing the CRC algorithm.

The polynomial must be chosen to maximize the error-

detecting capabilities.

Fig 2: Functional Block Diagram of CRC

An attribute of the generator polynomial is that its length is

equal to the degree +1. For example, in CRC-8, the degree is

8 and the length is 9. The degree of the generator polynomial

determines the length of the CRC code.

3.5 Applications of CRC

A CRC-enabled device calculates a short, fixed-length

binary sequence, known as the check value or improperly the

CRC, for each block of data to be sent or stored and appends

it to the data, forming a code word. When a codeword is

received or read, the device either compares its check value

with one freshly calculated from the data block, or

equivalently, performs a CRC on the whole codeword and

compares the resulting check value with an expected residue

constant. If the check values do not match, then the block

contains a data error. The device may take corrective action,

such as rereading the block or requesting that it be sent again.

Otherwise, the data is assumed to be error-free (though, with

some small probability, it may contain undetected errors; this

is the fundamental nature of error-checking).

3.6 CRC Generator and checker

A polynomial called generator polynomial must be

chosen before the user computes the CRC of a transmitted

message. The generator polynomial must have a degree

greater than zero and a non-zero coefficient in the MSB and

LSB positions. An attribute of the generator polynomial is that

its length is equal to the degree +1. For example, in CRC-8,

the degree is 8 and the length is 9. The degree of the generator

polynomial determines the length of the CRC code. For

example, if the degree of the generator polynomial is 16, then

the length of the CRC code is 16. In this reference design, a n

number of zero (‘0’) bits (n is the degree of the generator

polynomial) is appended to the transmitted message before the

n-bit CRC code is computed. Modulo-2 arithmetic (XOR

operation) is implemented when computing n-bit CRC code,

as shown in the example below. In this example, the generator

polynomial is chosen as CRC-16-IBM (11000000000000101)

and the transmitted message is chosen as 0xAA (10101010).

Before the CRC code is computed, 16 bits of zeros are

appended to the 0xAA and line the bits in a row. To check the

CRC after the data transmission, the user passes the

transmitted message appending the CRC code through the

CRC checker module. The calculation of the CRC checker is

the same as the CRC generator.

4. IMPLEMENTATION OF BITSTREAM

RELOCATION FILTER

4.1 Partial Reconfiguration

Partial Reconfiguration is the process of changing a

portion of reconfigurable hardware circuitry while the other

part is still running/ operating. Field programmable gate

arrays are often used as a support to partial reconfiguration.

Normally, reconfiguring an FPGA requires it to be held in

reset while an external controller reloads a design onto it.

Partial reconfiguration allows for critical parts of the design to

continue operating while a controller either on the FPGA or

off of it loads a partial design into a reconfigurable module.

Partial reconfiguration also can be used to save space for

multiple designs by only storing the partial designs that

change between designs. Partial reconfiguration is not

supported on all FPGAs. A special software flow with

emphasis on modular design is required. Typically the design

modules are built along well defined boundaries inside the

FPGA that require the design to be specially mapped to the

internal hardware. Vertex-II/ Vertex-II Pro, Virtex-4, Virtex-5

and Virtex-6 are the FPGA’s which support partial

reconfiguration.

4.2 FPGA Configuration Methods

FPGAs are volatile memory-based programmable

devices, the programming needs to be reloaded each time the

device powers up. The process through which the device

receives its program is called configuration. Xilinx FPGA

devices can have the configuration loaded through one of the

following modes:

Slave or master serial mode: Serial mode allows for

daisy-chain configurations and is supported by all Xilinx

FPGA families. In this mode, an external clock, a

microprocessor and download cable is required. Data is

loaded at one bit per clk.

Slave or master Select MAP mode: Select MAP mode is

supported by the Vertex families. Select MAP mode allows

parallel reading and writing through byte wide ports. An

external clock source, microprocessor, download cable are

required. The data is loaded one byte per CCLK. This mode is

typically used as a configuration mode on devices when

configuration speed is an important factor.

Boundary-Scan mode: It is an industry standard (IEEE

1149.1, and 1532) serial Programming mode. External logic

from a cable, microprocessor, or other device is used to drive

the JTAG specific pins, Test Data In (TDI), Test Mode Select

(TMS), and Test Clock (TCK) and sense device response on

Test Data Out (TDO). This mode is the most popular mode of

configuration due to its standardization and ability to program

FPGAs, PLDs, and PROMs through the same four JTAG pins.

The data in this mode is loaded at one bit per TCK.

http://en.wikipedia.org/wiki/Field_programmable_gate_array
http://en.wikipedia.org/wiki/Field_programmable_gate_array

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.10, March 2013

26

Usually, the device is reconfigured externally using a

parallel cable, which is called Xilinx Parallel Cable. It

connects the hosts PC to the JTAG connection of the target

system. Its purpose is to download the bit stream to the FPGA

and can also support debugging. Another mean of configuring

a FPGA externally is to use a System ACE controller which is

a controller to manage multi-bit stream, having access to the

JTAG interface, the MPU and a compact Flash solution.

4.3 BiRF as a 2-D Relocation Filter

The 2-D version of the BiRF core is an evolution of its 1-

D predecessor. It consists of a logical unit, the CRC, used to

recomputed the CRC on the modified bitstream, and of a

finite-state machine (FSM) that parses the bitstream and

performs the necessary manipulations in order to exploit

relocation. Main inputs of the filter are the configuration

bitstream, in the form of a sequence of 32-bitwords

(DATAIN), and the address used to specify the location where

the bitstream has to be moved (TARGETPOSITION); as can

be seen from the figure, the bitstream is taken from the

bitstream memory through the bus, and the target position is

received from the GPP through the bus too. The output of the

filter is the manipulated bitstream, sent word by word (DATA

OUT) to the bus.

The new FSM is an adaptation and an optimization,

tailored for Vertex 4 and Vertex 5 devices, of the BiRF

previous version. This version does not separate commands

with a single parameter from commands with multiple

parameters. Furthermore, some code optimizations have been

done in order to reduce the area and increase the core

performance in term of frequency. The target address,

provided as a14-bit word, is an input of BiRF: the first bit is

the top-bottom bit indicator, the next five bits contain the row

address, and the last eight bits specify the column address.

The calculation of the new FAR parameter is computed by the

parser and is different in Vertex 4 and Vertex 5 devices, as the

two compositions of FAR are different too. In order to

perform the CRC computation, the standard parallel

implementation has been used to provide the new checksum

within the minimum amount of time to obtain better

performance.

4.4 BiRF Parser

The need of a parser is due to the necessity to identify the

FAR (Frame Address Register) and CRC (Cyclic Redundancy

Check) commands in the bitstream, in order to perform the

modification of the parameters that follow them. These two

commands are the only ones which have to be altered in the

relocation process; for this reason, when any other command

or padding is recognized, the parser has to leave the bitstream

unchanged, simply feeding the input through the output.

Therefore, a finite state machine has been created, depicted in

Fig. 3.

This FSM is an adaptation and an optimization of the

BiRF one for Virtex-4 and Virtex-5 devices. In the adaptation

process, the first change has been introduced: this version

does not separate commands with a single parameter to

commands with multiple parameters. Furthermore, some code

optimizations have been done, in order to reduce the area

consumption and to increase the core performance in term of

frequency. The behavior of the FSM is briefly described in the

following.

When BiRF Square is reset, the first phase that performs

the recognition of the beginning of Bit stream commands,

Starts; the FSM enters the Dummy state, which waits for

Dummy word that may signal the beginning of the command

words. After the recognition of such word, the Parser waits for

Sync word: if it is received immediately after the Dummy

word, this phase is terminated, and the commands recognition

starts entering in the

Fig 3: BiRF Parser FSM

Wait state. If the current word is the CRC or the FAR

command, the parser feeds through output the next word

which contains the new CRC or FAR. When a generic

command is recognized, the FSM also has to calculate the

number of parameters, in order to keep the bitstream the same

for the right amount of clock cycles.

5. RESULTS AND DISCUSSION

In this section we perform the partial reconfiguration

process using the plan ahead tool. At first we have to give the

reset signal to the parser FSM. Then we have to mention the

address to which state we want to make transition. According

to the address we enter into the finite state machine it gets

shifted from dummy state to sync state and so on and in each

state, corresponding to the opcodes it perform the read and

write operation. Whenever it finds the frame address register

or else cyclic redundancy check register it switches from one

state to another else if it meets with other commands the input

is directly fed into the output.

5.1 Waveform of BiRF

Fig 4: Waveform of BiRF

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.10, March 2013

27

5.2 Device Utilization of BiRF
After synthesis process the number of LUT’s, slices,

registers and global clock buffer utilized in reconfiguration

process is obtained.

Fig 5:Device utilization of BiRF

5.3 Reconfigured Floor planning of BiRF

Before reconfiguration process, the number of slices and

look up tables used for the bit stream reconfiguration filter

utilized is more and hence the memory space required is too

large. But after the partial reconfiguration process the

utilization of look up tables and slices is much reduced. For

the reconfiguration process, we have to select the input and

output in the floor planning step. After that we have to define

the partial reconfiguration region using the pblock in the plan

ahead tool. Using the design rule check we have to check

whether errors are present if that so the correction is made.

When implementation is run, place and route are done from

scratch with the net list, options, and constraints provided for

that module. Then the import copies the results from a

Promoted location for this module, preserving the exact

results. Hence the place and route has successfully completed

in the selected Configuration. After the partial reconfiguration

verification the bit files are generated.

Fig 6: Reconfigured floor planning of BiRF

5.4 Utilization of LUT’s and Slices

Fig 7: Utilization of LUT’s and Slices

6. CONCLUSION

The cyclic redundancy check consists of CRC generator

which generate a stream of bits and this bitstream is taken as a

packet and then the different opcodes have been checked and

corresponding to states, the 32-bit data is obtained and

whenever the cyclic redundancy check (CRC) or Frame

address register (FAR) is recognized the bitstream changes its

location and hence its relocated.

Thus the partial reconfiguration process is done by

assigning the cyclic redundancy check as a static part and

Bitstream Relocation Filter as a partially reconfigurable part.

After performing the reconfiguration technique the number of

LUT’s and slices is analyzed. The area of the system is much

reduced after performing the partial reconfiguration. System

reconfiguration can be done in the future.

7. ACKNOWLEDGMENTS

I praise and thank Almighty God whose blessings have

bestowed in me the will power and confidence to carry out my

project. I feel it a pleasure to my guide for his valuable

support, advice and encouragement. I would also like to thank

my dear friend and my parents who have prayed and helped

me during the project work.

8. REFERENCES

[1] A Ahmad, B Krill, A Amira and H Rabah,” Efficient

architectures for 3D HWT using dynamic partial

reconfiguration” Journal of Systems Architecture,2010.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.10, March 2013

28

[2] M. D. Santambrogio, “Hardware/software codesign

methodologies for dynamically reconfigurable systems,,”

M.S. thesis, Dipt.Elet.Inform.,Politecnico di Milano,

Milano, Italy, 2008.

[3] S.Corbetta, F. Ferrandi, M. MOrandi, M. Novati, M.D.

Santambrogio, and D. Sciuto, “Two novel approaches to

online partial bitstream relocation in a dynamically

reconfigurable system,” in Proc. IEEE Comput.

Soc.Ann.Symp. VLSI, May 2007, pp. 457–458.

[4] S. W. S. Raaijmakers, “Run-time partial reconfiguration

for removal, placement and routing on the virtex-ii pro,”

in Proc. Int. Conf. Field Program.Logic

Appl.,Aug.2007,pp. 679–683.

[5] C.S. Choi and H. Lee, “A self- reconfigurable adaptive

FIR Filter system on partial reconfiguration platform,”

IEICE Trans. Inf. Sysr., vol. E90-D,no. 12, pp. 1932-

1938, 2007.

[6] P.A. Mudry, F. Vannel, G. Tempesti, and D. Mange,

“Confetti: A reconfigurable hardware platform for

prototyping cellular architectures,” in Proc. IEEE

Int.Parallel Distrib.Process.Symp. (IPDPS),Mar. 2007,

pp.1–8.

[7] P. C. T. Becker and W. Luk, “Enhancing relocatability of

partial bitstreams for run-time reconfiguration,” in

Proc.15th Annu. IEEE Symp. Field-Program.Custom

Comput.Mach., Apr. 2007, pp. 35–44.

[8] F. Ferrandi, M. Morandi, M. Novati, M. D.

Santambrogio and D.Sciuto, “Dynamic reconfiguration:

Core relocation via partial bitstreams filtering with

minimal overhead,” in Proc. 8th Int. Symp. Syst.-on-

Chip, Nov. 06, pp. 1–4.

[9] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and

P.Lysaght, “Modular dynamic reconfiguration in virtex

FPGAS,” Proc. Inst. Electr.Eng. Comput.Digit.Tech.,vol.

153, no. 3, pp. 157–164, May 2006.

[10] M. P. H. Kalte, G. Lee, and U. Rückert, “Replica: A

bitstream manipulation filter for module relocation in

partial reconfigurable systems,” in Proc. 12th

Reconfigurable Arch. Workshop, 2005, p. 151b.

[11] H. Kalte, M. Porrmann, and U. Rückert, “System-on-

programmablechip approach enabling online fine-grained

1D-placement,” in Proc. 18th Int. Parallel Distrib.

Process.Symp. (IPDPS)—Reconfigurable

Archit.Workshop (RAW), 2004, p. 141.

[12] E. Horta and J. W. Lockwood, “Parbit: A tool to

transform bitfiles to implement partial reconfiguration of

field programmable gate arrays (FPGAS),” WUCS-01-

13, 2001.

