
International Journal of Computer Applications (0975 – 8887)  

Volume 65– No.5, March 2013  

39 

An Approach for Multi-Core Real Time 

Parallel Processing 

 
Shyamal G. Mundada 

Department of Computer Science Engineering 
Ramdeobaba College Of Engineering and 

Management 
Nagpur, India 

 

M.B.Chandak 
Head & Associate Professor, Department of 

Computer Science Engineering 
Ramdeobaba College Of Engineering and 

Management 
Nagpur, India 

 
 

ABSTRACT 

Multi-core architectures, which have multiple processing units 

on a single chip, are widely used as a way to achieve higher 

processor performance. They have potential to deliver increased 

performance over single-core processors. Multi-core processors 

have become mainstream in processor design. In 

multiprocessing, only inter task parallelism can be achieved. 

But, computation-intensive real-time systems must exploit 

intra-task parallelism to take full advantage of multi-core 

processing. In this paper, the problem of   scheduling periodic 

parallel tasks with implicit deadlines on multi-core processors is 

addressed. A task decomposition method that decomposes each 

parallel task into a set of sequential tasks is discussed. In this 

paper, a general model for deterministic parallel tasks, where a 

task is represented as a DAG with different nodes having 

different execution requirements is discussed. First, a DAG 

generation method for the tasks is discussed and secondly, task 

decomposition that splits a DAG into sequential tasks is 

discussed.  

General Terms 

Real Time Scheduling 

Keywords 

Multi-core Processing, Real Time Scheduling, Directed Acyclic 
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1. INTRODUCTION 

 In Recent Years, Multi-core Processor Technology has 

improved dramatically as chip manufacturers try to boost 

performance while minimizing power consumption. This 

development has shifted the scaling trends from increasing 

processor clock frequencies to increasing the number of cores 

per processor. For example, Intel has recently put 80 cores in a 

Teraops Research Chip (Intel, 2007) with a view to making it 

generally available, and ClearSpeed has developed a 96-core 

processor (ClearSpeed, 2008). While hardware technology is 

moving at a rapid pace, software and programming models have 

failed to keep pace. For example, Intel (2007) has set a time 

frame of 5 years to make their 80-core processor generally 

available due to the inability of current operating systems and 

software to exploit the benefits of multi-core processors. As 

multi-core processors continue to scale, they provide an 

opportunity for performing more complex and computation-

intensive tasks in real-time. However, to take full advantage of 

multi-core processing, these systems must exploit intra-task 

parallelism, where parallelizable real-time tasks can utilize 

multiple cores at the same time. By exploiting intra-task 

parallelism, multi-core processors can achieve significant real-

time performance improvement over traditional single-core 

processors for many computation-intensive real-time 

applications such as video surveillance, radar tracking, and 

hybrid real-time structural testing (Huang et al., 2010) where 

the performance limitations of traditional single-core processors 

have been a major hurdle. 

Many models of parallelism have been used in programming 

languages and Application Program Interfaces, but few of them 

have been studied in real-time systems. An existing technique 

for real time scheduling considers a synchronous task model, 

where each parallel task consists of a series of sequential or 

parallel segments. This model is treated as synchronous, since 

all the threads of a parallel segment must finish before the next 

segment starts, creating a synchronization point. However, the 

task model is restrictive in that, for every task, all the segments 

have an equal number of parallel threads, and the execution 

requirements of all threads in a segment are equal. Most 

importantly, in this task model, the number of threads in every 

segment is no greater than the total number of processor cores. 

The restrictions on the task model make the solutions unsuitable 

for many real time applications that often employ different 

numbers of threads in different segments of computation. 

One more technique for real time scheduling on multi-core 

processors considers a more general synchronous task model. 

Here also, tasks contain segments where the threads of each 

segment synchronize at its end. However, in contrast to the 

restrictive task model addressed, for any task in this model, 

each segment can contain an arbitrary number of parallel 

threads. That is, different segments of the same parallel task can 

contain different numbers of threads, and segments can contain 

more threads than the number of processor cores. The execution 

requirements of the threads in any segment can vary. This 

model is more portable, since the same task can be executed on 

machines with small as well as large numbers of cores. 

In this paper, a general task model is considered, where tasks 

are represented by general DAGs where threads (nodes) can 

have arbitrary execution requirements. The paper is organized 

as follows. Section 2 reviews related work. Section 3 describes 

the task model and DAG generation. Section 4 presents the task 

decomposition. Section 5 offers conclusions. 

2. RELATED WORK 

There has been a substantial amount of work on traditional 

multiprocessor real-time scheduling focused on sequential tasks 

[4]. Some work has addressed scheduling for parallel tasks [9]–

[10], but it does not consider task deadlines. Soft Real time 

scheduling (where the goal is to meet a certain subset of 
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deadlines based on application-specific criteria) has been 

studied for various parallel task models and for various 

optimization criteria [11]–[13].Hard real-time scheduling 

(where the goal is to meet all task deadlines) is intractable for 

most cases of parallel tasks without resource augmentation [14].  

The problem of scheduling implicit-deadline periodic task sets 

on multiprocessor systems under fork-join structure was 

introduced in [6]. A task stretch transform was defined which is 

to be performed by OS scheduler. Partitioned fixed priority 

scheduling algorithm was used for scheduling periodic fork-join 

task set. The problem of scheduling periodic parallel task by 

considering intra task parallelism was addressed in [5].  A 

synchronous task model was considered .A new task 

decomposition technique was introduced to transform each 

parallel task into a set of sequential tasks. These tasks were then 

scheduled using global EDF and partitioned deadline monotonic 

scheduling. All parallel segments in a task have an equal 

number of threads which cannot exceed the number of 

processor cores. It transforms every thread to a subtask, and 

proves a resource augmentation bound of 3:42 under partitioned 

Deadline Monotonic (DM) scheduling. For the synchronous 

model with arbitrary numbers of threads in segments, our 

earlier work in [6] proves a resource augmentation bound of 4 

and 5 for global EDF and partitioned DM scheduling, 

respectively. For the unit-node DAG model where each node 

has unit execution requirement, this approach converts each 

task to a synchronous task, and then applies the same approach. 

A scheduling method, ‘spread-cognizant’ was proposed in [13] 

that decreases average and maximum spreads in global EDF 

scheduling algorithms. The scheduling mechanism for 

individual threads of multithreaded real time tasks was 

discussed. 

In this paper, a more general model of deterministic parallel 

real-time tasks is considered where each task is modeled as a 

DAG, and different nodes of the DAG may have different 

execution requirements. 

3. PARALLEL TASK MODEL 

Parallel implicit-deadline real time tasks are considered for 

scheduling, where the deadline of a task equals to their period, 

and each task of this model is represented by a directed acyclic 

graph (DAG), which is a collection of subtasks and directed 

edges, which represents the execution flow of the task and the 

precedence constraints between the subtasks. Precedence 

constraint means that each node can start its execution when all 

of its predecessors have finished theirs. 

A set of ‘n’ periodic parallel tasks is considered to be scheduled 

on a multi-core platform consisting of m identical cores. The 

task set is represented by τi ={ τ1, τ2,….,τn }.Each task τi , 1≤ i ≤n, 

is represented as a Directed Acyclic Graph(DAG),where the 

nodes stand for different execution requirements, and the edges 

represent dependencies between the nodes. A node in τi   is 

denoted by Wi
j; 1 ≤ j ≤  ni, with ni  being the total number of 

nodes in τi . The execution requirement of node Wi
j is denoted 

by Ei
j. A directed edge from node Wi

j to node Wi
k, denoted as 

Wi
j → Wi

k, implies that the execution of Wi
k cannot start unless 

Wi
j has finished execution. Wi

j in this case, is called a parent of 

Wi
k, while Wi

k is its child. A node may have 0 or more parents 

or children. A node can start execution only after all of its 

parents have finished execution. Figure 1 shows a task τi with ni 

= 6 nodes. 

                           

Fig 1 A parallel task τi represented as a DAG 

The total execution requirement of τi is the sum of the execution 

requirements of all of its nodes, and is denoted by Ci (time 

units). The period of task τi is denoted by Pi. The deadline Di of 

each task τi is considered implicit, i.e., Di = Pi. Task set τ is said 

to be schedulable by algorithm A, if A can schedule τ such that 

every τi ε τ can meet deadline Di. Representing jobs and 

their precedence constraints as a DAG is very convenient. It 

gives some interesting information about the problem like the 

degree of parallelism that application can attain the minimum 

amount of time required by the application (the critical path of 

the graph), etc. These properties can be used for the 

development of heuristics to solve scheduling problems. 

There are various graph generation algorithms which can be 

used in the validation of scheduling algorithms. A random 

graph is obtained by starting with a set of n vertices and adding 

edges between them at random. Different random graph models 

produce different probability distributions on graphs. Most 

commonly used methods are the Erd˝os-Rényi methods. There 

are two methods G(n,p) and G(n,M).We consider G(n,p) for 

graph generation.  

It is the most intuitive and most widely utilized graph 

generation method. For given n number of vertices, the G (n,p) 

method generates a graph where each  element of the (n,2) 

possible edges is present with independent probability p. Erdos 

and Renyi first defined  this method for non-oriented graphs, 

but it is easy to adapt this for DAG generation: 

 Algorithm:  G (n,p) method 

 Require: n ε N; p ε R. 

 Ensure: a graph with n nodes. 

Let M be an adjacency matrix n x n initialized as the 

zero matrix. 

 for all i = 1 to n do 

  for all j = 1 to i do 

  if Random() < p then 

   M[i][j] = 1 

  else 

   M[i][j] = 0 

  return the graph represented by M. 

4. TASK DECOMPOSITION 

Scheduling parallel tasks by decomposing them into sequential 

subtasks is considered here. This strategy allows leveraging 

existing schedulability analysis for multiprocessor scheduling 

(both preemptive and non-preemptive). In this section, the 

decomposition of a parallel task under general DAG model is 

presented. The method decomposes a task into nodes. Thus, 

each node of a task becomes a sequential subtask with 

execution requirement equal to the execution requirement of the 

node. All nodes of a DAG are assigned appropriate deadlines 
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and release offsets such that when they execute as individual 

subtasks all dependencies among them in the DAG (i.e., in the 

original task) are preserved. Thus, an implicit deadline DAG is 

decomposed into a set of constrained deadline sequential 

subtasks with each subtask corresponding to a node of the 

DAG. 

4.1 Related Terms 

4.1.1 Execution Requirement of task  

          Ci: It is the sum of the execution requirements of all 

nodes in Ti.   

  

              Ci,v : Maximum execution time of task Ti on a multi-core 

platform where each processor has speed v. 

  

4.1.2 Critical path length 

            Pi: It is the Sum of the execution requirements of the 

nodes on a critical path. Denotes Minimum execution time of 

task τi .  

                     

4.1.3 Utilization of task     

 

4.1.4 Density of task  

 

4.2  Decomposition Technique 

In the decomposition, each node of a task becomes an 

individual sequential subtask with its own execution 

requirement and an assigned constrained deadline. To preserve 

the dependencies in the original DAG, each node is assigned a 

release offset. Since a node cannot start execution until all of its 

parents finish, its release offset is equal to the maximum sum of 

the release offset and deadline among its parents. That is, a 

node starts after its latest parent finishes. The (relative) 

deadlines of the nodes are assigned by distributing the available 

slack of the task. The slack for each task considering a multi-

core platform where each processor core has speed 2 is 

calculated. The slack for task τi , denoted by Li, is defined as the 

difference between its deadline and its critical path length on 2-

speed processor cores. 

 Li = Di − Pi,2 = Ti − Pi,2 = Ti − Pi / 2 

 For task τi, the deadline and the offset assigned to 

node Wi
j are denoted by Di

j and Φi
j, respectively. Once 

appropriate values of Di
j and Φi

j are determined for each node 

Wi
j (respecting the dependencies in the DAG), task τi is 

decomposed into nodes. Upon decomposition, the dependencies 

in the DAG need not be considered, and each node can execute 

as a traditional multiprocessor task. Hence, the decomposition 

technique for τi boils down to determine Di
j and Φi

j for each 

node Wi
j. 

  Consider DAG given in Figure 1, here we assign 

execution requirement to each node as Ei
1=4, Ei

2=2, Ei
3=4, 

Ei
4=5 and Ei

5=3. First, DAG τi is represented as a timing 

diagram τi
original. Specifically, τi

original indicates the earliest start 

time and the earliest finishing time of each node. For any node 

Wi
j that has no parents, the earliest start time and the earliest 

finishing time are 0 and Ei
j, respectively. For every other node 

Wi
j, the earliest start time is the latest finishing time among its 

parents, and the earliest finishing time is Ei
j time units after that. 

For example, in τi of Figure 1, nodes Wi
1,Wi

2, and Wi
3 can start 

execution at time 0, and their earliest finishing times are 4, 2, 

and 4,respectively. Node Wi
4 can start after Wi

1 and Wi
2 

complete, and finish after 5 time units at its earliest, and so on. 

Thus, Figure 2(a) shows τi
original of the DAG τi of Figure 1. 

The calculation of Di
j and Φi

j for each node Wi
j 

involves the following two steps. In Step 1, for each node, 

distribution of slack among different parts of the node is done. 

In Step 2, the total slack assigned to different parts of the node 

is assigned as the node’s slack.  

Step 1 (slack distribution): In DAG τi, a node can 

execute with different numbers of nodes in parallel at different 

time. Such a degree of parallelism can be approximated based 

on τi
original .For example, in Figure 2(a), node Wi

5 executes with 

Wi
1 and Wi

3 in parallel for the first 2 time units, and then 

executes with Wi
4 in parallel for the next time unit. In this way, 

identification of the degrees of parallelism at different parts of 

each node is carried out. Intuitively, the parts of node which 

execute with a large number of nodes in parallel require more 

slack. Therefore, different parts of a node are assigned different 

amounts of slack considering their degrees of parallelism and 

execution requirements. Later, the sum of slack of all parts of a 

node is assigned to the node itself. To identify the degree of 

parallelism for different portions of a node based on τi
∞, 

assignment of slack to a node in different (consecutive) 

segments is done. In different segments of a node, the task may 

have different degrees of parallelism. In τi
∞, starting from the 

left, a vertical line at every time instant is drawn where a node 

starts or ends (as shown in Figure 2(b)). This is done using a 

breadth-first search over the DAG. The vertical lines now split 

τi
∞ into segments. For example, in Figure 2(b), τi is split into 2 

segments (numbered in increasing order from left to right).Once 

τi
∞ is split into segments, each segment consists of an equal 

amount of execution by the nodes that lie in the segment. Parts 

of different nodes in the same segment can now be thought of 

threads that can run in parallel, and the threads in a segment can 

start only after those in the preceding one finish. Such a model 

is thus similar to the synchronous task model used in [6]. This 

model is denoted by τi
syn. Assignment of slack to the segments 

is done, and finally addition of all slack assigned to different 

segments of a node is carried out to calculate its overall slack. 

Distribution of slack is done among the nodes based 

on the number of threads and execution requirement of the 

segments where a node lies in τi
syn. For every j-th segment of 

τi
syn, we calculate a value di

j, called an intermediate subdeadline 

.That is, each thread in the segment gets this “extra time” 

beyond its execution time. 

Step 2 (deadline and offset calculation): Intermediate 

sub deadlines to (the threads of) each segment of τi
syn are 

assigned in Step 1. Since a node may be split into multiple 

(consecutive) segments in τi
syn, now we have to remove all 

intermediate sub deadlines of a node.  Addition of all 

intermediate sub deadlines of a node is done, and the total is 

assigned as the node’s deadline. 
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Now let a node Wi
j of τi

 belong to segments k to r (1 ≤ 

k ≤ r ≤ si) in τi
syn. Therefore, the deadline Di

j of node Wi
j is 

calculated as follows. 

Di
j  = di

k+ di
k+1 + ........ +di

r    

The execution requirement Ei
j of node Wi

j is 

 Ei
j  =ei

k+ei
k+1 + ........ +ei

r    

 Node Wi
j cannot start until all of its parents complete. 

Hence, its release  offset Φi
j is determined as follows. 

Φi
j=   

Appropriate deadline Di
j and release offset Φi

j to each node Wi
j 

of τi are assigned. The DAG τi is now decomposed into nodes. 

Each node Wi
j is now an individual (sequential) multiprocessor 

subtask with an execution requirement Ei
j, a constrained 

deadline Di
j, and a release offset Φi

j. 

 

Fig 2 (a) τi
original : Timing diagram for DAG  τi 

 

 

Fig 2 (b) Slack distributions in τi
syn 

5. CONCLUSIONS 

With the advent of the era of multi-core computing, 

real time scheduling of parallel tasks is crucial for real-time 

applications to exploit the power of multi-core processors. 

While recent research on real-time scheduling of parallel tasks 

has shown promise, the efficacy of existing approaches is 

limited by their restrictive parallel task models. To overcome 

these limitations, in this paper generalized parallel task model 

for real-time scheduling is presented. A general synchronous 

parallel task model is considered where each task consists of 

segments, each having an arbitrary number of parallel threads. 

Then a novel task decomposition algorithm is discussed which 

decomposes each task into a set of tasks which can be 

scheduled on multiple cores. 
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