
International Journal of Computer Applications (0975 – 8887)

Volume 66– No.1, March 2013

9

Error Correction for a Secure Multicast Group Key

Management using Gray Code

R. Varalakshmi

Ramanujan Computing Centre, Anna University
Chennai, Tamil Nadu, India

V. Rhymend Uthariaraj, PhD.
Ramanujan Computing Centre, Anna University

Chennai, Tamil Nadu, India

ABSTRACT

Key agreement protocols are designed to provide two or more

specified parties communicating over public channels with a

common shared secret key, which may subsequently be used

to exchange information among communicating parties.

Therefore, building secure key agreement protocols over open

networks is essential in information security. Error Correcting

Codes (ECC) is one of many tools made available for

achieving data transmission. Low Density Parity-Check codes

(LDPC), a linear block code which has the advantage that

they provide the performance at that close to the limited

capacity for many different channels and linear time complex

algorithms for decoding. In this paper, we propose a new

group key computation protocol that provides more security

and also integrates a Gallager code and it is proved that this

proposed approach takes less decoding time complexity.

General Terms

Group Key Management, Network Security.

Keywords

Key agreement protocols, Error Correcting Codes, Gallager

code, Low Density Parity-Check codes, Key Computation.

1. INTRODUCTION
Many applications like pay-per–view, distribution of digital

media etc., require secure multicast services in order to

restrict group membership and enforce accountability of

group members. A major issue associated with the

deployment of secure multicast delivery services is the

scalability of the key distribution scheme. This is particularly

true with regard to the handling of group membership

changes, such as membership departures and/or expulsions,

which necessitate the distribution of a new session key to all

the remaining group members. As the frequency of group

membership change increases, it becomes necessary to reduce

the cost of key distribution operations. One solution is to let

all authorized members use a shared key to encrypt the

multicast data. To provide backward and forward

confidentiality (D.M. Wallner and Agee, 1999), this shared

key has to be updated on every membership change and

redistributed to all authorized members securely which is

referred to as rekeying. The efficiency of rekeying is an

important issue in secure multicast as this is the most

frequently performed activity with dynamic change in the

membership.

Group key must be updated with the group membership

changes to prevent a new member from deciphering messages

exchanged before it join the group; this is defined as

backward secrecy. Group key revocation in case of one

member joins or multiple members join could be achieved by

sending the new group key to the old group members

encrypted with the old group key. Also, group key must be

must be updated with the group membership changes to

prevent an old member (leaved or expelled) from deciphering

current and future communication which is defined as forward

secrecy. Group key revocation, when one member leaves or

multiple members leave, is more complicated in case of join

because of the disclosure of the old group key. The old group

key is known to the leaving member(s) so there is a need to

re-key the group using valid key(s) in a scalable way. The

trivial scheme for rekeying a group of n members is through

using individual secret key shared between the Key

distribution Centre KDC and each member. This is not a

simple or scalable method and consumed large bandwidth

especially for large group with high membership changes:

furthermore it takes more time and needs more resources per

hosts than using multicasting to re-key the group.

The rest of the paper is organized as follows. Section 2 related

work. The secured multicast key management model is

presented in Section 3. Section 4 describes the procedure for

secured key distribution. Section 5 analyses the performance

of the proposed scheme. Section 6 describes the error

correction using Gallager codes, followed by the conclusion

in Section 7.

2. RELATED WORK
The topics of key management for multiparty communications

in general networks are studied and one of efficient key tree

based group key management technique called Logical Key

Hierarchy (LKH) is discussed [1,2,3,4]. A new group keying

method that uses one-way functions [8] to compute a tree of

keys, called the One-way Function Tree (OFT). In this

method, the keys are computed up the tree, from the leaves to

the root. This approach reduces re-keying broadcasts to only

about log n keys. The major limitation of this approach is that

it consumes more space. However, time complexity is more

important than space complexity.

A key update in scheme [5,11,12,13] requires O(log2N)

messages where N is the size of the group. In this scheme

each user has to store log2N keys (i.e., keys along the path

from leaf to the root) and the key server has to maintain a tree

of O(N) keys. The scheme proposed in uses the LKH scheme

and uses a binary tree, but with only two keys at every level.

This reduces total number of keys at the server from O(N) to

O(h) where h is the height of the tree. But storage at each user

remains at O(log2N). The scheme discussed and extends the

scheme to m-ary tree instead of binary tree, which reduces the

user side storage from O(log2N) as to O(logmN)[2]. In tree

based key management schemes each user shares a key called

private key with the key server and key at the root of the tree

is the group key which is shared by all users in the group.

Other keys (other than private key and group key) are called

auxiliary keys (key encryption keys) which are known only

for certain subset of users and are used to encrypt new group

key whenever there is a group membership change.

The scheme uses m-ary tree and at each level m keys are

maintained. Whenever a node is compromised new group key

is selected and distributed to other nodes. The encryption keys

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.1, March 2013

10

that are required to send new group key GKnew securely are

computed. The new group key is distributed to group

members without performing any encryptions.

Low-Density Parity-Check codes (LDPC) [9, 10] as one of

many kinds, are also linear block codes that have been studied

vastly in this decade. LDPC became more popular and widely

developed for wider area of applications including

communications and data storage. There are two different

ways to represent LDPC codes; matrix representation and

graphical representation. In the matrix point of view, as it is

named, LDPC codes hold small number of “1” in each row

and column, i.e. Wc<< n and Wr<< m for a dimension m×n

parity matrix. This can provide large minimum distance of the

code. However such a circumstance results a large parity

check matrix. In the graph point of view, Tanner graph [7] is

an efficient graphical representation of LDPC codes. There

are m check nodes (cnodes; number of parity bits) and n

variable nodes (v-nodes; number of bits in a codeword).LDPC

codes are said to be regular if Wc is constant for every

column, and Wr =Wc (n/m) . If the parity matrix H is low

density but the number of “1” in each row or column are not

constant, the code is said to be an irregular one.

Our scheme distributes new group key to the remaining group

members with minimum number of messages as compared to

the scheme in [4]. In our scheme, in order to avoid the leaving

members using auxiliary keys to learn the new group key,

auxiliary keys are also updated.

3. SECURED MULTICAST KEY

MANAGEMENT MODEL
In our scheme each member of the group is associated with a

unique user ID (UID) which is a Gray code of string length n.

Gray Code is a form of binary that uses a different method of

incrementing from one number to the next.

In [3] binary tree structure is used. When the group is large,

the number of levels in the binary tree will be more which

increases number of keys at member. Extending the scheme to

m-ary tree will reduce the height of the tree reducing number

of keys at each member. At the same time we should consider

server side storage i.e., number of keys at every level of the

key tree. In [3] two keys are maintained at every level of the

key tree, extending the scheme to m-ary tree will result in

maintaining m keys. For a group size n, if d is the height of

the binary tree, it results in storing 2*d keys at the server. For

the same value of n, if d' is the height of the m-ary tree, then

m*d' keys are to be stored at the server.

 We can have the relation

n = 2d = md'

→ d'= d/ log2m

Number of keys at server in m-ary tree in terms of d can be

represented as m*(d/ log2m), which illustrates that as m

increases, number of keys at server will increase, which

violates our motto. Hence in order to maintain minimum

number of keys both at member and server, following relation

has to be satisfied :

(m*d/ log2m) ≤ 2*d which is true only if m ≤ 4.

The Controller executes the protocol shown in Figure 2 to

compute the messages using gray codes that need to be sent

out after multiple members depart the group in the same

round.

3.1 Representation and Notations
m-ary tree: is a tree with the following properties:

(i) each interior node has at most m children

(ii) each path from the root to a leaf has the same length

N: Total number of members associated with the group. Each

member is assigned with Unique Identification Number (UID)

which is a Gray Code of length n (where n= log2N).

Subgroups: Each interior node containing at the maximum

children nodes forms one subgroup. Subgroups at level i are

assigned with keys Ki0 to Ki(m-1) called Auxiliary keys at

level i.

Keys: Individual member keys of any subgroup are numbered

from K0 to Km-1 so that all the members at position 0 of all

subgroups are assigned with key K0 and members at position

1 of all subgroups are assigned with key K1 and so on up to

Km-1.

KEK : Key Encryption Keys is the set, initially empty, and at

the end contains the keys used to encrypt the new auxiliary

keys and member keys.

{ GK } K1 denotes GK is encrypted with the key K1.

|| denotes concatenation operation

From fig. 1 the values of N, m, n, keys, auxiliary keys and

group key are as follows:

N=16 m=4 n=4

Keys:

Members u0, u4, u8, u12 are assigned with key K0

Members u1, u5, u9, u13 are assigned with key K1

Members u2, u6, u10, u14 are assigned with key K2

Members u3, u7, u11, u15 are assigned with key K3

K10, K11, K12, K13 are auxiliary keys at level 1.

GK is the group key shared by u1, u2, u3, u4, u5, u6, u7, u8, u9,

u10, u11, u12, u13, u14, u15

GKnew new group key

4. SECURED KEY DISTRIBUTION
The encryption keys computed using the method of [11] are

used to communicate new group key to the existing nodes

without actually performing any encryption. Messages send

by central node to group members by using the hash of the

encryption keys that are known to compromised nodes. Hence

using the keys of the compromised nodes it is not possible to

get any information regarding new group key. In order to

avoid attackers decrypting any message in the next time

interval we perform two operations. First, each remaining

node along with path from the leaving point will compute new

auxiliary key using the method,

F(auxiliary keys, GKnew)→ auxiliary keys XOR GKnew

Second, every key used to compute the hash value is

incremented by one (1). In this scheme to communicate new

group key securely we are not using any encryption instead all

communications are by using hash values and XOR

operations which will reduce the communication overhead

i.e., rekeying cost is reduced.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.1, March 2013

11

4.1 Member Leaves
Any number of members can leave (be removed from) the

multicast group from any position in the m-ary tree. The

protocol shown in figure 2, depicts the computation of

encryption keys for other than individual member removal.

Let B1 = Most Significant Bit; B4 = Least Significant Bit

S = Set contains remaining group members

C = 0 (Count for no. of sub group with no members leaving)

Step 1: /* No member leaving from that sub group */

 Do 1 to no. of subgroups

 If no. of same occurrence at B1B2 = No. of members

 in that sub group

 S = S – Group members from the sub group

 C = C + 1

 End if

 End Do

Step 2: /* No member leaving in a particular position in

remaining subgroup */

 Do 1 to no. of subgroups – C

 If no. of occurrence of B3B4 = no. of subgroup – C

S = S – Group members from the sub group

End if

 End Do

Step 3: /* Users at same position in different sub group */

 Do 1 to no. of subgroups – C

If no. of occurrence of B3B4 != 1

S = S – Group members from the sub group

End if

 End Do

Step 4: /* Users at different position in different sub group */

 Do 1 to no. of subgroups – C

If no. of occurrence of B1B2 = 1

S = S – Group members from the sub group

End if

 End Do

End

Figure 2 : Protocol for computation of encryption keys

other than individual member leave.

5. PERFORMANCE COMPARISON

To achieve message confidentiality in Secure Group

Communication we require a group key and the group key

should be updated whenever a node is compromised. In our

scheme server is required to store (log2N * m) keys, along

with the Group Key GK, whereas the scheme in [2] requires O

(N) keys to be stored at the server. The binary tree concept

discussed in [3] is efficiently extended to m-ary tree in this

paper with reduced storage at user side. Each member is

assigned with Unique Identification Number (UID) which is a

Gray Code of length n (where n= log2N). New Group Key is

distributed to the existing nodes using hash functions and

XOR operations.

5.1 SIMULATION AND RESULTS

From the simulation shown in figure 3, it is clear that the

number of rekeying messages sent after member removal is

reduced. The reduction is more significant when the user

leaves are unpredictable where there is a reduction in the

number of rekeys messages. Therefore the number of keys

that has to be changed is reduced and unwanted network

traffic is reduced.

Figure 3. Reduction of No. of Rekeying Messages

6. ERROR CORRECTION USING

 GALLAGER CODES

Error Correcting Codes (ECC) [6] is one of many tools made

available for achieving data transmission. Low Density Parity-

Check codes (LDPC), a linear block code which has the

advantage that they provide the performance at that close to

the limited capacity for many different channels and linear

time complex algorithms for decoding.

6.1 Encoder

Similar to all other linear block codes, we have the relation;

 (1)

where C is a codeword matrix, and H is a parity check matrix.

In a systematic form, C can be written as:

 (2)

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.1, March 2013

12

Where denotes the parity portion, and

denotes the message portion respectively. With

 We can have;

 (3)

Or

 (4)

The task of the encoder is then to compute the parity matrix P

that can be directly appended to the message to produce the

codeword.

For the matrix H to be more manageable, the LU

decomposition method can be preferably applied; i.e. [H] =

[L][U]. Thus,

 (5)

Let [Y] = [U][P] , then we can use forward

substitution to solve [L][Y] = [M].

 (6)

Finally, the backward substitution is employed to solve for P

of which [U][P] = [Y] . There, we can get {pi} as needed.

 (7)

6.2. Decoder

There are several methods used in decoding the LDPC

codes[9,10]. Each was derived individually. These are, for

instance, Believe Propagation (BP), Sum-Product (SP), and

Message Passing (MP).

The Tanner graph (Fig.4) can be drawn directly from the H

matrix (given in (8)) as shown be below:

1101001000

1010100100

0110010010

0001110001

0000001111

H

(8)

 Fig. 4. Tanner graph of the H matrix given in (8)

The graph contains m check nodes (number of parity bits) and

n variable notes (number of bits in a codeword). Check node

fi is connected to a variable node ci if the element hij of H is a

“1”.

In the Log-domain Sum-Product algorithm, the message

passes between check nodes and variable nodes. In each pass

the log likelihood ratio (LLR) is recorded for is probability of

its likely symbol. In summary, the decoder goes through 5

steps as follows:

Step 1:

 Compute the initial value of L(qij) transmitted from the

variable node i to check node j; for all i; 1 ≤ i ≤ n .

 (9)

Where L(ci) denotes log likelihood ratio

σ2 denotes derivation of white noise

p(ci =x)|yi denotes probability for given input yi

Step 2:

Compute L(rji) transmitted from the check node j to variable

node i; for all i; 1 ≤ i ≤ n .

 (10)

Where αij= sgn{L(qij)}, and βij= L(qij).

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.1, March 2013

13

Step 3:

Modify L(qij) and used it as the data transmitted from the

variable node i to check node j; for all i; 1 ≤ i ≤ n .

 (11)

Step 4:

Compute the soft output.

 (12)

Step 5:

The soft output obtained in step 4 is then used in the hard

decision as,

 i = 1 if L(Qi) < 0 , otherwise cˆi = 0 .

 The following proof gives the information regarding

the number of changes for the different types of errors.

Lemma:

Any arbitrary LDPC codes has O(n2) time complexity during

decoding process for n bit errors.

Proof:

An error is said to occur:

1. If the values of the level 1 check nodes (i.e., key check

nodes) are not zero.

2. If the computed parity bit values and received parity bit

values at each level, in encoding stopping set are unequal.

We need to correct these errors. On occurrence of error in the

information bits, the following procedure has to be followed.

Since the number of corrupted bits and their position are

unknown, we correct them step by step procedure. First we

change the 1st bit of the leaf nodes from left to right. Next, we

compute the new parity bit values. If the key check node

values are equal to zero, then the error is corrected.

Even now, if the key check node values are unequal to zero,

then the second bit of the information bit is changed and the

procedure is repeated until reaching the last information bits

in the leaf level. From this it is very clear that the complexity

for correcting one bit error is O(n). If still error persists, the

above procedure is repeated for all combination of two

information bits. Now the time complexity becomes

O(n+(n(n-1)/2)). Even then if the error is uncorrected, then the

combination of „i‟ (i=3,4,…..,n) information bits are changed

to calculate the new parity bit value, and the error is corrected.

Hence the time complexity for the decoding procedure is O(n)

as follows.

For example if the total number of received information bits is

4 bits and all the four information bits are corrupted, then the

decoding time complexity can be computed as shown below.

= n + (n (n – 1) /2) +((n – 1) (n – 2) / 2)+1

= n+((n2 – n) /2)+(n2 – 3n + 2) / 2)+1

= n2 –n + 2

=O(n2)

7. CONCLUSION

In this paper, the scheme uses m-ary tree based group key

computation protocol for n bit numbers as the key value has

been proposed for creating and distributing keys in order to

provide effective security in group communications. A

comparison between the proposed scheme and the previous

schemes were undertaken according to storage requirements

at both group controller and group members and the number

of updates multiple leaves. The comparison shows that the

proposed scheme using the reflected code called Gray code

achieves lower storage requirements and lower

communication overhead at both the group controller and the

group members. On the other hand, Low Density Parity-

Check codes (LDPC), a linear block code which has the

advantage that they provide the performance at that close to

the limited capacity for many different channels and linear

time complex algorithms for decoding.

8. REFERENCES

[1] A.Bellardie, 1996, ”Scalable Multicast Key Distribution”

RFC 1949.

[2] Chung Kei Wong, Mohamed Gouda, and Simon S Lam,

1998, “Secure Group Communication Using Key

Graphs”, Proceedings of ACMSIGCOMM, Vancouver,

British Columbia.

 [3] Debby M. Wallner, Eric J. Harder, Ryan C. Agee, 1997,

“Key Management for Multicast: Issues and

Architectures”, Informational RFC, draft-Wallnerkey-

arch-ootxt.

[4] H.Harney, C.Muckenhirn, 1997, “Group Key

Management Protocol (GKMP) Architecture”, RFC

2094.

 [5] D.McGrew and A. Sherman, 1998, “Key establishment

in large dynamic groups using one way function trees”.

[6] C Berrou, A. Glavieux and P. Thitimajshima, 1993,

“Near Shannon limit error-correcting Coding and

Decoding,” Proc. IEEE Int. Conf.Comm., pp.1064-1070.

[7] R.M. Tanner, 1981, “A Recursive Approach to Low

Complexity Code,” IEEE Trans. Information Theory,

pp.533-547.

[8] J.L. Fan, 2000, “Array Codes as low-density parity-

check codes,” Proc. 2nd Int. Symp. Turbo Code, Beit,

France, pp. 543-546.

International Journal of Computer Applications (0975 – 8887)

Volume 66– No.1, March 2013

14

[9] R. Gallager, 1962, “Low-density Parity-check Code,”

IRE Trans. Information Theory, pp.21-28.

[10] Jin Lu., and Jose M.F.Moura, 2010, “Linear Time

Encoding of LDPC Codes” IEEE Trans. Inf. Theory, vol.

57, no. 1, pp. 233-249.

[11] Ran Canetti, Benny Pinkas, 1998, “A Taxonomy of

Multicast security issues”, Internet Draft.

[12] SuvoMittra, 1997, “Iolus: A Framework for Scalable

Secure Multicasting”, Proceedings of

ACMSIGCOMM’97, Cannes, France, pp. 277-288.

[13] Rafaeli and D. Hutchinson, 2003, “A Survey of Key

Management for Secure group communication”, ACM

Computing Surveys, 35:309-329.

[14] D. J. C. Mackay, 1999, “Good error-correcting codes

based on very sparse matrices,” IEEE Trans. Inform.

Theory, vol. 45, no. 2, pp. 399–431.

[15] G. Berrou and A. Glavieux and P. Thitimajshima, 1993,

“Near Shannon limit error-correcting coding: Turbo

codes,” Proc. 1993, International Conf. Comm, pp. 1064-

1070, Geneva, Switzerland.

[16] J. Lu, Jos´e M. F. Moura, and H. Zhang, 2003, “Efficient

encoding of cycle codes: a graphical approach,” Proc. of

37th Asilomar Conference on Signals, Systems, and

Computers, pp. 69-73, PACIFIC GROVE, CA, Nov. 9-

12.

[17] J. Katz and M. Yung, 2007, “Scalable Protocols for

Authenticated Group Key Exchange,” J. Cryptology, vol.

20, pp. 85-113.

[18] Wei Yu, Yan (Lindsay) Sun, Member, IEEE, and K.J.

Ray Liu, Fellow, IEEE, 2007, “Optimizing the Rekeying

Cost for Contributory Group Key Agreement Schemes”,

IEEE transactions on dependable and secure computing,

vol. 4, no. 3.

 [19] S. Mittra, 1997, “Iolus: A framework for scalable secure

multicasting,” Proceedings of the ACM SIGCOMM, vol.

27, no. 4, pp. 277-288, New York.

[20] R. Varalakshmi, Dr. V. Rhymend Uthariaraj, 2011, “A

New Secure Multicast Group Key Management Using

Gray Code” IEEE-International Conference on Recent

Trends in Information Technology, ICRTIT 2011, pp 85-

90.

