
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

23

MISP (Modified IncSpan+): Incremental Mining of

Sequential Patterns

Anil Kumar

Department of Mathematics
S.K. Govt. College, Kanwali,Rewari,

Haryana (India)

Vijender Kumar
Lecturer in Mathematics

S.D.I.T.M Israna,Panipat-132107
Haryana (India)

ABSTRACT

Real life sequential databases are usually not static. They

grow incrementally. So after every update a frequent pattern

may no longer remains frequent while some infrequent

patterns may appear as frequent in updated database. It is not

a good idea to mine sequential database from scratch every

time as the update occurs. It would be better if one can use the

knowledge of already mined sequential patterns to find the

complete set of sequential patterns for updated database. An

incremental mining algorithm does the same thing. The main

goal of an incremental mining algorithm is to reduce the time

taken to find out the frequent patterns significantly i.e. it

should mine the set of frequent patterns in significantly less

time than a non-incremental mining algorithm. In this work

the efficiency has been improved, in time and space, of an

already existing incremental mining algorithm called

IncSpan+ which is claimed to rectify an incremental mining

algorithm called IncSpan.

Keywords

Set of frequent sequential patterns (FP), Boundary of semi-

frequent sequential patterns (BSFP).

Some Notations

D -The original database.

δD - The update to the database.

D’ - The appended database.

min_sup - Minimum support threshold.

µ - Buffer ratio.

D|i - Projected database on i.

∆sup(p) - Incremental support count of p.

supLDB(p) - Support count of p in LDB.

FP - Set of frequent sequential patterns.

BSFP - Boundary of semi-frequent sequential patterns.

1. INTRODUCTION

Sequential Pattern Mining: Given a set of data sequences,

Sequential Pattern Mining is to discover subsequences i.e.

ordered events that are frequent in the sense that the

percentage of data sequences containing them exceeds a user-

specified minimum support.

E.g. “Customers who buy a PC are likely to return latter to

buy a Laser Printer.

Some definitions of the terms related to Sequential Pattern

Mining are:

Event: Let A = {i1, i2… in} be the set of n distinct items. An

event is a non-empty subset of A. An event is denoted by (i1,

i2… im), where ij∈ A. Without loss of generality, it can be

assumed that the items in each event are sorted in some order.

Sequence: A sequence is an ordered list of events. A

sequence p is denoted as (p1 p2…..pk) where pi is an event and

pi occurs before pj if i < j. A sequence is called a k-sequence if

the sum of cardinalities of pi is k. In this case, k is called

length of the sequence.

Subsequence: A sequence p = (p1 p2…..pk) is called a

subsequence of another sequence β = (β1 β2…..βj) if there

exists indices 1 ≤ t1<t2<…<tk≤ j of β such that p1 is

contained in βt1, p2 is contained in βt2… pk is contained in βtk

i.e. each event of p must be a subset of events of βpreserving

the order of events of both the sequences. β is called

supersequence of p.

Support: A sequence p is said to support another sequence p’

if and only if p is a supersequence of p’.

Sequence Database: It consists of the sequences of ordered

events where the events are ordered with respect to time.

Support count: The support count or frequency of a given

sequence p with respect to a sequence database D, is the total

number of sequences in D that support p.

Frequent Sequence: A sequence whose support count

exceeds some user-specified minimum support threshold is

called a frequent sequence. A frequent sequence is also called

a frequent pattern.

Closed Sequential Pattern: A frequent sequential pattern is

called a closed sequential pattern if it is not a subsequence of

another frequent pattern with same support count.

E.g. consider the following customer bucket data:

Table 1: Customer Data

CID Items Day

1 ad 1

2 acd 1

1 bdg 2

3 be 2

4 ace 2

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

24

2 be 3

3 af 3

1 c 4

3 cdg 4

4 df 5

Then from the above database one can make the following

customer sequence database using above definition of

sequence database.

Table 2: Sequence Database

CID Customer Sequence

1 (ad)(bdg)(c)

2 (acd)(be)

3 (be)(af)(cdg)

4 (ace)(df)

Let min_sup = 2. The set of items in the above database is {a,

b, c, d, e, f, g}. Database is consists of four sequences. The

first sequence, namely < (ad)(bdg)(c) >, has three events (ad),

(bdg) and (c). The length of this sequence is 6 (2+3+1).

Sequence < (bg)(c) >is a subsequence of this sequence. Now

consider the sequence < (ad)(b) >. Sequences 1 and 2 support

this sequence and no other sequence support it. So its support

count is 2, which satisfies minimum support threshold and

hence this is a frequent sequence.

2. Need for Incremental Mining

Sequential mining algorithms can mine a static database. But,

nowadays, almost all databases are dynamic in nature and

they grow incrementally. One way to handle this is to mine

the whole database every time an update occurs. But it is

highly inefficient and also undesirable. We must find a way to

use the already mined information. An incremental mining

algorithm does the same. It utilizes the mined information to

get new set of frequent sequential patterns instead of mining

the whole database from scratch. Note that the ultimate aim of

using an incremental mining algorithm instead of non-

incremental one is to gain efficiency with respect to time.

Otherwise a non-incremental mining algorithm can also serve

the purpose of mining very easily. So for incremental mining

algorithm the time takenby the algorithm to mine complete set

of frequent patterns must be considered.

3. Incremental Mining of Sequential

Patterns

Given a sequence database D, a user-specified minimum

support threshold, the set of frequent sequential patterns FP

for D and an appended sequence database D’, the problem of

incremental mining of sequential patterns is to mine the

complete set of frequent sequential patterns for D’ using the

already mined set of frequent patterns FP instead of mining D’

from scratch.

Now let us defines some terminology related to incremental

mining and our approach.

Semi-frequent Pattern: Given a factor 0 < μ ≤ 1, a sequence

p is said to be semi-frequent if its support is less than min_sup

but not less than μ*min_sup.

Boundary of Semi-frequent Patterns: It consists of the

semi-frequent patterns which do not have its prefix as semi-

frequent pattern.

Infrequent Pattern: A sequence p is said to be infrequent if

its support count is less than μ*min_sup.

Incremental Support of a Sequence: Incremental support of

a sequence is the increase of its support due to the update in

database.

Appended Sequence: Given a sequence p = (p1p2…pk) and

another sequence q = (q1q2…qn), let p’ be the sequence

obtained by concatenating q to p. Then p’ is called appended

sequence of p. Note that if appended part is empty then we

simply get p’=p.

Appended Sequence Database: An appended sequence

database D’ obtained from the database D is one with the

following conditions:

i. For each sequence p’ in D’, there must exists a

sequence p in D such that either p’ is appended

sequence of p or p’=p.

ii. For each sequence p in D, there must exists a

sequence p’ in D’ such that either p’ is appended

sequence of p or p’=p.

LDB: LDB consists of those sequences of appended sequence

database D’ which have really got some appended part i.e.

which are not equal to their corresponding sequence in

original database D.

ODB: ODB consists of those sequences of original database

D which have been appended with events in appended

database D’.

Prefix: Given a sequence p = (p1p2…pn), a sequence p’ =

(p1’p2’…pm’) (m ≤ n) is called prefix of p if and only if (1) pi’

= pi for i ≤ m - 1; (2) pm’ ⊆ pm; and (3) all the items in (pm –

pm’) are alphabetically (or according to the order specified)

after the items in pm’.

Suffix: Let α = (pm’’pm+1…pn) be the sequence obtained from

the sequences p and p’ given in above definition such that

pm’’ = (pm – pm’). Then α is called suffix or postfix of p with

respect to p’.

Projection of a sequence: Given two sequences p and p’ such

that p’ is a subsequence of p, a subsequence α of the sequence

p is called a projection of p with respect to p’ if and only if (1)

α has p’ as its prefix and (2) there exists no other proper

supersequence of α which is subsequence of p and has p’ as

prefix.

Projected Database: Given a sequence p and a sequence

database D, the p-projected database is the collection of

suffixes of sequences in D with respect to p.

Now, consider the sequence database given in Table 2

above and the following update to the database.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

25

Table 3: Update to the database

CID Customer Sequence

1 (cg)(f)

2 (be)(ac)

5 (abe)(cg)

So using above definition, one can find the

appended database as:

Table 4: Appended Database

CID Customer Sequence

1 (ad)(bdg)(c)(cg)(f)

2 (acd)(be)(be)(ac)

3 (be)(af)(cdg)

4 (ace)(df)

5 (abe)(cg)

Also for above database and update, the LDB and

ODB parts are given by the following tables.

Table 5: LDB

CID Customer Sequence

1 (ad)(bdg)(c) (cg)(f)

2 (acd)(be) (be)(ac)

5 (abe)(cg)

Table 6: ODB

CID Customer Sequence

1 (ad)(bdg)(c)

2 (acd)(be)

Now suppose one wants to find the incremental support of <

(a)(c) >.LDB is used for this purpose. It can be seen that

customer sequences with CID 1, 2 and 5 support this

sequence. But sequence with CID 1 in ODB also supports it.

So sequence with CID 1 will not contribute to the incremental

support of given sequence since it was already supported by

this customer sequence in original database. Also note that it

is not supported by sequence with CID 2 in ODB. So this

sequence will contribute to the count. Same is the case with

customer sequence with CID 5, since this is a new sequence

representing a new customer.

4. Some Sequential Pattern Mining

Algorithms

GSP by Agrawal and Srikant: The term sequential pattern

mining is coined by Agrawal and Srikant (1995). They

proposed three algorithms to solve the problem of finding

frequent sequential patterns. Among these three algorithms

AprioriAll was the best one. In 1996 they proposed another

algorithm called GSP which outperform AprioriAll with a

high degree. In GSP bottom-up approach is adopted to find

the complete set of frequent sequential patterns. It finds

frequent 1-sequences first, and then it generates candidate 2-

sequences using the set of frequent 1-sequences. Then it finds

frequent 2-sequences and so on. In general candidate k-

sequences are generated using frequent (k-1)-sequences based

on the anti-monotone property which states that all the

subsequences of a frequent sequence must be frequent. After

generating candidate k-sequences, the set of frequent k-

sequences is determined by their support count. Frequent k-

sequences are determined in the kth scan of the database and

hence this algorithm requires as many database scans as the

length of largest frequent sequence. So it is an algorithm

which starts the sequential pattern mining and it can mine the

complete set of frequent sequential patterns but it is not an

efficient algorithm. So some researchers start thinking about

efficient solution to this problem and proposed many

algorithm, some of which we will discuss below.

SPADE: Another algorithm proposed by Zaki [6] called

SPADE is also based on the candidate generate and test

approach. Zaki introduces the concept of lattice to divide the

candidate sequences into groups such that each group can be

completely stored in the main memory. In addition, this

algorithm uses the ID-List technique to reduce the costs for

computing support counts. An ID-list of a sequence keeps a

list of pairs, which indicate the positions that it appears in the

database. In a pair, the first value stands for a customer

sequence and the second refers to a transaction in it, which

contains the last itemset of the sequence.

The SPADE algorithm costs a lot to repeatedly

merge the ID-lists of frequent sequences for a large number of

candidate sequences. So, even if it is better than GSP but

since it is also based on candidate-generate and test approach,

it is also not very efficient. Thus more research work was

needed to find some more efficient solution.

SPAM: To reduce this cost of merging, Ayres et al. [15]

adopt the lattice approach in the SPAM algorithm but

represent each ID-list as vertical bitmap. The SPAM

algorithm is efficient if all the bitmaps can be completely

stored in the main memory. All the sequences are discovered

in only three database scans. It outperforms GSP by a factor

of two. But it has not shown much difference to SPADE.

PrefixSpan: Pei et al. [4] employ the projection scheme in the

PrefixSpan algorithm to project the customer sequences into

overlapping groups called projected databases such that all the

customer sequences in each group have the same prefix which

corresponds to a frequent sequence. FP-tree is used to store

the projected databases for efficiency. Then each of these

databases is mined separately. So the approach of this

algorithm is to find the frequent prefix sequence first, then

project the database and find the frequent suffixes to

concatenate with the prefix to get the frequent sequential

pattern without generating candidate sequences. Note that it is

a recursive algorithm based on the divide and conquer

strategy.PrefixSpan algorithm recursively generates the

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

26

projected database for each frequent k-sequence to find

frequent (k+1)-sequences with this k-sequence as prefix.

Obviously, the cost of PrefixSpan algorithm mainly depends

upon the number of database projections to be generated

recursively.

CloSpan: One other algorithm called CloSpan [9] is proposed

in 2003 keeping in mind the huge number of frequent

sequences to be mined and stored. It mines the close

sequential patterns i.e. the patterns which do not have a

subsequence with same support count. Note that one can

easily get the full set of frequent sequential patterns from the

set of closed sequential patterns mined by CloSpan. So this

algorithm turns out to be very good when minimum support is

low i.e. when the number of frequent sequences is large.

Note that there are many other algorithms for

mining sequential patterns but the above discussed algorithms

represent the basic approaches.

5. Some Incremental Mining algorithms

ISM and ISE: Note that all the above discussed algorithms

can mine the set of frequent sequential pattern from a static

database. But these days all real world databases are dynamic

in nature. So, incremental mining algorithms came into

existence. Incremental mining algorithm utilizes the already

mined set of frequent sequential patterns for the original

database to mine the complete set of frequent sequential

patterns for the updated database. Parthasarathy et al. [7]

proposed an incremental mining algorithm called ISM in

which he used the concept of negative border. Negative

border is defined as the set of sequences which are not

frequent but both of whose generating subsequences are

frequent. The generating subsequences of a sequence of

length k are two subsequences of length (k-1) obtained by

dropping exactly one of its first or second item. In this

algorithm they have maintained a lattice of sequences to keep

the set of frequent sequences and the negative border. This

concept of negative border turns out to be helpful but it has its

own drawbacks also. The main drawback of this approach is

that the total number of sequences in the negative border is

very large. So we have to store these infrequent sequences

along with the set of frequent sequential patterns. Moreover

the sequences in negative border may have very low support

and they may not become frequent after many subsequent

updates to the database. So there is no point in keeping those

highly infrequent sequences. Later Masseglia et al. [13]

proposed another incremental mining algorithm called ISE. In

this algorithm the candidate-generate and test approach is

used. The disadvantages of this algorithm include the huge

number of candidate sequences to be tested and need of

multiple scan of the whole database. So this algorithm turns

out to be very costly with respect to time and space

requirement.

IncSpan: Cheng et al. [2] proposed an incremental mining

algorithm called IncSpan based on an existing algorithm

called PrefixSpan [4]. To gain efficiency the concept of semi-

frequent patterns is introduced. Semi-frequent patterns are the

patterns which are not frequent but whose support is greater

than the product of minimum support and a user specified

factor μ (0 <μ < 1) i.e. patterns that are not frequent but are

almost frequent. Note that these almost frequent patterns are

most likely to be frequent in the updated database. The

experimental results in [2] show that IncSpan outperforms the

non-incremental algorithm PrefixSpan and an incremental

mining algorithm ISM.

IncSpan+: Later Nguyen et al. [1] claimed that IncSpan

cannot mine the complete set of frequent patterns. They gave

counter examples to justify their claim. They proposed an

algorithm called IncSpan+ which is free from the

shortcomings of IncSpan and can mine the complete set of

frequent sequence patterns. They proved the correctness of

IncSpan+.

6. IncSpan+: An overview

IncSpan+ is proposed by Nguyen et al. in response to an

incremental mining algorithm called IncSpan proposed by

Cheng et al. [2]. IncSpan has a major drawback of not able to

mine the complete set of frequent sequential patterns. It is

observed by Nguyen et al. and they proposed the IncSpan+

algorithm which, they proved that, can mine the set of

frequent sequential patterns completely. It adopts the same

approach as IncSpan. It is also based on the PrefixSpan

algorithm as IncSpan.

The IncSpan algorithm is given below:

Algorithm Outline: IncSpan+(D’, min_sup, µ, FS, SFS)

Input: An updated database D’, min_sup, FS and SFS in D

Output: FS’, SFS’ in D’

Method:

1: FS’ = Φ; SFS’ = Φ;

2: Determine LDB; Total number of sequences in D’, adjust

themin_sup if it ischanged due to the increasing of total

number of sequences in D’

3: Scan the whole D’ for new single items

4: Add new frequent items into FS’

5: Add new semi-frequent items into SFS’

6: For each new item i in FS’ do

7: PrefixSpan(i, D’|i, µ, min_sup, FS’, SFS’)

8: For each new item i in SFS’ do

9: PrefixSpan(i, D’|i, µ, min_sup, FS’, SFS’)

10: For every pattern p in FS or SFS do

11: Check Δsup(p) = supdb(p)

12: If supD’(p) = supD(p) + Δsup(p) ≥ min_sup

13: Insert(FS’, p)

14: If supLDB(p) ≥ (1 - µ) * min_sup

15: PrefixSpan(p, D’|p,µ,min_sup,FS’, SFS’)

16: ElseIfsupD’(p) ≥ µ * min_sup

17: Insert(SFS’, p)

18: PrefixSpan(p,D’|p,µ, min_sup,FS’, SFS’)

19: Return;

How it works: It takes as input, the Updated database D’, the

user specified minimum support threshold and the sets FS and

SFS of frequent sequential patterns and semi-frequent

sequential patterns respectively for original database D. The

output it produces is the sets FS’ and SFS’ of frequent

sequential patterns and semi-frequent sequential patterns

respectively for updated database D’.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

27

It initially sets FS’ and SFS’ to empty sets. Then it

determines the LDB, which is set of those customer sequences

that have got some appended part due to the update to the

database. Then it finds the total number of sequences, which

may have changed due to insertion of some new customer

sequence. Also if the total number of sequences is increased,

we have to adjust the min_sup also.

Then it scans the database D’ once to find out new

frequent and semi-frequent single items and add them to FS’

or SFS’ accordingly. Note that here definition of new is

crucial. In IncSpan [2] new single item is defined as the one

which has no occurrence in the original database D and this

proved to be a major shortcoming of IncSpan as later it was

found that IncSpan cannot mine the complete set of frequent

sequential patterns. It was due to this definition of new single

items, since there may be some items, which are not new

according to this definition i.e. which has there occurrences in

D and are infrequent and after update to the database they

might come up as frequent. E.g. suppose the minimum

support required is 40 and the buffer ratio (μ) is 0.6 and there

is a single item α having support count 20 in D and suppose it

has got support count 40, as required to be frequent, in D’.

Such types of patterns are not considered in IncSpan and this

is the only reason for the incompleteness of the set of frequent

sequential patterns. In IncSpan+, this weakness is observed

and to rectify this flaw they defined new single items as the

items which are not in FS or SFS i.e. which are not frequent

or semi-frequent in D.

Now for each newly found frequent or semi-

frequent item α,PrefixSpan is called to find out all the

frequent or semi-frequent sequential patterns with prefix α.

After that, it considers the patterns in FS and SFS.

Since one can find out all the frequent and semi-frequent

sequential patterns with the help of patterns in FS and SFS,

along with the previously found patterns, all one needs to do

is to check the support count of these patterns to determine if

they are frequent or not and call PrefixSpan on frequent ones

and semi-frequent ones. But one needs not to call PrefixSpan

for all of the frequent or semi-frequent patterns. For this it

uses a pruning technique to reduce the calls to PrefixSpan. So

it proceeds as follows.

For each pattern p in FS or SFS, first it checks its incremental

support and adds it to its support in D to find its support in D’

i.e. first it updates its support. Then it checks if it is greater

than min_sup or not. If it is found to be frequent according to

new min_sup it is first added to FS’ and then its support in

LDB is checked to determine if we have to call PrefixSpan or

not based on the pruning condition it uses. On the other hand,

if it is not found to be frequent but it is semi-frequent then

simply it is added to SFS’ and PrefixSpan is called to find

more frequent and semi-frequent sequential patterns. And the

algorithm finishes its work.

7. Some Important Observations

1)One needs not to keep all the semi-frequent sequences.

Suppose someone has a sequence α with him and some other

sequence β has α as its prefix. Then he needs not to keep β,

since he can always mine β with the knowledge of α. So if α is

in SFS but β is not, there may be two situations about β:

β remains semi-frequent after the update.

In this case, there are two sub cases again. First, α

becomes frequent after update. Then PrefixSpanis called on α

and β can be found or its prefix to be semi-frequent and it can

be kept in SFS’ for future use. Secondly, α remains semi-

frequent. Then one needs to do nothing as he will have α with

him as before. Note that, for the patterns becoming frequent

from SFS, one has to call PrefixSpan without checking the

pruning condition to get the complete set of semi-frequent

patterns for further updates to the database.

β becomes frequent after the update.

In this case, since α is prefix to β, α must have at

least same supportcount as β and so α must be frequent. So

PrefixSpan will be called on α and consequently get β.

2) One need not to check the pruning condition and call

PrefixSpan (if required) on every sequence in FS and SFS. If

only the length-1 sequential patterns of FS and SFSare

considered, it will be sufficient. Suppose α is a length-1

sequential pattern and the pruning condition has been checked

for it. Then either PrefixSpanis called on it or not. Now, if

PrefixSpanis called on α, all the frequent patterns with prefix

α are mined recursively and hence the patterns with α as

prefix need not be considered. Also if PrefixSpan is not

calledon α, then there is a guarantee that it will be not called

on any pattern with prefix α. For this, note that PrefixSpan is

called only if support of the pattern in LDB is greater than

some fixed value ((1-μ)*min_sup). But, if it is not called for α

means support of α is less than that. But, then support of a

pattern having α as prefix is less than or equal to support of α

and hence less than that fixed value.

3) Parthasarathy et al. [7] have used the concept of negative

border in their algorithm ISM and Cheng et al. [2] have used

the concept of semi-frequent sequential patterns in IncSpan.

Both the algorithms have to store some non-frequent patterns.

InMISP (Modified IncSpan+) both the concepts have been

used.

Note that if one can keep the negative border completely,

frequent sequential patterns can be mined very easily. The

main problem with negative border is its huge size and highly

infrequent patterns. Also it would be better if the number of

semi-frequent sequential patterns can be reduced. One thing

between negative border and semi-frequent patterns is

common; patterns in both are either single items or have some

frequent pattern as prefix. But not all semi-frequent patterns

need to be in border since prefix of a semi-frequent pattern

may itself be semi-frequent. Also, not all border sequences

need to be semi-frequent due to their support count. So

keeping the advantages of both the approaches in mind, MISP

has been developed in whichthe intersection of the set of

semi-frequent patterns and negative border is kept for future

use. It is calledboundary of semi-frequent patterns.

Asdiscussed above, it will be sufficient and very beneficial

also for the time and space efficiency.

8. Our Approach: MISP (Modified

IncSpan+)

As stated before, it is modification to IncSpan+ and so

it follows the same spirit. The algorithm is presented first and

then it is discussed. The algorithm is:

Input:An appended database D’, min_sup, FP and BSFP in D

Output: FP’, BSFP’ in D’

Method:

1: FP’ = Φ; BSFP’ = Φ;

2: Determine LDB; Total number of sequences in D’, adjust

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

28

themin_sup if it ischanged due to the increasing of total

number of sequences in D’.

3: Scan the whole D’ for new single items

4: Add new frequent items into FP’

5: Add new semi-frequent items into BSFP’

6: For each new item i in FP’ do

7: PrefixSpan(i, D’|i, µ, min_sup, FP’, BSFP’)

8: For every pattern p in FP do

9: Check Δsup(p) = supdb(p)

10: If supD’(p) = supD(p) + Δsup(p) ≥ min_sup

11: Insert(FP’, p)

12: If supLDB(p) ≥ (1 - µ) * min_sup&&

 (p is a single item)

13:PrefixSpan(p, D’|p, µ, min_sup, FP’, BSFP’)

14: ElseIfsupD’(p) ≥ µ * min_sup

15:Insert(BSFP’, p)

16: For every pattern p in BSFP do

17: Check Δsup(p) = supdb(p)

18: If supD’(p) = supD(p) + Δsup(p) ≥ min_sup

19: Insert(FP’, p)

20: PrefixSpan(p, D’|p, µ, min_sup, FP’, BSFP’)

21:ElseIfsupD’(p) ≥ µ * min_sup

22: Insert(BSFP’, p)

23: Return;

9. Working of MISP

MISP and IncSpan+ are almost same except the following

modifications:

1. In MISP,PrefixSpanneed not be called for the new

semi-frequent single items, since only the boundary

is kept. (See line 8-9 in IncSpan+)

2. In MISP, the patterns of FS and SFS are considered

separately, since for patterns of SFS, which

becomes frequent after update, PrefixSpan is called

without checking pruning condition so that one can

get the complete boundary of semi-frequent

patterns.

3. For patterns of both FS and SFS, which becomes

semi-frequent from frequent due to the change in

min_sup or which remains semi-frequent,

PrefixSpan is not called. (See line 18 in IncSpan+)

4. Also for patterns of FS, which becomes frequent

after update and also satisfy the pruning

condition,PrefixSpan is not called all the time.

Instead, it is called only for single such items.

Note that if the database is projected physically then

very much memory space is required.

Since PrefixSpan is called recursively and so the database

needs to be projected recursively. So they have to be stored on

disc. Also reading and writing from and to the disc is much

slower than from main memory. So this may be major cost for

the algorithm if the number of projected databases is large and

they have to be projected physically. So somehow if the size

of these projected databases is kept small, they can be stored

to the main memory. So the approach of not projecting the

database physically as in PrefixSpan called pseudo-

projectionis applied in which the sequence index and the

starting position of the projected sequenceis kept. The size of

such a record is significantly less than that of physically

projected database and so it can be kept in main memory.

To further illustrate the working of both the algorithms, they

are applied to an example database below.

10. Example:

Suppose the following data is given as original customer

sequence database:

Table 7: Customer Sequence Database D

CID Customer Sequence

1 (de)(c)(ag)(ab)

2 (acd)(bd)

3 (bc)(aeg)(ah)

4 (eh)(dk)(m)(cn)

5 (be)(f)(af)(cgk)

6 (acf)(dg)(k)

And suppose the update is given as:

Table 8: Update Part δD

CID Customer Sequence

2 (eh)(j)(fj)

3 (bde)(ce)

6 (cf)(a)

7 (bk)(cde)

Also suppose that minimum support threshold is 0.66, the

buffer ratio μ is 0.6. Total number of customer sequences is 6

and so min_sup is 4. So the set of frequent sequential patterns

FS and set of semi-frequent sequential patterns SFS for D are

given by

FS = {< (a) : 5 >, < (b) : 4 >, < (c) : 6 >, < (d) : 4 >, < (e) : 4

>, < (g) : 4 >}

SFS = {< (c)(g) : 3 >, < (e)(a) : 3 >, < (e)(c) : 3 >, < (k) : 3 >}

 Then, first it adjusts the min_sup. Since after

update the number of customer sequences is increased to 7,

the min_sup will becomes 4.66 i.e. the minimum support

count required for a sequence to be frequent is 5. Then LDB is

made with the help of D and δD. The LDB is given below:

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

29

Table 9: LDB Part

CID Customer Sequence

2 (acd)(bd)(eh)(j)(fj)

3 (bc)(aeg)(ah)(bde)(cn)

6 (acf)(dg)(k)(cf)(a)

7 (bk)(cde)

And then appended database D’ is made with the help of

original database D and the update part δD as given below:

Table 10: Appended Database D’

CID Customer Sequence

1 (de)(c)(ag)(ab)

2 (acd)(bd)(eh)(j)(fj)

3 (bc)(aeg)(ah)(bde)(cn)

4 (eh)(dk)(m)(cn)

5 (be)(f)(af)(cgk)

6 (acf)(dg)(k)(cg)(a)

7 (dk)(cde)

 After this, IncSpan+ will scan the appended

database D’ once to find out new single frequent or semi-

frequent items. The only new single item found in this case is

(h) with support count 3 and so it is semi-frequent. So it is

added to SFS’ to get

SFS’ = {< (h) : 3 >}.

Then PrefixSpan is called on (h) but no other semi-

frequent pattern was found. Obviously, we cannot get frequent

patterns on calling PrefixSpan on a semi-frequent pattern.

Now, it considers the patterns of FS and SFS one by

one to check their support count and calling PrefixSpan if

necessary. If a pattern is found to be frequent, it is added to

FS’ and if it is found to be semi-frequent it is added to SFS,

otherwise it is just discarded. Note that the whole database

need not to be scanned to check the support count of these

sequences since the incremental support can be find out with

the help of LDB andtheir support in original database is

already stored with them in FS or SFS. So the scan of the

database is needed only if PrefixSpanis called to find more

patterns. So when this algorithm returns, the set of frequent

sequential patterns FS’ and set of semi-frequent sequential

patterns SFS’ will be as

FS’ = {< (a): 5 >, < (b) : 5 >, < (c) : 7 >, < (d) : 6 >, < (e) : 6

>}

SFS’ = {< (a)(a) : 3 >, < (a)(b) : 3 >, < (a)(c) : 3 >, < (a)(d) : 3

>, < (b)(c) : 3 >, < (b)(e) : 3 >, < (c)(a) : 3 >, < (c)(b)

 : 3 >, < (c)(d) : 3 >, < (c)(g) : 3 >, < (c)(g)(a) : 3 >, <

 (d)(c) : 4 >, <(de) : 3 >, < (e)(a) : 3 >, < (e)(c) : 4 >,

< (f) : 3 >, < (h) : 3 >, < (g) : 4 >, < (g)(a) : 3 >,

< (k) : 4 >, < (k)(c) : 3 >}

 Note that (g) was a frequent pattern before update

but it is no more frequent after update. Also so many new

patterns have come.

 Now MISP algorithm is applied to the above

example database and update part. The adjustment of

min_sup, making of LDB and D’ will be same. They will be

same as shown above in Table 3 and Table 4. Also, by

chance, BSFP also found to be same as SFS for this particular

data. Most of the times, they differ.

 Now MISP finds the new frequent and semi-

frequent single items. As in IncSpan+, it finds (h) as new

semi-frequent single item. But, it does not call PrefixSpan on

it as IncSpan+ does. So this is the first difference we have

encountered.

 Then MISP considers the patterns of FP. Here it

continues same as IncSpan except that it does not call

PrefixSpan for the semi-frequent sequential patterns. Also it

does not call PrefixSpan on patterns of length more than 1.

For patterns of BSFP, it calls PrefixSpan only if the pattern

has becomes frequent. If it remains semi-frequent it simply

adds it to BSFP’. Also if due to the change in min_sup if a

pattern has becomes infrequent, we simply leave it.

 So at last MISP finds the following set of frequent

sequential patterns and BSFP

FP’ ={< (a): 5 >,< (b) : 5 >, < (c) : 7 >, < (d) : 6 >, < (e) : 6 >}

BSFP’ = {< (a)(a) : 3 >, < (a)(b) : 3 >, < (a)(c) : 3 >, < (a)(d) :

3 >, < (b)(c) : 3 >, < (b)(e) : 3 >, < (c)(a) : 3 >, <

(c)(b) : 3 >, < (c)(d) : 3 >, < (c)(g) : 3 >, < (d)(c) : 4

>, < (de) : 3 >, < (e)(a) : 3 >, < (e)(c) : 4 >, < (f) : 3

>, < (h) : 3 >, < (g) : 4 >, < (k) : 4 >}

Note that this time BSFP’ and SFS’ are not the same. BSFP’

has fewer elements. Note that the patterns< (c)(g)(a) : 3 >, <

(g)(a) : 3 > and < (k)(c) : 3 > are not stored since < (c)(g) : 3

>, < (g) : 4 > and < (k) : 4 >are in BSFP’. Also note that, FS’

and FP’ are exactly the same i.e. MISP can mine the same set

of frequent patterns as IncSpan+.

11. Experimental Results

MISP and IncSpan+ are compared for various attributes on a

set of customer data and the results found are as follows:

The chart below shows the time required by the algorithms on

varying minimum support counts.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

30

Note that MISP outperforms IncSpan+ when the minimum

support is low and the number of frequent sequential patterns

is high with a wide margin. Even if the minimum support is

not low, it is somewhat efficient than IncSpan+.

The chart below shows the number of calls to a function

PrefixSpan required by the algorithms for various minimum

supports.

Note that in MISP,PrefixSpan is called remarkably less

number of times than in IncSpan+. This is the key factor to

performance since in every call to PrefixSpan the database is

scanned once and on the semi-frequent patterns, one also has

to project the database. So number of calls to PrefixSpan is

directly proportional to number of database scans required.

Actually number of calls to the PrefixSpan is equal to the

database projection required. Also it is directly proportional

to the database projections. So fewer calls to PrefixSpan

means fewer database scans, fewer database projections and

hence less time requirement keeping in mind that it takes

considerable time to scan a database and project the database.

The chart below shows the number of semi-frequent patterns

to be required to store by the algorithms on varying minimum

support threshold.

Note that in MISP algorithm one has to buffer less number of

semi-frequent patterns and hence required less memory. Also,

the number of semi-frequent sequential is directly

proportional to the number of calls to the PrefixSpan

algorithm in IncSpan+. So it is directly proportional to the

database scans and hence causes large number of database

projections. So it increases the overhead of projecting the

database significantly.

12. Conclusion

In this work, we have proposed an algorithm called MISP for

incremental mining of sequential patterns. It is a modification

to an existing algorithm called IncSpan+ for its efficiency

with respect to time and space. Our experimental results show

that we have succeeded in our goal up to some extent. For

large database with a lot of frequent patterns, our algorithm is

very efficient. If the minimum support threshold is low, which

means the number of frequent patterns is huge, then

IncSpan+ algorithm has to call the PrefixSpan method a

large number of times and hence it has to scan the database a

large number of times. Also scanning the whole database

requires considerable amount of time. So we have attacked the

problem of efficiency by reducing the number of calls to the

PrefixSpan method which in turn reduces the number of

database scans and therefore increases efficiency. Note that

we have also reduced the number of semi-frequent patterns to

be stored slightly resulting in less overhead of storing the non-

desirable information, since we are interested in the frequent

patterns only. So MISP required less number of infrequent

patterns to be stored to find the frequent patterns in next

update.

13. Future Scope

A new concept of “time-interval sequential patterns” has

been proposed recently in which not only the order of events

but the time between them is also considered. This work can

be further extended to develop an incremental mining

algorithm for time-interval sequential patterns. The concept of

closed sequential patterns is not new these days. Closed

sequential patterns represent the information in more compact

way and so they have gained much attention of the

researchers. So an enthusiastic researcher can also try to

develop an efficient algorithm for closed sequential patterns.

14. References

[1] Nguyen S.N., Sun X., Orlowska M.E., “Improvements of

IncSpan: Incremental Mining of Sequential Patterns in

Large Database”, Proc. of the 9th Pacific-Asia

Conference on Advances in Knowledge Discovery and

Data Mining, 2005.

[2] Cheng H.,YanX.,Han J., “IncSpan: Incremental Mining

of sequential Patterns in large database.Proc. ACM KDD

Conf. on Knowledge Discovery in Data, Washington

(KDD’04).2004.

[3] Agrawal R., Srikant R.: Mining sequential patterns. Proc.

11th IEEE Int. Conf. on Data Engineering

(ICDE’95),1995.

[4] Pei J., Han J., Mortazavi-Asl B., Wang J., Pinto H., Chen

Q., Dayal U., Hsu M.: Mining sequential patterns by

Pattern-Growth: The PrefixSpan approach. IEEE

Transactions on Knowledge and Data Engineering,

Vol.16, No. 10, 2004.

0

20

40

60

80

100

0
.5

0
.4

5

0
.4

0
.3

5

0
.3

0
.2

5

0
.2

T
im

e
in

 s
ec

o
n
d

s

Minimum support threshold

IncSpan+

MISP

0

20

40

60

80

0.5 0.45 0.4 0.35

N
u

m
b

er
 o

f
ca

lls

Minimum support count

IncSpan+

MISP

0

50

100

150

0.5 0.45 0.4 0.35 0.3

N
u

m
b

er
 o

f
se

m
i f

re
q

u
en

t
p

at
te

rn
s

Minimum support count

IncSpan+

MISP

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.8, March 2013

31

[5] Srikant R., Agrawal R.: Mining sequential patterns:

Generalizations and performance improvements. Proc.

5th IEEE Int. Conf. on Extending Database Technology

(IDBT’96).

[6] Zaki M.: SPADE: An efficient algorithm for mining

frequent sequences,Machine Learning, 40: (31-60), 2001

[7] Parthasarathy S., Zaki M., Ogihara M., and Dwarkadas

S.: Incremental and interactive sequence mining. Proc.

8th Int. Conf. on Information and Knowledge

Management (CIKM’99), 1999.

[8] Zhang M., Kao B., Cheung D., Yip C.: Efficient

algorithms for incremental update of frequent sequences.

Proc. of Pacific-Asia Conf. on Knowledge Discovery and

Data Mining (PAKDD’02), 2002.

[9] X. Yan, J. Han, and R. Afshar.Clospan: Mining closed

sequential patterns in large datasets, 2003.

[10] J. Han, J. Pei, B. Mortazavi-Asl,Q. Chen, U. Dayal, and

M.C Hsu, ”FreeSpan: Frequent Pattern-Projected

Sequential Pattern Min- ing,"Proc.2000 ACM SIGKDD

Int'l Conf. Knowledge Discovery in Databases (KDD

'00),pp. 355-359,Aug. 2000.

[11] I.H. Witten, and F. Frank,Data Mining: Practical

Machine Learning Tools With Java

Implementations.,San Francisco, CA: Morgan Kauf-

man,2000.

[12] Dao-I Lin, and Zvi M. Kedem, “Pincer Search: An

Efficient Algorithm For Discovering The Maximum

Frequent Set," IEEE Trans. on Knowledge and Data

Engineering, Vol. 14, No. 3, (May/June, 2002), pp. 553-

566.

[13] F. Masseglia, P. Poncelet, and M. Teisseire. Incremental

mining of sequential patterns in large databases. Data

Knowl. Eng., 46:97–121, 2003.

[14] F. Masseglia, P. Poncelet, M. Teisseire, “Incremental

mining of sequential patterns in large databases,” Actes

des Jouenes Bases de DonnesAvances (BDA’00), Blois,

France, 1999.

[15] J. Ayres, J. E. Gehrke, T. Yiu and J. Flannick, “

Sequential pattern mining using bitmaps.”, Proc. 2002

ACM SIGKDD Int. Conf. Knowledge Discovery in

Databases (KDD’02), July 2002.

[16] Jiawei Han and MichelineKamber, “Data Mining:

Concepts and Techniques”, 2nd edition, Morgan

Kaufmann Published, 2006.

