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ABSTRACT 

Key agreement protocols are designed to provide two or more 

specified parties communicating over public channels with a 

common shared secret key, which may subsequently be used 

to exchange information among communicating parties. 

Therefore, building secure key agreement protocols over open 

networks is essential in information security. Error Correcting 

Codes (ECC) is one of many tools made available for 

achieving data transmission. Low Density Parity-Check codes 

(LDPC), a linear block code which has the advantage that 

they provide the performance at that close to the limited 

capacity for many different channels and linear time complex 

algorithms for decoding. In this paper, we propose a new 

group key computation protocol that provides more security 

and also integrates a Gallager code and it is proved that this 

proposed approach takes less decoding time complexity. 
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1. INTRODUCTION 
Many applications like pay-per–view, distribution of digital 

media etc., require secure multicast services in order to 

restrict group membership and enforce accountability of 

group members. A major issue associated with the 

deployment of secure multicast delivery services is the 

scalability of the key distribution scheme. This is particularly 

true with regard to the handling of group membership 

changes, such as membership departures and/or expulsions, 

which necessitate the distribution of a new session key to all 

the remaining group members. As the frequency of group 

membership change increases, it becomes necessary to reduce 

the cost of key distribution operations. One solution is to let 

all authorized members use a shared key to encrypt the 

multicast data. To provide backward and forward 

confidentiality (D.M. Wallner and Agee, 1999), this shared 

key has to be updated on every membership change and 

redistributed to all authorized members securely which is 

referred to as rekeying. The efficiency of rekeying is an 

important issue in secure multicast as this is the most 

frequently performed activity with dynamic change in the 

membership.  

Group key must be updated with the group membership 

changes to prevent a new member from deciphering messages 

exchanged before it join the group; this is defined as 

backward secrecy. Group key revocation in case of one 

member joins or multiple members join could be achieved by 

sending the new group key to the old group members 

encrypted with the old group key. Also, group key must be 

must be updated with the group membership changes to 

prevent an old member (leaved or expelled) from deciphering 

current and future communication which is defined as forward 

secrecy. Group key revocation, when one member leaves or 

multiple members leave, is more complicated in case of join 

because of the disclosure of the old group key. The old group 

key is known to the leaving member(s) so there is a need to 

re-key the group using valid key(s) in a scalable way. The 

trivial scheme for rekeying a group of n members is through 

using individual secret key shared between the Key 

distribution Centre KDC and each member. This is not a 

simple or scalable method and consumed large bandwidth 

especially for large group with high membership changes: 

furthermore it takes more time and needs more resources per 

hosts than using multicasting to re-key the group.  

The rest of the paper is organized as follows. Section 2 related 

work. The secured multicast key management model is 

presented in Section 3. Section 4 describes the procedure for 

secured key distribution. Section 5 analyses the performance 

of the proposed scheme. Section 6 describes the error 

correction using Gallager codes, followed by the conclusion 

in Section 7.  

2. RELATED WORK 
The topics of key management for multiparty communications 

in general networks are studied and one of efficient key tree 

based group key management technique called Logical Key 

Hierarchy (LKH) is discussed [1,2,3,4]. A new group keying 

method that uses one-way functions [8] to compute a tree of 

keys, called the One-way Function Tree (OFT). In this 

method, the keys are computed up the tree, from the leaves to 

the root. This approach reduces re-keying broadcasts to only 

about log n keys. The major limitation of this approach is that 

it consumes more space. However, time complexity is more 

important than space complexity. 

A key update in scheme [5,11,12,13] requires O(log2N) 

messages where N is the size of the group. In this scheme 

each user has to store log2N keys (i.e., keys along the path 

from leaf to the root) and the key server has to maintain a tree 

of O(N) keys. The scheme proposed in uses the LKH scheme 

and uses a binary tree, but with only two keys at every level. 

This reduces total number of keys at the server from O(N) to 

O(h) where h is the height of the tree. But storage at each user 

remains at O(log2N). The scheme discussed and extends the 

scheme to m-ary tree instead of binary tree, which reduces the 

user side storage from O(log2N) as to O(logmN)[2]. In tree 

based key management schemes each user shares a key called 

private key with the key server and key at the root of the tree 

is the group key which is shared by all users in the group. 

Other keys (other than private key and group key) are called 

auxiliary keys (key encryption keys) which are known only 

for certain subset of users and are used to encrypt new group 

key whenever there is a group membership change. 

The scheme uses m-ary tree and at each level m keys are 

maintained. Whenever a node is compromised new group key 

is selected and distributed to other nodes. The encryption keys 
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that are required to send new group key GKnew securely are 

computed. The new group key is distributed to group 

members without performing any encryptions. 

Low-Density Parity-Check codes (LDPC) [9, 10] as one of 

many kinds, are also linear block codes that have been studied 

vastly in this decade. LDPC became more popular and widely 

developed for wider area of applications including 

communications and data storage. There are two different 

ways to represent LDPC codes; matrix representation and 

graphical representation. In the matrix point of view, as it is 

named, LDPC codes hold small number of “1” in each row 

and column, i.e. Wc<< n and Wr<< m for a dimension m×n 

parity matrix. This can provide large minimum distance of the 

code. However such a circumstance results a large parity 

check matrix. In the graph point of view, Tanner graph [7] is 

an efficient graphical representation of LDPC codes. There 

are m check nodes (cnodes; number of parity bits) and n 

variable nodes (v-nodes; number of bits in a codeword).LDPC 

codes are said to be regular if Wc is constant for every 

column, and Wr =Wc (n/m) . If the parity matrix H is low 

density but the number of “1” in each row or column are not 

constant, the code is said to be an irregular one. 

Our scheme distributes new group key to the remaining group 

members with minimum number of messages as compared to 

the scheme in [4]. In our scheme, in order to avoid the leaving 

members using auxiliary keys to learn the new group key, 

auxiliary keys are also updated. 

3. SECURED MULTICAST KEY 

MANAGEMENT MODEL  
In our scheme each member of the group is associated with a 

unique user ID (UID) which is a Gray code of string length n. 

Gray Code is a form of binary that uses a different method of 

incrementing from one number to the next. 

In [3] binary tree structure is used. When the group is large, 

the number of levels in the binary tree will be more which 

increases number of keys at member. Extending the scheme to 

m-ary tree will reduce the height of the tree reducing number 

of keys at each member. At the same time we should consider 

server side storage i.e., number of keys at every level of the 

key tree. In [3] two keys are maintained at every level of the 

key tree, extending the scheme to m-ary tree will result in 

maintaining m keys. For a group size n, if d is the height of 

the binary tree, it results in storing 2*d keys at the server. For 

the same value of n, if d' is the height of the m-ary tree, then 

m*d' keys are to be stored at the server. 

 We can have the relation 

n = 2d = md' 

→ d'= d/ log2m 

Number of keys at server in m-ary tree in terms of d can be 

represented as m*(d/ log2m), which illustrates that as m 

increases, number of keys at server will increase, which 

violates our motto. Hence in order to maintain minimum 

number of keys both at member and server, following relation 

has to be satisfied : 

(m*d/ log2m) ≤ 2*d which is true only if m ≤ 4. 

The Controller executes the protocol shown in Figure 2 to 

compute the messages using gray codes that need to be sent 

out after multiple members depart the group in the same 

round. 

3.1 Representation and Notations 
m-ary tree: is a tree with the following properties: 

(i) each interior node has at most m children 

(ii) each path from the root to a leaf has the same length 

N: Total number of members associated with the group. Each 

member is assigned with Unique Identification Number (UID) 

which is a Gray Code of length n (where n= log2N). 

Subgroups: Each interior node containing at the maximum 

children nodes forms one subgroup. Subgroups at level i are 

assigned with keys Ki0 to Ki(m-1)   called Auxiliary keys at 

level i. 

Keys: Individual member keys of any subgroup are numbered 

from K0 to Km-1 so that all the members at position 0 of all 

subgroups are assigned with key K0 and members at position 

1 of all subgroups are assigned with key K1 and so on up to 

Km-1. 

KEK : Key Encryption Keys is the set, initially empty, and at 

the end contains the keys used to encrypt the new auxiliary 

keys and member keys. 

{ GK } K1 denotes GK is encrypted with the key K1. 

|| denotes concatenation operation 

From fig. 1 the values of N, m, n, keys, auxiliary keys and 

group key are as follows: 

N=16 m=4 n=4 

Keys: 

Members u0, u4, u8, u12 are assigned with key K0 

Members u1, u5, u9, u13 are assigned with key K1 

Members u2, u6, u10, u14 are assigned with key K2 

Members u3, u7, u11, u15 are assigned with key K3 

K10, K11, K12, K13 are auxiliary keys at level 1. 

GK is the group key shared by u1, u2, u3, u4, u5, u6, u7, u8, u9, 

u10, u11, u12, u13, u14, u15 

GKnew new group key 

4. SECURED KEY DISTRIBUTION 
The encryption keys computed using the method of [11] are 

used to communicate new group key to the existing nodes 

without actually performing any encryption. Messages send 

by central node to group members by using the hash of the 

encryption keys that are known to compromised nodes. Hence 

using the keys of the compromised nodes it is not possible to 

get any information regarding new group key. In order to 

avoid attackers decrypting any message in the next time 

interval we perform two operations. First, each remaining 

node along with path from the leaving point will compute new 

auxiliary key using the method, 

F(auxiliary keys, GKnew)→  auxiliary keys XOR GKnew 

Second, every key used to compute the hash value is 

incremented by one (1). In this scheme to communicate new 

group key securely we are not using any encryption instead all 

communications are by using hash values and XOR 

operations which will reduce the communication overhead 

i.e., rekeying cost is reduced. 
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4.1 Member Leaves 
Any number of members can leave (be removed from) the 

multicast group from any position in the m-ary tree. The 

protocol shown in figure 2, depicts the computation of 

encryption keys for other than individual member removal. 

Let B1 = Most Significant Bit; B4 = Least Significant Bit 

S = Set contains remaining group members 

C = 0 (Count for no. of sub group with no members leaving) 

 

Step 1: /* No member leaving from that sub group */ 

 Do 1 to no. of subgroups 

  If no. of same occurrence at B1B2 = No. of members

  in that sub group 

  S = S – Group members from the sub group 

  C = C + 1 

  End if 

 End Do 

Step 2: /* No member leaving in a particular position in 

remaining subgroup */ 

 Do 1 to no. of subgroups – C 

  If no. of occurrence of B3B4 = no. of subgroup – C 

S = S – Group members from the sub group 

End if 

 End Do 

Step 3: /* Users at same position in different sub group */ 

 Do 1 to no. of subgroups – C 

If no. of occurrence of B3B4 != 1 

S = S – Group members from the sub group 

End if 

 End Do 

Step 4: /* Users at different position in different sub group */ 

 Do 1 to no. of subgroups – C 

If no. of occurrence of B1B2 = 1 

S = S – Group members from the sub group 

End if 

 End Do 

End 

Figure 2 : Protocol for computation of encryption keys 

other than individual member leave. 

5. PERFORMANCE COMPARISON 

To achieve message confidentiality in Secure Group 

Communication we require a group key and the group key 

should be updated whenever a node is compromised. In our 

scheme server is required to store (log2N * m) keys, along 

with the Group Key GK, whereas the scheme in [2] requires O 

(N) keys to be stored at the server. The binary tree concept 

discussed in [3] is efficiently extended to m-ary tree in this 

paper with reduced storage at user side. Each member is 

assigned with Unique Identification Number (UID) which is a 

Gray Code of length n (where n= log2N). New Group Key is 

distributed to the existing nodes using hash functions and 

XOR operations. 

5.1 SIMULATION AND RESULTS 

From the simulation shown in figure 3, it is clear that the 

number of rekeying messages sent after member removal is 

reduced. The reduction is more significant when the user 

leaves are unpredictable where there is a reduction in the 

number of rekeys messages. Therefore the number of keys 

that has to be changed is reduced and unwanted network 

traffic is reduced. 

 

Figure 3. Reduction of No. of Rekeying Messages 

 

6. ERROR CORRECTION USING     

     GALLAGER CODES 

 
Error Correcting Codes (ECC) [6] is one of many tools made 

available for achieving data transmission. Low Density Parity-

Check codes (LDPC), a linear block code which has the 

advantage that they provide the performance at that close to 

the limited capacity for many different channels and linear 

time complex algorithms for decoding. 

6.1 Encoder 

Similar to all other linear block codes, we have the relation;  

            
     (1) 

where C is a codeword matrix, and H is a parity check matrix. 

In a systematic form, C can be written as: 

                           (2) 
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Where          denotes the parity portion, and        

denotes the message portion respectively. With  

             
   

  
 

  
     We can have; 
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Or 

     
     

         (4) 

The task of the encoder is then to compute the parity matrix P 

that can be directly appended to the message to produce the 

codeword. 

For the matrix H to be more manageable, the LU 

decomposition method can be preferably applied; i.e. [H] = 

[L][U]. Thus, 

 

    
      

 
 

 
 

    
          

  

      
    

 
 

   
   

    
      

  

  
  
 
  

   

  

  

 
  

      (5) 

Let [Y] = [U][P] , then we can use forward 

substitution to solve [L][Y] = [M]. 
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Finally, the backward substitution is employed to solve for P 

of which [U][P] = [Y] . There, we can get {pi} as needed. 
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6.2. Decoder 

There are several methods used in decoding the LDPC 

codes[9,10]. Each was derived individually. These are, for 

instance, Believe Propagation (BP), Sum-Product (SP), and 

Message Passing (MP). 

The Tanner graph (Fig.4) can be drawn directly from the H 

matrix (given in (8)) as shown be below:

 

 

1101001000

1010100100

0110010010

0001110001

0000001111

H

(8) 

 

 

 Fig. 4. Tanner graph of the H matrix given in (8) 

 

The graph contains m check nodes (number of parity bits) and 

n variable notes (number of bits in a codeword). Check node 

fi is connected to a variable node ci if the element hij of H is a 

“1”. 

In the Log-domain Sum-Product algorithm, the message 

passes between check nodes and variable nodes. In each pass 

the log likelihood ratio (LLR) is recorded for is probability of 

its likely symbol. In summary, the decoder goes through 5 

steps as follows: 

Step 1: 

   Compute the initial value of L(qij ) transmitted from the 

variable node i to check node j; for all i; 1 ≤ i ≤ n .        

      
   

  
          

          
          

  (9) 

Where L(ci ) denotes log likelihood ratio 

σ2 denotes derivation of white noise 

p(ci =x)|yi denotes probability for given input yi 

Step 2: 

Compute L(rji ) transmitted from the check node j to variable 

node i; for all i; 1 ≤ i ≤ n . 

                 
       

 
 

             
 
 

 (10) 

Where    αij= sgn{L(qij)}, and   βij= L(qij). 
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Step 3: 

Modify L(qij ) and used it as the data transmitted from the 

variable node i to check node j; for all i; 1 ≤ i ≤ n . 

                          
  

  (11) 

Step 4: 

Compute the soft output. 

                         (12) 

Step 5: 

The soft output obtained in step 4 is then used in the hard 

decision as, 

  i = 1 if L(Qi ) < 0 , otherwise cˆi = 0 . 

 The following proof gives the information regarding 

the number of changes for the different types of errors. 

Lemma:  

Any arbitrary LDPC codes has O(n2) time complexity during 

decoding process for n bit errors. 

Proof: 

An error is said to occur:  

1. If the values of the level 1 check nodes (i.e., key check 

nodes) are not zero.  

2. If the computed parity bit values and received parity bit 

values at each level, in encoding stopping set are unequal.  

We need to correct these errors. On occurrence of error in the 

information bits, the following procedure has to be followed. 

Since the number of corrupted bits and their position are 

unknown, we correct them step by step procedure. First we 

change the 1st bit of the leaf nodes from left to right. Next, we 

compute the new parity bit values. If the key check node 

values are equal to zero, then the error is corrected. 

Even now, if the key check node values are unequal to zero, 

then the second bit of the information bit is changed and the 

procedure is repeated until reaching the last information bits 

in the leaf level. From this it is very clear that the complexity 

for correcting one bit error is O(n). If still error persists, the 

above procedure is repeated for all combination of two 

information bits. Now the time complexity becomes 

O(n+(n(n-1)/2)). Even then if the error is uncorrected, then the 

combination of „i‟ (i=3,4,…..,n) information bits are changed 

to calculate the new parity bit value, and the error is corrected. 

Hence the time complexity for the decoding procedure is O(n) 

as follows.  

For example if the total number of received information bits is 

4 bits and all the four information bits are corrupted, then the 

decoding time complexity can be computed as shown below. 

= n + (n ( n – 1) /2) +(( n – 1 ) ( n – 2 ) / 2 )+1 

= n+( ( n2 – n ) /2)+( n2 – 3n + 2) / 2 )+1 

= n2 –n + 2 

=O(n2) 

7. CONCLUSION 

In this paper, the scheme uses m-ary tree based group key 

computation protocol for n bit numbers as the key value has 

been proposed for creating and distributing keys in order to 

provide effective security in group communications. A 

comparison between the proposed scheme and the previous 

schemes were undertaken according to storage requirements 

at both group controller and group members and the number 

of updates multiple leaves. The comparison shows that the 

proposed scheme using the reflected code called Gray code 

achieves lower storage requirements and lower 

communication overhead at both the group controller and the 

group members. On the other hand, Low Density Parity-

Check codes (LDPC), a linear block code which has the 

advantage that they provide the performance at that close to 

the limited capacity for many different channels and linear 

time complex algorithms for decoding. 
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