
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

30

Parameterized Analysis of Intrusion Detection and
Prevention Systems and their Implications on Attack

Alerts and Event Co-relation

Shalvi Dave
Asst. Prof, Indus University

Ahmedabad

Bhushan Trivedi, PhD.
Director, GLSICT

Ahmedabad

Jimit Mahadevia
Asst.V.P, Elitecore

Ahmedabad

ABSTRACT

Intrusion Detection and/or Prevention Systems (IDPS)

represent an important line of defence against a variety of

attacks that can compromise the security and proper

functioning of an enterprise information system. Along with

the widespread evolution of new emerging services, the

quantity and impact of attacks have continuously increased,

attackers continuously find vulnerabilities at various levels,

from the network itself to operating system and applications,

exploit them to crack system and services. Network defence

and network monitoring has become an essential component

of computer security to predict and prevent attacks. Unlike

traditional Intrusion Detection System (IDS), Intrusion

Detection and Prevention System (IDPS) have additional

features to secure computer networks.

 In this paper, we present a detailed study of how architecture

of an IDPS plays a key role in its performance and the ability

to co-relate known as well as unknown attacks. We categorize

IDPS based on architecture as local or distributed. A detailed

comparison is shown in this paper and finally we justify our

proposed solution, which deploys agents at host-level locally

to give better performance in terms of better attack co-relation

and accurate detection and prevention.

General Terms

IDPS architecture, Network Security

Keywords

Intrusion Prevention, IDPS sensors/agents, attack and event

co-relation, architecture, information source, relevance of

attacks.

1. INTRODUCTION
In order to apply admission and access control for a network,

various Intrusion Detection and Prevention systems (IDPS)

are available in the market. Intrusion detection system is used

to manage traffic in real-time for increasing the accuracy

detection and decreasing false alarm rate. In some instances,

IPS adopts techniques from intrusion detection, such as

detection approach, monitoring sensor, and alert mechanism.

An IDPS is also used for gateway appliance, perimeter

defence appliance, all-in-all capability, and network packet

inspection/prevention. It is designed to identify and recognize

potential security violations in stream network. However, the

primary intrusion prevention systems use signature

mechanism to identify activity in network traffic and host

perform detect on inbound – outbound packets and would

block that activity before they access and damage network

resources.

Figure.1 and Figure. 2 shows the basic scenario of an

Intrusion Detection System (IDS) and an Intrusion Prevention

System (IPS).

Fig.1 Intrusion Detection System

Fig.2 Intrusion Prevention System

An IDPS is an inline approach to monitor network activity.

The detection technique used by the IDPS classifies it into

two categories: signature based if it detects an attack by

comparing it against a stored set of pre-defined signatures. It

is anomaly-based if any abnormal behavior or intrusive

activity occurs in the computer system, which deviates from

system normal behavior. System normal behavior such as

kernel information, system logs event, network packet

information, software-running information; operating system

information etc is stored into the database. [1]

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

31

In this paper, we present a case study on working of existing

IDPS, including problem areas faced in today’s environment

and enhancements possible to address each of these problem

areas. We also present a roadmap of hybrid IDPS approach.

We have taken into consideration the following four

parameters, in order to justify a Hybrid IDPS system:

a) Deployment

b) Architecture

c) Source of Information

d) Relevance of attacks.

The architecture of an IDPS can be centralized or distributed.

In addition, when deployed around the boundary of a network,

it is known as perimeter-based IDPS. In distributed

architecture of IDPS, certain tasks are handled at the host-

level and remaining at the network-level. Figure. 3 shows

general architecture of an IDPS.

Fig.3 General architecture of IDPS

An NIDPS works on packet stream and not on host

information. For e.g., operating environment of host. The

information source for recognizing attacks are network

packets, which are monitored by the IPS sensor. However,

these network packets only contain limited amount of

information, which includes source and destination IP and

port addresses. Therefore, they can detect network

vulnerability but would block the host itself instead of

infected application. In addition, nowadays, IP and port

addresses alone are not sufficient, since the attacks launched

by intruders are immune to most firewall and IDS.

In case of HIDPS, it works more on host information like

operating environment and logs and does not work on

network packets to detect the vulnerabilities. Therefore, it

lacks central analysis and chances are it cannot detect network

vulnerabilities and attacks being performed from outside of

the network to that particular host.

A system is considered robust if it does not produce false

positives and does not completely fail to detect intrusions.

One of an approach after an intrusion takes place is getting

intruder’s IP address and then to track all the activities done

by the intruder system to generate its activity log and to do

cross attack on the intruder system [2]. But, this cannot be

applied in all situations. Therefore, it is essential for any IDS

to know whether the attack is relevant or not. Also, relevance

of an attack depends on the kind of operational environment

where IDPS is deployed. For this, attack classification is very

essential. The classification can be done using various

techniques such as Data mining, artificial intelligence on

neural networks, etc.

In this paper, we present a case study on the above mentioned

techniques of architecture of existing IDPS, including

problem areas faced in today’s environment and

enhancements possible to address each of these problem

areas. We also analyze various existing systems architecture,

information source and its implications on attack and event

co-relation.

2. ARCHITECTURE AND

INFORMATION SOURCE OF IDPS

 The architecture of an IDPS is either centralized or

distributed. The architecture also determines the information

analyzed by an IDPS to generate attack or event alerts. An

IDPS, whether network-based or host-based, performs two

basic functionalities: Monitoring and Analysis. In distributed

environment, intrusion detection data is both collected and

analyzed in a distributed fashion. One of its earliest exponents

is DIDS [3], which uses some NSM components and has the

ability to do both local and global analysis of the data. At the

local level it uses both statistical and rule-based detection, and

at the global level it uses a rule-based expert system. In this

sense, DIDS can be described as a number of host-based and

network-based intrusion detection systems that can

communicate and share results with one another. This is the

form of almost all intrusion detection systems that call

themselves distributed. The same techniques used in host-

based and network-based intrusion detection systems are used,

but the results are shared and can be analyzed at different

levels.

Traditional centralized intrusion detection and prevention

systems rely on a limited number of data sensor and only one

event analyzer to obtain, process and analyze all the data in

the network, there will be varying degrees of missed and false

negative phenomena on the attack lack of resilience of the

global assault. In addition, the system scalability is limited

and difficult to configure and expand [3]. Figure. 4 describes a

typical centralized intrusion detection and prevention system.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

32

Fig.4 A Centralized IDPS architecture

Earlier examples of distributed intrusion detection systems are

EMERALD [4] and APHIDS [5]. EMERALD is network-

based IDS with distributed architecture while APHIDS is

host-based IDS also with distributed architecture. These

systems use different sources for data and different

mechanisms for analyzing it. However, they share a similar

general structure: a hierarchical arrangement where host-local

components perform some part of the work and relay their

results to components higher in the hierarchy. This continues

until the partial results reach the top-level components, which

have a network-wide view of the systems. Because all these

systems ultimately depend on a centralized component, we

could argue that they are not truly distributed. Figure. 5

describes a typical distributed intrusion detection and

prevention system.

Fig.5 Distributed IDPS architecture

As mentioned earlier the architecture of an IDPS determines

the source of information it analyzes to generate an attack or

event alert. APHIDS is realized as a distributed layer, which

operates on top of a set of distributed agent engines. These

agents analyze trigger event notifications and generate an

alarm. This kind of architecture provides reduction in delay of

the analysis. However, these agents do not store all the

generated network events at a common place. Therefore, it is

not possible to detect vulnerabilities, which require analysis of

all stored events. I.e. DDOS attacks cannot be detected using

this methodology, as these types of attacks need to be

analyzed after being monitored over a larger time-span.

Emerald monitors variety of sources like audit data, network

datagram, application logs and intrusion detection events.

These events are forwarded for further processing after they

are parsed, filtered and formatted. Emerald’s profiler engine

detects vulnerabilities by implementing different analysis

methods on this stream. As it is a host-based analysis, and no

further analysis has been done at a common level, it fails to

detect vulnerabilities, which can be detected only by

analyzing overall network streams.

Thus, we need detailed information for event co-relation and

analysis. For example, if we want to implement quota-based

application access policy, which is very common and is an

important requirement in any corporate office, only

information contained in network packets is not sufficient.

One needs to capture information at the operating system

level also. For example, socket information (source IP, source

Port, destination IP, Destination port, protocol) and details of

application (application name, version, upload and download

data etc.). We achieve this by intercepting socket calls using

hooks in socket. Administrator uses this connection and event

log to implement quota-based application security policy. This

restricts network access by applications during corporate

working hours. For example, if one wants to restrict the use of

yahoo messenger during working hours, then the connection

log helps the administrator to implement such quota-based

security policy. The Source and Destination IP provides to the

administrator the network level information of the attacker

and the victim. Name and severity of the attack gives

information on criticality of the attack.

3. IMPLICATIONS OF ARCHITECTURE

AND INFORMATION SOURCE ON

ATTACK AND EVENT CO-RELATION

Monitoring of attacks and event co-relation should be done

using distributed architecture, which is a feature of HIDS.

However, after monitoring and event co-relation is done,

analysis of attack log should be done locally. Administrator

on admin server should perform this analysis.

The CIDP architecture [3] showed in the figure.6 talks about

multiple IDP sensors at edge router, subnet or host. Every

sensor will generate the alerts as per their configuration and

rules deployed. Correlation happens on central location.

However, when same kinds of alerts are being generated

repeatedly then it is hard to filter them out and correlate as

some of the basic correlation attributes were missing.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

33

Fig.6 CIDP Architecture and Components

One of the example would be if certain security events which

are generated when someone visits particular site. This site is

vulnerable and can launch a possible attack on X version of IE

browser. However, other browsers such as Mozilla or Chrome

are not vulnerable to this attack. Now if system tries to

correlate events without prior information of application then

such correlation can mislead to appropriate security response.

So event correlation module should be aware of all necessary

information required to correlate security events to implement

proper security response. In this case, a response should be to

update the IE browser or patch the system with fix so it cannot

be compromised. It will minimize the response focus and

hence security can be implemented at its best.

In order to implement better response action and security we

believe that event correlation module should be aware of

application and application version. As we have explained

that combination of vulnerable site and vulnerable IE version

is a security threat. None of them can be considered as a

security threat alone. So instead of generating alert on any

web request to that server or that page, alert should be

generated when request from particular IE version to visit that

page or site.

Citing another example [6], it advocates implementation of

verification layer at central location before applying

correlation technique and algorithm. They suggest four kind

of verification when sensor sends an alert. Sensor reliability

check, attack reach ability check, vulnerability verification

and target health check. Objective of this implementation is

to reduce False Positives and False Negatives.

This kind of implementation might lead to two possible

problems:

 As verification a check has been implemented at

central level so there might be a case that central

server gets lots of alerts and run out of capacity.

Therefore, certain check has to be implemented at

sensor level itself. E.g., attacks reach ability check.

If targeted application is not going to compromise

because of possible attack then there is no need to

raise an alert for the same. Implementation of such

checks can reduce false positives at first place itself.

 Attack Reach ability check verifies the possibility of

attack on targeted system. It requires information

about whole network model along with asset

database. Implementation of such verification after

every alert is relatively impossible to implement. It

may lead to false positive or false negative if two

protocol servers are running on same host. Alert has

to be verified against the application servers or

applications running on host instead of network

layer IP address and protocol only.

As we have described, target reach ability check is one of the

necessary focus area in study of reducing false positives.

However, it should be implemented at a sensor level itself

instead of central analysis server. Correlating non-reachable

attacks alerts (false positives) will harm the outcome of

central module and it can run out of resources due to heavy

load of false positives. Implementation of the same looks

relatively impossible from central location in absence of

application or server running on that machine at that time.

Inventory information might give idea about total applications

installed on that system but it may not give a snapshot of

running application at the time of alert has been generated.

Statistical analysis shown in this paper [2] states that in live

scenario 92.85% of false alerts are false positives and 7.15%

are false negatives. So controlling false positive is crucial for

any IDPS. They also state that out of these FPs 91% of FPs

occur only because policy configuration and not due to any

security issue. It is also observed that all such FPs majorly

occur due to traffic similarities between protocols.

Examples of such events are as follows.

 The “SQL Injection comment attempt” alert results

from Bit Torrent clients who happen to bind port 80,

and the traffic happens to be similar to an injection

attempt.

 The “VERITAS Backup Agent DoS attempt” alert

results from Bit Torrent clients who bind port 10000

(the port monitored by the rule), and the traffic

happens to be similar to a DoS attempt.

In both the example applications were just using the standard

protocol ports but they were not sending any malicious traffic.

But IDP sensor will see them as malicious traffic reason being

normal IDPS sensor works on host and protocol port. IDPS

sensor should also consider application itself for the same. If

sensor can correlate application and signature then the rate of

such false positives can drastically reduce.

Comparison of this paper is more towards improvement of the

approach they have suggested. It supports our approach in a

way where false positives are higher because of wide range of

application and application protocol running on same port or

on random ports. Therefore, to reduce false positives one

should relate attack with application itself.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

34

Another solution [7] talks about finding a vulnerable attack

when any application is running with root privileges.

Argument they are giving is when application runs with root

privileges, they can harm more. It doesn’t look right if we talk

about application vulnerability or malware attacks. Someone

can hack username and password of a person when running

browser with user mode privileges. Someone can launch

NTLM vulnerability attack and can cause more harm than it

could have made it on the process running with root

privileges.

We believe that implementation of the security should be at

every level. User privilege might give a firsthand idea about

possible harm but it cannot be a parameter to deploy security.

IDPS sensors should be deployed in such a way that it can

track all the malicious traffic and can correlate the traffic with

application and application behaviour if possible. So far, we

have not studied in the area of application behaviour but any

attack should be related to application and application

property instead of application privileges.

[8] Deals with two types of attacks, Partial Completion

Detection and Scan attacks. Partial completion attacks are

more like a DoS attacks. Solution works in three phases. First

phase is to find out the operating range of PCF (Partial

Completion Filter, proprietary data structure to hold value of

counters), second stage is about finding out the flows that are

outside of this threshold and third stage analyzing false

positives and false negatives.

There might be some problem in calculating initial operating

range for counters in today’s world. Counters are

implemented in this algorithm is majorly based upon

difference between SYN and FIN along with source IP and

source port. If we consider Web protocol as an example then

we can see two different behaviours for the same. If source is

using a proxy server then there are chances that one

connection is kept alive for many http requests and responses

for same domain. At the same time, some of the advanced

browser uses connect ahead functionality to setup a

connections for future requests. So operating time has to be

sufficiently long and should consider both the scenarios. It

looks tricky and troublesome. It also does not talk about

deployment strategy clearly but seems like it advocates

deployment at outgoing edge of network. Maintaining flows

at router level would make this scenario more complex to

implement.

Fig.7 Typical Deployment of Proxy Server in Local

Network

If someone wants to implement above-mentioned approach

then it can better implemented using our work. As we have

explained that implementing, it at edge router level might lead

chances to run into a situation of false positives due to wrong

operative frequency calculation. If the same can be

implemented at host level then one can find out operating

frequency of services easily using our Application Aware

Logger System. Using our system one can get the hold on

application data also to determine if the request is coming

from proxy server as whenever any proxy server sends a

request on behalf of any host we can find out actual host using

“X-ForwardedFor” tag in request header. Using this

parameter, we can implement operating frequency of

concurrent connection in a better way.

In [9], implementation of the approach this paper suggested is

Locality Buffering. It is a technique for adapting the packet

stream in a way that accelerates sensor processing by

improving the locality of its memory accesses and thus

reducing its cache misses. It holds packets and arranges them

as per the locality buffer allocation methods. So far, they have

suggested methods based on source port and destination port,

destination port only or known destination port. However,

going further they also advocate that positive effects of these

methods can get diluted in today’s world where most of the

applications use unknown and different ports. To encounter

this problem, one must implement the locality buffer

allocation on the bases of application or application protocol

itself. If that can be done then it can give the best use of

locality buffering.

As described, locality buffering has been done by grouping

signatures by combination of source port and destination port.

We suggest that it should be based on application also.

Nowadays more applications are using either a same port or

random ports so it might kill the main objective of signature

locality caching.

Another case [10] talks about snort rules generalization.

Technique they are using is to compare internet packet with

snort rules and if any of the condition matches of the rule then

lower severity alert should be generated as it may have some

variation of a known attack. It is majorly to deal with the fact

that application might be working on different ports and can

choose random ports to attack. But rule generalization and

alert merging at central location is tough and time consuming

process. Instead, rule generalization should be bound with

application protocol or application itself if possible.

Rule generalization also talks about content generalization

which has been referred here [10] but not elaborated or

discussed. IDS takes 10 times more time with generalized

rules, which paper claim, is in operating limit. However, with

gigabit Ethernet it is definitely not. So generalized content

rules cannot be a viable method for large throughput oriented

networks.

 Signature generalization because of condition matching leads

to unnecessary load on sensor. E.g. If we ignore one matching

condition then all packets will be matched against that rule.

At the end, it is being done to deal with the situation where

application is working on the different port as HTTP server is

running on port 8080 instead of port 80 or web traffic is being

passed on port other than 80. Our approach suggests achieving

the generalization because of applications. It will make

signatures port independent without compromising

performance of the overall IDPS system.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

35

[11] Covers two different concepts: anomaly detection and

signature generation. With context to our study, we largely

focus on model proposed by them to generate weighted

signature and use of the same. Anomaly

detection system proposed by them has ability to find novel

attacks. By mining anomalous traffic episodes from Internet

connections, it detects anomalies. A weighted signature

generation scheme is proposed to integrate ADS with SNORT

by extracting signatures from anomalies detected. IDS extract

signatures from the output of ADS and add them into the

SNORT signature database for fast and accurate intrusion

detection. Fig. 8 describes the same. The weighted signature

extracted is as follows:

alert icmp$EXTERNAL NET any <> $HOME NET any (msg

:00 possible pod attack00; itype : 8; dsize : 1; 480 <> 1; 490;

threshold : type both; track by dst; count 10 seconds 1; sid :

900; 001; rev : 0;)

Fig.8 Anomalous Data Detection Technique

The systems mentioned above tracks the destination for data

size between 1480 and 1490 for request type ICMP Echo. If

such 10 occurrence happen then it will generate the alert.

Signature generation has been done using anomaly analysis

done by the anomaly detection system. Now when such alert

occurs then possible action response can be to block the

particular host (source or destination or both). Major

bottleneck in this approach is it blocks the host and not the

malicious application generating attack. If signature alteration

or alert generation tackles down this situation and reveal the

information about application, which is causing this attack,

then one can deploy maximum-security measures.

4. PROPOSED SOLUTION &

CONCLUSION

 In our proposed system, we have developed a

logging agent, which is installed on each individual host. This

logging agent sends event information to Event Collector,

which uses UDP protocol and stores event log in a database.

This database is implemented on admin server. The

administrator then performs analysis of event log stored in the

database and takes policy decisions to allow, deny or drop

packets. In this way, monitoring and event co-relation is

distributed and analysis is done locally.

A system is considered robust if it does not produce false

positives and does not completely fail to detect intrusions.

One of an approach after an intrusion takes place is getting

intruder’s IP address and then to track all the activities done

by the intruder system to generate its activity log and to do

cross attack on the intruder system [12]. However, this cannot

be applied in all situations. Therefore, it is essential for any

IDS to know whether the attack is relevant or not. In addition,

relevance of an attack depends on the kind of operational

environment where we deploy IDPS. For this, attack

classification is very essential. The classification can be done

using various techniques such as Data mining, artificial

intelligence on neural networks, etc. We propose

classification of attacks by implementing concepts of data

mining in the following manner:

First, we are using rule-set of Suricata, which is an IDPS used

widely nowadays. From the existing rule-set of Suricata, we

have taken two sets: Web-client and Web-server rules. Since

our proposed system is designed taking into consideration

corporate environment, we have classified the rule-set into

further four categories:

1) Server-side Inbound.

2) Client-side Inbound.

3) Server-side Outbound.

4) Client-side Outbound.

This categorization is because an attack can be launched from

within the network or from outside the network. In a typical

network, there are two types of applications running: Client

application and Server Application. Whenever a client

application in the network requests for any service outside the

network, it may become vulnerable to attacks from servers

running outside the network. In addition, when any service

provided by a Server application within the network is

requested by an outside application, it may also launch an

attack on server application. Apart from this, any vulnerable

or infected application, client or server can possibly make

attacks, to an application outside the network.

5. REFERENCES

[1] Usman Asghar Sandhu, Sajjad Haider, Salman Naseer,

and Obaid Ullah Ateeb, A Study of the Novel

Approaches Used in Intrusion, International Journal of

Information and Education Technology, Vol. 1, No. 5,

December 2011 Detection and Prevention Systems

[2] Cheng-Yuan Ho; Yuan-Cheng Lai; I-Wei Chen; Fu-Yu

Wang; Wei-Hsuan Tai; , "Statistical analysis of false

positives and false negatives from real traffic with

intrusion detection/prevention systems,"

Communications Magazine, IEEE , vol.50, no.3, pp.146-

154, March 2012

[3] Sourour, M.; Adel, B.; Tarek, A.;, "Security Implications

of Network Address Translation on Intrusion Detection

and Prevention Systems," IEEE International Conference

on Network and Service Security, 2009. N2S '09. , vol.,

no., pp.1-5, 24-26 June 2009

[4] P.G. Neumann and P.A. Porras. EMERALD: Event

monitoring enabling responses to anomalous live

disturbances. In NCSC ’97: Proc. 20th NIST National

Information Systems Security Conference, pages 353–

365, 1997.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.9, March 2013

36

[5] Ken Deeter, Kapil Singh, Steve Wilson, Luca Filipozzi

and Son Vuong, “APHIDS: A Mobile Agent-Based

Programmable Hybrid Intrusion Detection System”,

Mobility Aware Technologies and Applications, Lecture

Notes in Computer Science, Springer, 2004, Volume

3284/2004, 244-253, DOI: 10.1007/978-3-540-30178-

3_23

[6] Thomas Heyman, Bart De Win, Christophe Huygens,

and Wouter Joosen, “Improving Intrusion Detection

through Alert Verification”, IEEE Transaction on

Dependable and Secure Computing, 2004.

[7] Koller, R.; Rangaswami, R.; Marrero, J.; Hernandez, I.;

Smith, G.; Barsilai, M.; Necula, S.; Sadjadi, S.M.; Tao

Li; Merrill, K.; , "Anatomy of a Real-Time Intrusion

Prevention System," International Conference on

Autonomic Computing, 2008. ICAC '08. , vol., no.,

pp.151-160, 2-6 June 2008

[8] Ramana Rao Kompella, Sumeet Singh, and George

Varghese, On Scalable Attack Detection in the Network,

IEEE/ACM transactions on networking, vol. 15, no. 1,

february 2007

[9] Konstantinos Xinidis, Ioannis Charitakis, Spiros

Antonatos, Kostas G. Anagnostakis, and Evangelos P.

Markatos, An Active Splitter Architecture for Intrusion

Detection and Prevention, IEEE transactions on

dependable and secure computing, vol. 3, no. 1, january-

march 2006

[10] Uwe Aickelin, Jamie Twycross and Thomas Hesketh-

Roberts, Rule Generalisation in Intrusion Detection

Systems using SNORT, International Journal of

Electronic Security and Digital Forensics (IJESDF), (1),

pp 101-116, 2007

[11] Kai Hwang, Min Cai, Ying Chen, Min Qin, Hybrid

Intrusion Detection with Weighted Signature Generation

over Anomalous Internet Episodes, IEEE transactions on

dependable and secure computing, vol. 4, no. 1, January-

March 2007

[12] Sumit A. Khandelwal, Shoba. A. Ade, Amol A. Bhosle

and Radha S. Shirbhate, A Simplified Approach to

Identify Intrusion in Network with Anti Attacking Using

.net Tool., International Journal of Computer and

Electrical Engineering, Vol. 3, No. 3, June 2011

[13] Khalid Alsubhi, Nizar Bouabdallah, Raouf Boutaba,

Performance analysis in Intrusion Detection and

Prevention Systems, Proceedings of the 12th

IFIP/IEEE International Symposium on Integrated

Network Management, IM 2011, Dublin, Ireland, May

2011,pages 369-376

[14] Ke Yun; Zhu Jian Mei; , "Research of Hybrid Intrusion

Detection and Prevention System for IPv6 Network,"

2011 International Conference on Internet Technology

and Applications (iTAP), , vol., no., pp.1-3, 16-18 Aug.

2011

