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ABSTRACT 

Real life sequential databases are usually not static. They 

grow incrementally. So after every update a frequent pattern 

may no longer remains frequent while some infrequent 

patterns may appear as frequent in updated database. It is not 

a good idea to mine sequential database from scratch every 

time as the update occurs. It would be better if one can use the 

knowledge of already mined sequential patterns to find the 

complete set of sequential patterns for updated database. An 

incremental mining algorithm does the same thing. The main 

goal of an incremental mining algorithm is to reduce the time 

taken to find out the frequent patterns significantly i.e. it 

should mine the set of frequent patterns in significantly less 

time than a non-incremental mining algorithm. In this work 

the efficiency has been improved, in time and space, of an 

already existing incremental mining algorithm called 

IncSpan+ which is claimed to rectify an incremental mining 

algorithm called IncSpan. 

Keywords 

Set of frequent sequential patterns (FP), Boundary of semi-

frequent sequential patterns (BSFP). 

Some Notations 

D                   -The original database. 

δD             - The update to the database. 

D’                  - The appended database. 

min_sup       - Minimum support threshold. 

µ                    - Buffer ratio. 

D|i                 - Projected database on i. 

∆sup(p)           - Incremental support count of p. 

supLDB(p)      - Support count of p in LDB. 

FP                 - Set of frequent sequential patterns. 

BSFP            - Boundary of semi-frequent sequential patterns. 

1. INTRODUCTION 

Sequential Pattern Mining: Given a set of data sequences, 

Sequential Pattern Mining is to discover subsequences i.e. 

ordered events that are frequent in the sense that the 

percentage of data sequences containing them exceeds a user-

specified minimum support. 

E.g. “Customers who buy a PC are likely to return latter to 

buy a Laser Printer. 

 

 

 

Some definitions of the terms related to Sequential Pattern 

Mining are: 

Event: Let A = {i1, i2… in} be the set of n distinct items. An 

event is a non-empty subset of A. An event is denoted by (i1, 

i2… im), where ij∈ A. Without loss of generality, it can be 

assumed that the items in each event are sorted in some order. 

Sequence: A sequence is an ordered list of events. A 

sequence p is denoted as (p1 p2…..pk) where pi is an event and 

pi occurs before pj if i < j. A sequence is called a k-sequence if 

the sum of cardinalities of pi is k. In this case, k is called 

length of the sequence. 

Subsequence: A sequence p = (p1 p2…..pk) is called a 

subsequence of another sequence β = (β1 β2…..βj) if there 

exists indices 1 ≤ t1<t2<…<tk≤ j of β such that p1 is 

contained in βt1, p2 is contained in βt2… pk is contained in βtk 

i.e. each event of p must be a subset of events of βpreserving 

the order of events of both the sequences. β is called 

supersequence of p. 

Support: A sequence p is said to support another sequence p’ 

if and only if p is a supersequence of p’. 

Sequence Database: It consists of the sequences of ordered 

events where the events are ordered with respect to time. 

Support count: The support count or frequency of a given 

sequence p with respect to a sequence database D, is the total 

number of sequences in D that support p. 

Frequent Sequence: A sequence whose support count 

exceeds some user-specified minimum support threshold is 

called a frequent sequence. A frequent sequence is also called 

a frequent pattern. 

Closed Sequential Pattern: A frequent sequential pattern is 

called a closed sequential pattern if it is not a subsequence of 

another frequent pattern with same support count. 

E.g. consider the following customer bucket data: 

 

Table 1: Customer Data 

CID Items Day 

1 ad 1 

2 acd 1 

1 bdg 2 

3 be 2 

4 ace 2 
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2 be 3 

3 af 3 

1 c 4 

3 cdg 4 

4 df 5 

 

Then from the above database one can make the following 

customer sequence database using above definition of 

sequence database. 

Table 2: Sequence Database 

CID Customer Sequence 

1 (ad)(bdg)(c ) 

2 (acd)(be) 

3 (be)(af)(cdg) 

4 (ace)(df) 

 

Let min_sup = 2. The set of items in the above database is {a, 

b, c, d, e, f, g}. Database is consists of four sequences. The 

first sequence, namely < (ad)(bdg)(c) >, has three events (ad), 

(bdg) and (c). The length of this sequence is 6 (2+3+1). 

Sequence < (bg)(c) >is a subsequence of this sequence. Now 

consider the sequence < (ad)(b) >. Sequences 1 and 2 support 

this sequence and no other sequence support it. So its support 

count is 2, which satisfies minimum support threshold and 

hence this is a frequent sequence. 

2. Need for Incremental Mining 

Sequential mining algorithms can mine a static database. But, 

nowadays, almost all databases are dynamic in nature and 

they grow incrementally. One way to handle this is to mine 

the whole database every time an update occurs. But it is 

highly inefficient and also undesirable. We must find a way to 

use the already mined information. An incremental mining 

algorithm does the same. It utilizes the mined information to 

get new set of frequent sequential patterns instead of mining 

the whole database from scratch. Note that the ultimate aim of 

using an incremental mining algorithm instead of non-

incremental one is to gain efficiency with respect to time. 

Otherwise a non-incremental mining algorithm can also serve 

the purpose of mining very easily. So for incremental mining 

algorithm the time takenby the algorithm to mine complete set 

of frequent patterns must be considered. 

3. Incremental Mining of Sequential 

Patterns 

Given a sequence database D, a user-specified minimum 

support threshold, the set of frequent sequential patterns FP 

for D and an appended sequence database D’, the problem of 

incremental mining of sequential patterns is to mine the 

complete set of frequent sequential patterns for D’ using the 

already mined set of frequent patterns FP instead of mining D’ 

from scratch. 

Now let us defines some terminology related to incremental 

mining and our approach. 

Semi-frequent Pattern: Given a factor 0 < μ ≤ 1, a sequence 

p is said to be semi-frequent if its support is less than min_sup 

but not less than μ*min_sup. 

Boundary of Semi-frequent Patterns: It consists of the 

semi-frequent patterns which do not have its prefix as semi-

frequent pattern. 

Infrequent Pattern: A sequence p is said to be infrequent if 

its support count is less than μ*min_sup. 

Incremental Support of a Sequence: Incremental support of 

a sequence is the increase of its support due to the update in 

database. 

Appended Sequence: Given a sequence p = (p1p2…pk) and 

another sequence q = (q1q2…qn), let p’ be the sequence 

obtained by concatenating q to p. Then p’ is called appended 

sequence of p. Note that if appended part is empty then we 

simply get p’=p. 

Appended Sequence Database: An appended sequence 

database D’ obtained from the database D is one with the 

following conditions: 

i. For each sequence p’ in D’, there must exists a 

sequence p in D such that either p’ is appended 

sequence of p or p’=p. 

ii. For each sequence p in D, there must exists a 

sequence p’ in D’ such that either p’ is appended 

sequence of p or p’=p. 

LDB: LDB consists of those sequences of appended sequence 

database D’ which have really got some appended part i.e. 

which are not equal to their corresponding sequence in 

original database D. 

ODB: ODB consists of those sequences of original database 

D which have been appended with events in appended 

database D’. 

Prefix: Given a sequence p = (p1p2…pn), a sequence p’ = 

(p1’p2’…pm’) (m ≤ n) is called prefix of p if and only if (1) pi’ 

= pi for i ≤ m - 1; (2) pm’ ⊆ pm; and (3) all the items in (pm – 

pm’) are alphabetically (or according to the order specified) 

after the items in pm’. 

Suffix: Let α = (pm’’pm+1…pn) be the sequence obtained from 

the sequences p and p’ given in above definition such that 

pm’’ = (pm – pm’). Then α is called suffix or postfix of p with 

respect to p’. 

Projection of a sequence: Given two sequences p and p’ such 

that p’ is a subsequence of p, a subsequence α of the sequence 

p is called a projection of p with respect to p’ if and only if (1) 

α has p’ as its prefix and (2) there exists no other proper 

supersequence of α which is subsequence of p and has p’ as 

prefix. 

Projected Database: Given a sequence p and a sequence 

database D, the p-projected database is the collection of 

suffixes of sequences in D with respect to p. 

Now, consider the sequence database given in Table 2 

above and the following update to the database. 
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Table 3: Update to the database 

 

CID Customer Sequence 

1 (cg)(f) 

2 (be)(ac) 

5 (abe)(cg) 

 

So using above definition, one can find the 

appended database as: 

 

Table 4: Appended Database 

 

CID Customer Sequence 

1 (ad)(bdg)(c )(cg)(f) 

2 (acd)(be)(be)(ac) 

3 (be)(af)(cdg) 

4 (ace)(df) 

5 (abe)(cg) 

 

Also for above database and update, the LDB and 

ODB parts are given by the following tables. 

 

Table 5: LDB 

 

CID Customer Sequence 

1 (ad)(bdg)(c) (cg)(f) 

2 (acd)(be) (be)(ac) 

5 (abe)(cg) 

 

Table 6: ODB 

 

CID Customer Sequence 

1 (ad)(bdg)(c) 

2 (acd)(be) 

 

Now suppose one wants to find the incremental support of < 

(a)(c) >.LDB is used for this purpose. It can be seen that 

customer sequences with CID 1, 2 and 5 support this 

sequence. But sequence with CID 1 in ODB also supports it. 

So sequence with CID 1 will not contribute to the incremental 

support of given sequence since it was already supported by 

this customer sequence in original database. Also note that it 

is not supported by sequence with CID 2 in ODB. So this 

sequence will contribute to the count. Same is the case with 

customer sequence with CID 5, since this is a new sequence 

representing a new customer. 

4. Some Sequential Pattern Mining 

Algorithms 

GSP by Agrawal and Srikant: The term sequential pattern 

mining is coined by Agrawal and Srikant (1995). They 

proposed three algorithms to solve the problem of finding 

frequent sequential patterns. Among these three algorithms 

AprioriAll was the best one. In 1996 they proposed another 

algorithm called GSP which outperform AprioriAll with a 

high degree. In GSP bottom-up approach is adopted to find 

the complete set of frequent sequential patterns. It finds 

frequent 1-sequences first, and then it generates candidate 2-

sequences using the set of frequent 1-sequences. Then it finds 

frequent 2-sequences and so on. In general candidate k-

sequences are generated using frequent (k-1)-sequences based 

on the anti-monotone property which states that all the 

subsequences of a frequent sequence must be frequent. After 

generating candidate k-sequences, the set of frequent k-

sequences is determined by their support count. Frequent k-

sequences are determined in the kth scan of the database and 

hence this algorithm requires as many database scans as the 

length of largest frequent sequence. So it is an algorithm 

which starts the sequential pattern mining and it can mine the 

complete set of frequent sequential patterns but it is not an 

efficient algorithm. So some researchers start thinking about 

efficient solution to this problem and proposed many 

algorithm, some of which we will discuss below. 

SPADE: Another algorithm proposed by Zaki [6] called 

SPADE is also based on the candidate generate and test 

approach. Zaki introduces the concept of lattice to divide the 

candidate sequences into groups such that each group can be 

completely stored in the main memory. In addition, this 

algorithm uses the ID-List technique to reduce the costs for 

computing support counts. An ID-list of a sequence keeps a 

list of pairs, which indicate the positions that it appears in the 

database. In a pair, the first value stands for a customer 

sequence and the second refers to a transaction in it, which 

contains the last itemset of the sequence. 

The SPADE algorithm costs a lot to repeatedly 

merge the ID-lists of frequent sequences for a large number of 

candidate sequences. So, even if it is better than GSP but 

since it is also based on candidate-generate and test approach, 

it is also not very efficient. Thus more research work was 

needed to find some more efficient solution. 

SPAM: To reduce this cost of merging, Ayres et al. [15] 

adopt the lattice approach in the SPAM algorithm but 

represent each ID-list as vertical bitmap. The SPAM 

algorithm is efficient if all the bitmaps can be completely 

stored in the main memory. All the sequences are discovered 

in only three database scans. It outperforms GSP by a factor 

of two. But it has not shown much difference to SPADE. 

PrefixSpan: Pei et al. [4] employ the projection scheme in the 

PrefixSpan algorithm to project the customer sequences into 

overlapping groups called projected databases such that all the 

customer sequences in each group have the same prefix which 

corresponds to a frequent sequence. FP-tree is used to store 

the projected databases for efficiency. Then each of these 

databases is mined separately. So the approach of this 

algorithm is to find the frequent prefix sequence first, then 

project the database and find the frequent suffixes to 

concatenate with the prefix to get the frequent sequential 

pattern without generating candidate sequences. Note that it is 

a recursive algorithm based on the divide and conquer 

strategy.PrefixSpan algorithm recursively generates the 
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projected database for each frequent k-sequence to find 

frequent (k+1)-sequences with this k-sequence as prefix. 

Obviously, the cost of PrefixSpan algorithm mainly depends 

upon the number of database projections to be generated 

recursively. 

CloSpan: One other algorithm called CloSpan [9] is proposed 

in 2003 keeping in mind the huge number of frequent 

sequences to be mined and stored. It mines the close 

sequential patterns i.e. the patterns which do not have a 

subsequence with same support count. Note that one can 

easily get the full set of frequent sequential patterns from the 

set of closed sequential patterns mined by CloSpan. So this 

algorithm turns out to be very good when minimum support is 

low i.e. when the number of frequent sequences is large. 

Note that there are many other algorithms for 

mining sequential patterns but the above discussed algorithms 

represent the basic approaches. 

5. Some Incremental Mining algorithms 

ISM and ISE: Note that all the above discussed algorithms 

can mine the set of frequent sequential pattern from a static 

database. But these days all real world databases are dynamic 

in nature. So, incremental mining algorithms came into 

existence. Incremental mining algorithm utilizes the already 

mined set of frequent sequential patterns for the original 

database to mine the complete set of frequent sequential 

patterns for the updated database. Parthasarathy et al. [7] 

proposed an incremental mining algorithm called ISM in 

which he used the concept of negative border. Negative 

border is defined as the set of sequences which are not 

frequent but both of whose generating subsequences are 

frequent. The generating subsequences of a sequence of 

length k are two subsequences of length (k-1) obtained by 

dropping exactly one of its first or second item. In this 

algorithm they have maintained a lattice of sequences to keep 

the set of frequent sequences and the negative border. This 

concept of negative border turns out to be helpful but it has its 

own drawbacks also. The main drawback of this approach is 

that the total number of sequences in the negative border is 

very large. So we have to store these infrequent sequences 

along with the set of frequent sequential patterns. Moreover 

the sequences in negative border may have very low support 

and they may not become frequent after many subsequent 

updates to the database. So there is no point in keeping those 

highly infrequent sequences. Later Masseglia et al. [13] 

proposed another incremental mining algorithm called ISE. In 

this algorithm the candidate-generate and test approach is 

used. The disadvantages of this algorithm include the huge 

number of candidate sequences to be tested and need of 

multiple scan of the whole database. So this algorithm turns 

out to be very costly with respect to time and space 

requirement. 

IncSpan: Cheng et al. [2] proposed an incremental mining 

algorithm called IncSpan based on an existing algorithm 

called PrefixSpan [4]. To gain efficiency the concept of semi-

frequent patterns is introduced. Semi-frequent patterns are the 

patterns which are not frequent but whose support is greater 

than the product of minimum support and a user specified 

factor μ (0 <μ < 1) i.e. patterns that are not frequent but are 

almost frequent. Note that these almost frequent patterns are 

most likely to be frequent in the updated database. The 

experimental results in [2] show that IncSpan outperforms the 

non-incremental algorithm PrefixSpan and an incremental 

mining algorithm ISM. 

IncSpan+: Later Nguyen et al. [1] claimed that IncSpan 

cannot mine the complete set of frequent patterns. They gave 

counter examples to justify their claim. They proposed an 

algorithm called IncSpan+ which is free from the 

shortcomings of IncSpan and can mine the complete set of 

frequent sequence patterns. They proved the correctness of 

IncSpan+. 

6. IncSpan+: An overview 

IncSpan+ is proposed by Nguyen et al. in response to an 

incremental mining algorithm called IncSpan proposed by 

Cheng et al. [2]. IncSpan has a major drawback of not able to 

mine the complete set of frequent sequential patterns. It is 

observed by Nguyen et al. and they proposed the IncSpan+ 

algorithm which, they proved that, can mine the set of 

frequent sequential patterns completely. It adopts the same 

approach as IncSpan. It is also based on the PrefixSpan 

algorithm as IncSpan. 

The IncSpan algorithm is given below: 

Algorithm Outline: IncSpan+(D’, min_sup, µ, FS, SFS) 

Input: An updated database D’, min_sup, FS and SFS in D 

Output: FS’, SFS’ in D’ 

Method: 

1:    FS’ = Φ; SFS’ = Φ; 

2:    Determine LDB; Total number of sequences in D’, adjust 

themin_sup if it ischanged due to the increasing of total  

number of sequences in D’ 

3:    Scan the whole D’ for new single items 

4:      Add new frequent items into FS’ 

5:     Add new semi-frequent items into SFS’ 

6:    For each new item i in FS’ do 

7:     PrefixSpan(i, D’|i, µ, min_sup, FS’, SFS’) 

8:    For each new item i in SFS’ do 

9:     PrefixSpan(i, D’|i, µ, min_sup, FS’, SFS’) 

10:    For every pattern p in FS or SFS do 

11:     Check Δsup(p) = supdb(p) 

12:     If supD’(p) = supD(p) + Δsup(p) ≥ min_sup 

13:      Insert(FS’, p) 

14:   If supLDB(p) ≥ (1 - µ) * min_sup 

15:  PrefixSpan(p, D’|p,µ,min_sup,FS’, SFS’) 

16:  ElseIfsupD’(p) ≥ µ * min_sup 

17:   Insert(SFS’, p) 

18:   PrefixSpan(p,D’|p,µ, min_sup,FS’, SFS’) 

19:    Return; 

How it works: It takes as input, the Updated database D’, the 

user specified minimum support threshold and the sets FS and 

SFS of frequent sequential patterns and semi-frequent 

sequential patterns respectively for original database D. The 

output it produces is the sets FS’ and SFS’ of frequent 

sequential patterns and semi-frequent sequential patterns 

respectively for updated database D’. 
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It initially sets FS’ and SFS’ to empty sets. Then it 

determines the LDB, which is set of those customer sequences 

that have got some appended part due to the update to the 

database. Then it finds the total number of sequences, which 

may have changed due to insertion of some new customer 

sequence. Also if the total number of sequences is increased, 

we have to adjust the min_sup also. 

Then it scans the database D’ once to find out new 

frequent and semi-frequent single items and add them to FS’ 

or SFS’ accordingly. Note that here definition of new is 

crucial. In IncSpan [2] new single item is defined as the one 

which has no occurrence in the original database D and this 

proved to be a major shortcoming of IncSpan as later it was 

found that IncSpan cannot mine the complete set of frequent 

sequential patterns. It was due to this definition of new single 

items, since there may be some items, which are not new 

according to this definition i.e. which has there occurrences in 

D and are infrequent and after update to the database they 

might come up as frequent. E.g. suppose the minimum 

support required is 40 and the buffer ratio (μ) is 0.6 and there 

is a single item α having support count 20 in D and suppose it 

has got support count 40, as required to be frequent, in D’. 

Such types of patterns are not considered in IncSpan and this 

is the only reason for the incompleteness of the set of frequent 

sequential patterns. In IncSpan+, this weakness is observed 

and to rectify this flaw they defined new single items as the 

items which are not in FS or SFS i.e. which are not frequent 

or semi-frequent in D. 

Now for each newly found frequent or semi-

frequent item α,PrefixSpan is called to find out all the 

frequent or semi-frequent sequential patterns with prefix α. 

After that, it considers the patterns in FS and SFS. 

Since one can find out all the frequent and semi-frequent 

sequential patterns with the help of patterns in FS and SFS, 

along with the previously found patterns, all one needs to do 

is to check the support count of these patterns to determine if 

they are frequent or not and call PrefixSpan on frequent ones 

and semi-frequent ones. But one needs not to call PrefixSpan 

for all of the frequent or semi-frequent patterns. For this it 

uses a pruning technique to reduce the calls to PrefixSpan. So 

it proceeds as follows. 

For each pattern p in FS or SFS, first it checks its incremental 

support and adds it to its support in D to find its support in D’ 

i.e. first it updates its support. Then it checks if it is greater 

than min_sup or not. If it is found to be frequent according to 

new min_sup it is first added to FS’ and then its support in 

LDB is checked to determine if we have to call PrefixSpan or 

not based on the pruning condition it uses. On the other hand, 

if it is not found to be frequent but it is semi-frequent then 

simply it is added to SFS’ and PrefixSpan is called to find 

more frequent and semi-frequent sequential patterns. And the 

algorithm finishes its work. 

7. Some Important Observations 

1)One needs not to keep all the semi-frequent sequences. 

Suppose someone has a sequence α with him and some other 

sequence β has α as its prefix. Then he needs not to keep β, 

since he can always mine β with the knowledge of α. So if α is 

in SFS but β is not, there may be two situations about β: 

β remains semi-frequent after the update. 

In this case, there are two sub cases again. First, α 

becomes frequent after update. Then PrefixSpanis called on α 

and β can be found or its prefix to be semi-frequent and it can 

be kept in SFS’ for future use. Secondly, α remains semi-

frequent. Then one needs to do nothing as he will have α with 

him as before. Note that, for the patterns becoming frequent 

from SFS, one has to call PrefixSpan without checking the 

pruning condition to get the complete set of semi-frequent 

patterns for further updates to the database. 

β becomes frequent after the update. 

In this case, since α is prefix to β, α must have at 

least same supportcount as β and so α must be frequent. So 

PrefixSpan will be called on α and consequently get β.  

2) One need not to check the pruning condition and call 

PrefixSpan (if required) on every sequence in FS and SFS. If 

only the length-1 sequential patterns of FS and SFSare 

considered, it will be sufficient. Suppose α is a length-1 

sequential pattern and the pruning condition has been checked 

for it. Then either PrefixSpanis called on it or not. Now, if 

PrefixSpanis called on α, all the frequent patterns with prefix 

α are mined recursively and hence the patterns with α as 

prefix need not be considered. Also if PrefixSpan is not 

calledon α, then there is a guarantee that it will be not called 

on any pattern with prefix α. For this, note that PrefixSpan is 

called only if support of the pattern in LDB is greater than 

some fixed value ((1-μ)*min_sup). But, if it is not called for α 

means support of α is less than that. But, then support of a 

pattern having α as prefix is less than or equal to support of α 

and hence less than that fixed value. 

3) Parthasarathy et al. [7] have used the concept of negative 

border in their algorithm ISM and Cheng et al. [2] have used 

the concept of semi-frequent sequential patterns in IncSpan. 

Both the algorithms have to store some non-frequent patterns. 

InMISP (Modified IncSpan+) both the concepts have been 

used. 

Note that if one can keep the negative border completely, 

frequent sequential patterns can be mined very easily. The 

main problem with negative border is its huge size and highly 

infrequent patterns. Also it would be better if the number of 

semi-frequent sequential patterns can be reduced. One thing 

between negative border and semi-frequent patterns is 

common; patterns in both are either single items or have some 

frequent pattern as prefix. But not all semi-frequent patterns 

need to be in border since prefix of a semi-frequent pattern 

may itself be semi-frequent. Also, not all border sequences 

need to be semi-frequent due to their support count. So 

keeping the advantages of both the approaches in mind, MISP 

has been developed in whichthe intersection of the set of 

semi-frequent patterns and negative border is kept for future 

use. It is calledboundary of semi-frequent patterns. 

Asdiscussed above, it will be sufficient and very beneficial 

also for the time and space efficiency. 

8. Our Approach: MISP (Modified 

IncSpan+) 

As stated before, it is modification to IncSpan+ and so 

it follows the same spirit. The algorithm is presented first and 

then it is discussed. The algorithm is: 

Input:An appended database D’, min_sup, FP and BSFP in D 

Output: FP’, BSFP’ in D’ 

Method: 

1:     FP’ = Φ; BSFP’ = Φ; 

2:     Determine LDB; Total number of sequences in D’, adjust 



International Journal of Computer Applications (0975 – 8887)  

Volume 65– No.8, March 2013  

28 

themin_sup if it ischanged due to the increasing of total 

number of sequences in D’. 

3:     Scan the whole D’ for new single items 

4:         Add new frequent items into FP’ 

5:         Add new semi-frequent items into BSFP’ 

6:     For each new item i in FP’ do 

7:         PrefixSpan(i, D’|i, µ, min_sup, FP’, BSFP’) 

8:     For every pattern p in FP do 

9:         Check Δsup(p) = supdb(p) 

10: If supD’(p) = supD(p) + Δsup(p) ≥ min_sup 

11:  Insert(FP’, p) 

12: If supLDB(p) ≥ (1 - µ) * min_sup&& 

                    (p is a single item) 

13:PrefixSpan(p, D’|p, µ, min_sup, FP’, BSFP’) 

14: ElseIfsupD’(p) ≥ µ * min_sup 

15:Insert(BSFP’, p) 

16:     For every pattern p in BSFP do 

17:  Check Δsup(p) = supdb(p) 

18:  If supD’(p) = supD(p) + Δsup(p) ≥ min_sup 

19:  Insert(FP’, p) 

20:               PrefixSpan(p, D’|p, µ, min_sup, FP’, BSFP’) 

21:ElseIfsupD’(p) ≥ µ * min_sup 

22: Insert(BSFP’, p) 

23:     Return; 

9. Working of MISP 

MISP and IncSpan+ are almost same except the following 

modifications: 

1. In MISP,PrefixSpanneed not be called for the new 

semi-frequent single items, since only the boundary 

is kept. (See line 8-9 in IncSpan+) 

2. In MISP, the patterns of FS and SFS are considered 

separately, since for patterns of SFS, which 

becomes frequent after update, PrefixSpan is called 

without checking pruning condition so that one can 

get the complete boundary of semi-frequent 

patterns. 

3. For patterns of both FS and SFS, which becomes 

semi-frequent from frequent due to the change in 

min_sup or which remains semi-frequent, 

PrefixSpan is not called. (See line 18 in IncSpan+) 

4. Also for patterns of FS, which becomes frequent 

after update and also satisfy the pruning 

condition,PrefixSpan is not called all the time. 

Instead, it is called only for single such items. 

Note that if the database is projected physically then 

very much memory space is required. 

Since PrefixSpan is called recursively and so the database 

needs to be projected recursively. So they have to be stored on 

disc. Also reading and writing from and to the disc is much 

slower than from main memory. So this may be major cost for 

the algorithm if the number of projected databases is large and 

they have to be projected physically.  So somehow if the size 

of these projected databases is kept small, they can be stored 

to the main memory. So the approach of not projecting the 

database physically as in PrefixSpan called pseudo-

projectionis applied in which the sequence index and the 

starting position of the projected sequenceis kept. The size of 

such a record is significantly less than that of physically 

projected database and so it can be kept in main memory. 

To further illustrate the working of both the algorithms, they 

are applied to an example database below. 

10. Example: 

Suppose the following data is given as original customer 

sequence database: 

Table 7: Customer Sequence Database D 

 

CID Customer Sequence 

1 (de)(c )(ag)(ab) 

2 (acd)(bd) 

3 (bc)(aeg)(ah) 

4 (eh)(dk)(m)(cn) 

5 (be)(f)(af)(cgk) 

6 (acf)(dg)(k) 

 

And suppose the update is given as: 

 

Table 8: Update Part δD 

 

CID Customer Sequence 

2 (eh)(j)(fj) 

3 (bde)(ce) 

6 (cf)(a) 

7 (bk)(cde) 

 

Also suppose that minimum support threshold is 0.66, the 

buffer ratio μ is 0.6. Total number of customer sequences is 6 

and so min_sup is 4. So the set of frequent sequential patterns 

FS and set of semi-frequent sequential patterns SFS for D are 

given by 

FS = {< (a) : 5 >, < (b) : 4 >, < (c) : 6 >, < (d) : 4 >, < (e) : 4  

>, < (g) : 4 >} 

SFS = {< (c)(g) : 3 >, < (e)(a) : 3 >, < (e)(c) : 3 >, < (k) : 3 >} 

 Then, first it adjusts the min_sup. Since after 

update the number of customer sequences is increased to 7, 

the min_sup will becomes 4.66 i.e. the minimum support 

count required for a sequence to be frequent is 5. Then LDB is 

made with the help of D and δD. The LDB is given below: 
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Table 9: LDB Part 

 

CID Customer Sequence 

2 (acd)(bd)(eh)(j)(fj) 

3 (bc)(aeg)(ah)(bde)(cn) 

6 (acf)(dg)(k)(cf)(a) 

7 (bk)(cde) 

 

And then appended database D’ is made with the help of 

original database D and the update part δD as given below: 

 

Table 10: Appended Database D’ 

 

CID Customer Sequence 

1 (de)(c )(ag)(ab) 

2 (acd)(bd)(eh)(j)(fj) 

3 (bc)(aeg)(ah)(bde)(cn) 

4 (eh)(dk)(m)(cn) 

5 (be)(f)(af)(cgk) 

6 (acf)(dg)(k)(cg)(a) 

7 (dk)(cde) 

 

 After this, IncSpan+ will scan the appended 

database D’ once to find out new single frequent or semi-

frequent items. The only new single item found in this case is 

(h) with support count 3 and so it is semi-frequent. So it is 

added to SFS’ to get 

SFS’ = {< (h) : 3 >}. 

Then PrefixSpan is called on (h) but no other semi-

frequent pattern was found. Obviously, we cannot get frequent 

patterns on calling PrefixSpan on a semi-frequent pattern.  

Now, it considers the patterns of FS and SFS one by 

one to check their support count and calling PrefixSpan if 

necessary. If a pattern is found to be frequent, it is added to 

FS’ and if it is found to be semi-frequent it is added to SFS, 

otherwise it is just discarded. Note that the whole database 

need not to be scanned to check the support count of these 

sequences since the incremental support can be find out with 

the help of LDB andtheir support in original database is 

already stored with them in FS or SFS. So the scan of the 

database is needed only if PrefixSpanis called to find more 

patterns. So when this algorithm returns, the set of frequent 

sequential patterns FS’ and set of semi-frequent sequential 

patterns SFS’ will be as  

 

FS’ = {< (a): 5 >, < (b) : 5 >, < (c) : 7 >, < (d) : 6 >, < (e) : 6  

>} 

SFS’ = {< (a)(a) : 3 >, < (a)(b) : 3 >, < (a)(c) : 3 >, < (a)(d) : 3  

>, < (b)(c) : 3 >, < (b)(e) : 3 >, < (c)(a) : 3 >, < (c)(b) 

 : 3 >, < (c)(d) : 3 >, < (c)(g) : 3 >, < (c)(g)(a) : 3 >, < 

             (d)(c) : 4 >, <(de) : 3   >, < (e)(a) : 3 >, < (e)(c) : 4 >,  

< (f) : 3 >, < (h) : 3 >, < (g) : 4 >, < (g)(a) : 3 >,  

< (k) : 4 >, < (k)(c) : 3 >} 

 

 Note that (g) was a frequent pattern before update 

but it is no more frequent after update. Also so many new 

patterns have come. 

 Now MISP algorithm is applied to the above 

example database and update part. The adjustment of 

min_sup, making of LDB and D’ will be same. They will be 

same as shown above in Table 3 and Table 4. Also, by 

chance, BSFP also found to be same as SFS for this particular 

data. Most of the times, they differ. 

 Now MISP finds the new frequent and semi-

frequent single items. As in IncSpan+, it finds (h) as new 

semi-frequent single item. But, it does not call PrefixSpan on 

it as IncSpan+ does. So this is the first difference we have 

encountered. 

 Then MISP considers the patterns of FP. Here it 

continues same as IncSpan except that it does not call 

PrefixSpan for the semi-frequent sequential patterns. Also it 

does not call PrefixSpan on patterns of length more than 1. 

For patterns of BSFP, it calls PrefixSpan only if the pattern 

has becomes frequent. If it remains semi-frequent it simply 

adds it to BSFP’. Also if due to the change in min_sup if a 

pattern has becomes infrequent, we simply leave it. 

 So at last MISP finds the following set of frequent 

sequential patterns and BSFP 

 

FP’ ={< (a): 5 >,< (b) : 5 >, < (c) : 7 >, < (d) : 6 >, < (e) : 6 >} 

BSFP’ = {< (a)(a) : 3 >, < (a)(b) : 3 >, < (a)(c) : 3 >, < (a)(d) :  

3 >, < (b)(c) : 3 >, < (b)(e) : 3 >, < (c)(a) : 3 >, < 

(c)(b) : 3 >, < (c)(d) : 3 >, < (c)(g) : 3 >, < (d)(c) : 4  

>, < (de) : 3   >, < (e)(a) : 3 >, < (e)(c) : 4 >, < (f) : 3  

>, < (h) : 3 >, < (g) : 4 >, < (k) : 4 >} 

 

Note that this time BSFP’ and SFS’ are not the same. BSFP’ 

has fewer elements. Note that the patterns< (c)(g)(a) : 3 >, < 

(g)(a) : 3 > and < (k)(c) : 3 > are not stored since  < (c)(g) : 3 

>, < (g) : 4 > and < (k) : 4 >are in BSFP’. Also note that, FS’ 

and FP’ are exactly the same i.e. MISP can mine the same set 

of frequent patterns as IncSpan+. 

11. Experimental Results 

MISP and IncSpan+ are compared for various attributes on a 

set of customer data and the results found are as follows: 

The chart below shows the time required by the algorithms on 

varying minimum support counts. 
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Note that MISP outperforms IncSpan+ when the minimum 

support is low and the number of frequent sequential patterns 

is high with a wide margin. Even if the minimum support is 

not low, it is somewhat efficient than IncSpan+. 

The chart below shows the number of calls to a function 

PrefixSpan required by the algorithms for various minimum 

supports. 

 
Note that in MISP,PrefixSpan is called remarkably less 

number of times than in IncSpan+. This is the key factor to 

performance since in every call to PrefixSpan the database is 

scanned once and on the semi-frequent patterns, one also has 

to project the database. So number of calls to PrefixSpan is 

directly proportional to number of database scans required. 

Actually number of calls to the PrefixSpan is equal to the 

database projection required.  Also it is directly proportional 

to the database projections. So fewer calls to PrefixSpan 

means fewer database scans, fewer database projections and 

hence less time requirement keeping in mind that it takes 

considerable time to scan a database and project the database.  

The chart below shows the number of semi-frequent patterns 

to be required to store by the algorithms on varying minimum 

support threshold. 

 

Note that in MISP algorithm one has to buffer less number of 

semi-frequent patterns and hence required less memory. Also, 

the number of semi-frequent sequential is directly 

proportional to the number of calls to the PrefixSpan 

algorithm in IncSpan+. So it is directly proportional to the 

database scans and hence causes large number of database 

projections. So it increases the overhead of projecting the 

database significantly. 

12. Conclusion 

In this work, we have proposed an algorithm called MISP for 

incremental mining of sequential patterns. It is a modification 

to an existing algorithm called IncSpan+ for its efficiency 

with respect to time and space. Our experimental results show 

that we have succeeded in our goal up to some extent. For 

large database with a lot of frequent patterns, our algorithm is 

very efficient. If the minimum support threshold is low, which 

means the number of frequent patterns is huge, then 

IncSpan+ algorithm has to call the PrefixSpan method a 

large number of times and hence it has to scan the database a 

large number of times. Also scanning the whole database 

requires considerable amount of time. So we have attacked the 

problem of efficiency by reducing the number of calls to the 

PrefixSpan method which in turn reduces the number of 

database scans and therefore increases efficiency. Note that 

we have also reduced the number of semi-frequent patterns to 

be stored slightly resulting in less overhead of storing the non-

desirable information, since we are interested in the frequent 

patterns only. So MISP required less number of infrequent 

patterns to be stored to find the frequent patterns in next 

update. 

13. Future Scope 

A new concept of “time-interval sequential patterns” has 

been proposed recently in which not only the order of events 

but the time between them is also considered. This work can 

be further extended to develop an incremental mining 

algorithm for time-interval sequential patterns. The concept of 

closed sequential patterns is not new these days. Closed 

sequential patterns represent the information in more compact 

way and so they have gained much attention of the 

researchers. So an enthusiastic researcher can also try to 

develop an efficient algorithm for closed sequential patterns. 
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