
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.7, March 2013

29

Improving the Use Case Point and COCOMO with Expert
Judgment and Analogy based Estimation

Chetan Nagar

Ph.D. Student Mewar University Chittorgarh
Rajasthan India

Anurag Dixit, PhD.
Director

Siddhi Vinayak group of Colleges
Alwar

ABSTRACT

Software effort estimation is an important part of software

development work and provides essential input to project

feasibility analyses, bidding, budgeting and planning. A lot of

methods are used in industry for efforts estimation, Use Case

Point; COCOMO, Analogy and Expert Judgment are most

popular methods of estimation. But these all methods are used

separately. One method is not suitable for all kind of projects

.This paper is combining these methods to use the

advantages of these methods and overcome the disadvantages

of these methods. This paper using expert judgment and

Analogy based estimation in Use Case Point and COCOMO

to improve the Use Case Point and COCOMO.

.

KEYWORDS

Analogy Based Estimation, Expert Judgment, COCOMO, Use

Case Point.

1. INTRODUCTION
In the efforts estimation either we are using model or expert /

analogy based estimation. We treat Expert estimation and

model based estimation as a different process of estimation.

Both approaches have some advantages and disadvantages. In

the model we have several parameters that we have to predict.

We have to predict these values based on experience,

expertise or analogy. That means expert based estimation or

analogy based estimation is already involve in model based

estimation. Suppose we are using COCOMO model for

estimation than we have to predict the KLOC required

building the project and 22 EAF. So the result of model

depends on the prediction and how better we can predict will

depend on our expertise, experience and how better we can

utilize the analogy. It means model cannot work alone, it

requires the assistance of experience expertise and analogy.

To combine the model along with analogy and expert based

estimation we have to add another column in the model that

will provide the suggested value.

In case of COCOMO model has three columns first for Serial

Number second for parameter description third for value and

fourth column that we want to add, that will contain the

suggested values. Now the question is that how the suggested

values will come. We will take data of at least 10 successful

projects, each entry will be average of these 10 values.

Despite this fact, expert judgment is the most widely adopted

technique for effort estimation, with 15 industry based studies

showing the level of expert judgment adoption ranging from

60% to 100% [10]. Possible reasons for such a high level of

adoption include: a general aversion to models that are not

fully understood, and a tendency to favor simpler estimation

strategies which require less mental effort from the user.

Software effort estimation research is inconclusive regarding

which estimation approach is better, e.g. a recent review [4] of

studies comparing models and experts in software

development effort estimation concludes that experts typically

performs no worse than the models.

Greater consistency may, to some degree, be achieved by

greater use of formal estimation models. In many other fields

in which forecasts are made, such as the making of diagnoses

in medicine, expert judgments are typically outperformed by

even the simplest prediction models, partly due to the higher

degree of consistency of the models [1]. The obvious

consequence of this is that we should switch to effort

estimation models instead of expert judgment in software

development projects. However, the situation in software

engineering seems to be different from that in many other

disciplines. A recent review of sixteen studies comparing

models and experts in software development effort estimation

shows that the experts typically performed no worse than the

models [10]. One reason for this may be that it is difficult to

develop meaningful estimation models that do not require a

high degree of expert judgment as input to the models in the

first place; that being so, the difference between models and

expert judgment-based effort estimates in software

development with regard to consistency may not be large.

Understanding the nature and degree of inconsistency in

expert judgment may consequently benefit estimation

processes based on models, as well as those based on expert

judgment.

If we are using analogy based estimation alone than we

required the complete information of previous projects, but

some time we do not have sufficient information of previous

projects. We are using expert based estimation, its success

depends upon expert and it can be biased.

We should accept that Estimation by Analogy and Expert

Estimation are good estimation technique, methods of efforts

estimation.

A lot of methods are used in software efforts estimation, but

in this research paper we are considering only four methods:

1.1 Expert based Estimation [2].

1.2 Analogy Based Estimation [5]

1.3 COCOMO [9]

1.4 Use Case Point [3] [12] [13].

1.1 Expert based Estimation [2].
A number of experts on the application domain of the project

and / or the development techniques crucial to the project’s

success are consulted. The estimation process can be

supported by providing the means for a systematic approach

(like the list of all effort-requiring items employed in expert

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.7, March 2013

30

estimation or techniques for reaching a consensus between

several.

1.2 Analogy Based Estimation [5]
An estimate is found by comparing the project at hand to

other, already completed projects in the same application

domain. In this context, the proportions between the projects

and the effort that was actually required for the completed

projects are considered.

1.3 COCOMO [9]
One after one three models of COCOMO given by Barry

Boehm:

I. Simple COCOMO.

II. Intermediate COCOMO.

III. Advance COCOMO

I. Simple COCOMO:- It was the first model suggested by

Barry Boehm, which Follows following formula:

Efforts= a*(KLOC) b

Here a and b are complexity factor.

TABLE I

Complexity Factors

Model A B

Organic (simple in terms of size and

complexity

3.2 1.0

5

Semi-ditched (average in terms of

size and complexity

3.0 1.1

2

Embedded (Complex) 2.8 1.2

0

II. Intermediate COCOMO:-Previous model does not include

the factors which can affect the efforts. Intermediate

COCOMO includes 17 factors that can affect the efforts

estimation.

Efforts= a*(KLOC) b *EAF

Here a and b are complexity factor.

TABLE II

Complexity Factors

Model A B

Organic (simple in terms of size and

complexity

3.2 1.

05

Semi-ditched (average in terms of

size and complexity

3.0 1.

12

Embedded (Complex) 2.8 1.

20

Following are Efforts Adjustment Factors used in

Intermediate COCOMO. Typical values for EAF range from

0.9 to 1.4.

TABLE III

Cost Drivers

S NO
Cost

Driver
Value Description

1 DATA Database size.

2 CPLX Product complexity.

3 TIME Execution time constraint.

4 STOR Main storage constraint.

5 RUSE Required reusability.

6 DOCU
Documentation match to

life-cycle needs.

7 PVOL Platform volatility.

8 SCED Scheduling factor.

9 RELY Required reliability.

10 TOOL Use of software tools.

11 APEX Application experience.

12 ACAP Analyst capability.

13 PCAP Programmer capability.

14 PLEX Platform experience.

15 LTEX
Language and tools

experience.

16 PCON Personnel continuity.

17 SITE Multisite development.

Scale factors are new in COCOMO II. The effect of scale

factor is in 1.01 to 1.26 ranges

TABLE IV

New Cost Drivers

S NO
Cost

Driver
Value Description

18 PREC Precedence.

19 PMAT Process maturity.

20 TEAM Team cohesion.

21 FLEX Development flexibility.

22
RESL

Architecture and risk

resolution.

What we have to predict in the COCOMO, first we have to

predict KLOC, second parameters specified in Table-III and

Third Parameters specified in Table-IV. Experience data can

help us in prediction .Now suppose we have a rich database

for such kind of project so which projects can be taken as

reference, Answer is that we must keep two parameters in

mind first we have to take latest project and second we have

to take successful project.

1.4 Use Case Point [3] [12] [13].
The Use Case Points (UCP) method provides the ability to

estimate the man hours a software project requires from its

use cases. Based on work by Gustav Karner [3], the UCP

method analyzes the use case actors, scenarios, and various

technical and environmental factors and abstracts them into an

equation.

The UCP equation is composed of three variables:

1. Unadjusted Use Case Points (UUCP).

2. The Technical Complexity Factor (TCF).

3. The Environment Complexity Factor (ECF).

I. Calculate no of Actors:-We use following table to calculate

no of Actors used in project

TABLE V

Actor Calculation

Actor

Type

Descriptio

n

Quantity Weight

Factor

Subt

otal

Simple Defined

API

 1

Average Interactive

or

protocol

 2

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.7, March 2013

31

driven

interface

Complex Graphical

user

interface

 3

Total Actor Points

II. Calculate no of Use Cases:-We use following table to

calculate no of Use Cases used in project

TABLE VI

Use Case Calculation

Use Case

Type

Description Quanti

ty

Weight

Factor

Subt

otal

Simple Up to 3

transactions

 5

Average 4 to 7

transactions

 10

Complex More than 7

transactions

 15

Total Use Cases

UUCP =Weighted Actors + Weighted Use Cases

UCP=UUCP*TCF*EF

Calculate TCF (Technical Complexity Factor)

List of Technical factors where weight factor rate from 0-2

and project rating rate from 0-5

TABLE VII

Technical Complexity Factors

Technica

l Factor

Factor

Description

Wight

Factor

Project

Rating

Sub

Total

T1 Must have a

distributed

solution

2

T2 Must Respond

to specific

performance

objective

1

T3 Must meet end

user efficiency

desired

1

T4 Complex

internal

processing

1

T5 Code must

reusable

1

T6 Must be easy

to install

0.5

T7 Must be easy

to use

0.5

T8 Must be

portable

2

T9 Must be easy

to change

1

T10 Include special

security

feature

1

T11 Must provide

direct access to

1

third parties

T12 Requires

special user

training

facilities

1

T13 Must allow

concurrent

user

1

TOTAL

TCF= (0.01 * TC factor) + 0.6

Calculate EF (EXPERIENCE FACTOR)

TABLE III

Experience Factors

Experience

factor

Factor

Description

Wight

Factor

Project

Rating

Sub

Tot

al

E1 Familiar with

FTP software

Process

1

E2 Application

Experience

0.5

E3 Paradigm

Experience

1

E4 Lead analyst

capability

0.5

E5 Motivation 0

E6 Stable

Requirements

2

E7 Part time

workers

-1

E8 Difficulty of

programming

Language

-1

TOTAL

EF= (-0.03 *E factor) + 1.4

In the Use Case Point approach is has to predict no of Actor

(Table-V), no of Use Cases (Table-VI), TCF (Table-VII) and

EF (Table-VIII).Record of latest and successful project can

help us in prediction of these values.

An early project estimate helps managers, developers, and

testers plan for the resources a project requires. As the case

studies indicate, the UCP method can produce an early

estimate within 20 percent of the actual effort, and often,

closer to the actual effort than experts and other estimation

methodologies [13].

2. USE CASE POINT AND COCOMO

WITH ANALOGY AND EXPERT BASED

ESTIMATION
Here we are providing an extra column in COCOCMO and

Use Case Point that will provide the recommended value for

that parameter. As we know that in COCOMO we need to

predict the KLOC and other 22 parameter which is called

Efforts Adjustment Factors. In the Use Case Point approach

we have to predict the 13 Technical Complexity Factor and 08

Experience Factor.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.7, March 2013

32

So now the modified COCOMO will be like that:

Efforts= a*(KLOC) b *EAF

We have to take value of KLOC from the below given table

TABLE IX

KLOC estimation

Estimated value KLOC for

the project

Recommended value of

KLOC

We have to take the values of EAF from Following Table:

TABLE X

Cost Drivers

S

N

O

Cost

Driver
Description Value

Recomm

ended

Value

1 DATA Database size.

2 CPLX
Product

complexity.

3 TIME
Execution time

constraint.

4 STOR
Main storage

constraint.

5 RUSE
Required

reusability.

6 DOCU

Documentation

match to life-cycle

needs.

7 PVOL Platform volatility.

8 SCED Scheduling factor.

9 RELY
Required

reliability.

10 TOOL
Use of software

tools.

11 APEX
Application

experience.

12 ACAP Analyst capability.

13 PCAP
Programmer

capability.

14 PLEX
Platform

experience.

15 LTEX
Language and

tools experience.

16 PCON
Personnel

continuity.

17 SITE
Multisite

development.

18 PREC Precedence.

19 PMAT Process maturity.

20 TEAM Team cohesion.

21
FLEX

Development

flexibility.

22
RESL

Architecture and

risk resolution.

Now the modified Use Case Point approach is like that :

UCP=UUCP*TCF*EF

I calculate no of Actors:-We use following table to calculate

no of Actors used in project

TABLE XI

Actor Calculation

Actor

Type

Description Quant

ity
Recom

mende

d

Value

Weig

ht

Facto

r

Su

bt

ot

al

Simple Defined API 1

Averag

e

Interactive

or protocol

driven

interface

 2

Compl

ex

Graphical

user

interface

 3

 Total Actor Points

II Calculate no of Use Cases:-We use following table to

calculate no of Use Cases used in project

TABLE XII

Use Case Calculation

Use Case

Type

Descript

ion

Quanti

ty
Reco

mme

nded

Value

Weig

ht

Facto

r

Su

bt

ot

al

Simple Up to 3

transacti

ons

 5

Average 4 to 7

transacti

ons

 10

Complex More

than 7

transacti

ons

 15

 Total Use Cases

List of Technical factors where weight factor rate from

0-2 and project rating rate from 0-5

TABLE XIII

Technical Complexity Factors

Techni

cal

Factor

Factor

Description

Wight

Facto

r

Project

Rating
Rec

om

men

ded

Valu

e

Sub

Tota

l

T1 Must have

a

distributed

solution

2

T2 Must

Respond to

specific

performanc

e objective

1

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.7, March 2013

33

T3 Must meet

end user

efficiency

desired

1

T4 Complex

internal

processing

1

T5 Code must

reusable

1

T6 Must be

easy to

install

0.5

T7 Must be

easy to use

0.5

T8 Must be

portable

2

T9 Must be

easy to

change

1

T10 Include

special

security

feature

1

T11 Must

provide

direct

access to

third

parties

1

T12 Requires

special user

training

facilities

1

T13 Must allow

concurrent

user

1

TOTAL

TCF= (0.01 * TC factor) + 0.6

Calculate EF (EXPERIENCE FACTOR)

TABLE XIV

Experience Factors

Experi

ence

factor

Factor

Description

Wight

Facto

r

Proje

ct

Ratin

g

Rec

om

me

nde

d

Val

ue

Sub

Tot

al

E1 Familiar

with FTP

software

Process

1

E2 Application

Experience

0.5

E3 Paradigm

Experience

1

E4 Lead

analyst

capability

0.5

E5 Motivation 0

E6 Stable

Requireme

nts

2

E7 Part time

workers

-1

E8 Difficulty

of

programmi

ng

Language

-1

TOTAL

EF= (-0.03 *E factor) + 1.4

3. RESULT
We know evidence is required to prove any model or method.

But this approach required a rich and well managed set of

data. In this approach last column containing the

recommended value that will vary domain by domain and

industry by industry, so we cannot fix it. On the basis of

suggested concept industry can built software, so the

estimation process will become automated, last column

(recommended value) will contain average of at least 10

successful projects. Here we are not providing any kind of

result because it would be better that you have generated your

own result on the basis of the given concept

4. CONCLUSION
It is always a topic of discussion that which is best either

model or Expert/ Analogy based estimation. Research is going

on from a long time but until we have not found any solid

reason of what we have to adopt either model or analogy/

expert based estimation. Because every method has some

advantages and disadvantages. Here we have provided a new

concept of combining these two approaches (model and

analogy/ Expert based Estimation) by adding an extra column

of suggested/Recommended value. If in case it found that

analogy/ expert based estimation is most suitable than use the

recommended values and if it found that this new project is

not matching with old projects in all aspect or we know the

exact value of the parameter than do not use suggested or

recommended value , use your predicted values for the

parameters.

5. REFERENCES
[1] P. E. Meehl, "When shall we use our heads instead of the

formula?," Journal of Counselling Psychology, vol. 4,

no. 4, pp. 268-273, 1957.

[2] M. Jørgensen, “Practical Guidelines for Expert-

Judgment- Based Software Effort Estimation,” IEEE

Software, vol. 22, no. 3, 2005, pp. 57–63.

[3] Karner Gautav “Resource Estimation for objector

project “Objective system SF AB 1993

[4] M. Jørgensen, "Forecasting of Software Development

Work Effort: Evidence on Expert Judgment and Formal

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.7, March 2013

34

Models," Accepted for International Journal of

Forecasting, 2007

[5] E. A.. Martin Shepperd and Chris Schofield, “Barbara

KitchenhamEffort Estimation Using Analogy” IEEE

Proceedings of ICSE-18 1996

[6] F. Walkerden and R. Jefferey, "An empirical study of

analogy-based software effort estimation," Empirical

Software Engineering, vol. 4, pp. 135-158, 1999

[7] Kristian Marius Furulund1 and Kjetil Moløkken-Østvold

“The Role of Effort and Schedule in Assessing Software

Project Success - An Empirical Study”

[8] Bohem,” Software Engineering Economics”, Prentice

Hall, 1981.

[9] M. Jørgensen and D. I. K. Sjøbert, "Impact of experience

on maintenance skills," Journal of Software Maintenance

and Evolution: Research and Practise, vol. 14, pp. 123-

146, 2002.

[10] M. Jørgensen, "A Review of Studies on Expert

Estimation of Software Development Effort," The

Journal of Systems and Software, vol. 70, pp. 37-60,

2004.

[11] Saleem Basha , Dhavachelvan P “Analysis of Empirical

Software Effort Estimation Models” (IJCSIS)

International Journal of Computer Science and

Information Security, Vol. 7, No. 3, 2010

[12] Carroll, Edward R. “Estimating Software Based on Use

Case Points.” 2005 Object-Oriented, Programming,

Systems, Languages, and Applications (OOPSLA)

Conference, San Diego, CA, 2005.

[13] 1Vahid Khatibi, 2Dayang N. A. Jawawi “Software Cost

Estimation Methods: Review”, Journal of Emerging

Trends in Computing and Information Sciences Volume

2 No. 1 January 2011

[14] M. Jørgensen and M. Shepperd A Systematic Review of

Software Development Cost , “Estimation Studies,”IEEE

Trans. Software Eng., vol. 33, no.1,2007,pp 33-53.

