
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.5, March 2013

39

An Approach for Multi-Core Real Time

Parallel Processing

Shyamal G. Mundada

Department of Computer Science Engineering
Ramdeobaba College Of Engineering and

Management
Nagpur, India

M.B.Chandak
Head & Associate Professor, Department of

Computer Science Engineering
Ramdeobaba College Of Engineering and

Management
Nagpur, India

ABSTRACT

Multi-core architectures, which have multiple processing units

on a single chip, are widely used as a way to achieve higher

processor performance. They have potential to deliver increased

performance over single-core processors. Multi-core processors

have become mainstream in processor design. In

multiprocessing, only inter task parallelism can be achieved.

But, computation-intensive real-time systems must exploit

intra-task parallelism to take full advantage of multi-core

processing. In this paper, the problem of scheduling periodic

parallel tasks with implicit deadlines on multi-core processors is

addressed. A task decomposition method that decomposes each

parallel task into a set of sequential tasks is discussed. In this

paper, a general model for deterministic parallel tasks, where a

task is represented as a DAG with different nodes having

different execution requirements is discussed. First, a DAG

generation method for the tasks is discussed and secondly, task

decomposition that splits a DAG into sequential tasks is

discussed.

General Terms

Real Time Scheduling

Keywords

Multi-core Processing, Real Time Scheduling, Directed Acyclic

Graph.

1. INTRODUCTION

 In Recent Years, Multi-core Processor Technology has

improved dramatically as chip manufacturers try to boost

performance while minimizing power consumption. This

development has shifted the scaling trends from increasing

processor clock frequencies to increasing the number of cores

per processor. For example, Intel has recently put 80 cores in a

Teraops Research Chip (Intel, 2007) with a view to making it

generally available, and ClearSpeed has developed a 96-core

processor (ClearSpeed, 2008). While hardware technology is

moving at a rapid pace, software and programming models have

failed to keep pace. For example, Intel (2007) has set a time

frame of 5 years to make their 80-core processor generally

available due to the inability of current operating systems and

software to exploit the benefits of multi-core processors. As

multi-core processors continue to scale, they provide an

opportunity for performing more complex and computation-

intensive tasks in real-time. However, to take full advantage of

multi-core processing, these systems must exploit intra-task

parallelism, where parallelizable real-time tasks can utilize

multiple cores at the same time. By exploiting intra-task

parallelism, multi-core processors can achieve significant real-

time performance improvement over traditional single-core

processors for many computation-intensive real-time

applications such as video surveillance, radar tracking, and

hybrid real-time structural testing (Huang et al., 2010) where

the performance limitations of traditional single-core processors

have been a major hurdle.

Many models of parallelism have been used in programming

languages and Application Program Interfaces, but few of them

have been studied in real-time systems. An existing technique

for real time scheduling considers a synchronous task model,

where each parallel task consists of a series of sequential or

parallel segments. This model is treated as synchronous, since

all the threads of a parallel segment must finish before the next

segment starts, creating a synchronization point. However, the

task model is restrictive in that, for every task, all the segments

have an equal number of parallel threads, and the execution

requirements of all threads in a segment are equal. Most

importantly, in this task model, the number of threads in every

segment is no greater than the total number of processor cores.

The restrictions on the task model make the solutions unsuitable

for many real time applications that often employ different

numbers of threads in different segments of computation.

One more technique for real time scheduling on multi-core

processors considers a more general synchronous task model.

Here also, tasks contain segments where the threads of each

segment synchronize at its end. However, in contrast to the

restrictive task model addressed, for any task in this model,

each segment can contain an arbitrary number of parallel

threads. That is, different segments of the same parallel task can

contain different numbers of threads, and segments can contain

more threads than the number of processor cores. The execution

requirements of the threads in any segment can vary. This

model is more portable, since the same task can be executed on

machines with small as well as large numbers of cores.

In this paper, a general task model is considered, where tasks

are represented by general DAGs where threads (nodes) can

have arbitrary execution requirements. The paper is organized

as follows. Section 2 reviews related work. Section 3 describes

the task model and DAG generation. Section 4 presents the task

decomposition. Section 5 offers conclusions.

2. RELATED WORK

There has been a substantial amount of work on traditional

multiprocessor real-time scheduling focused on sequential tasks

[4]. Some work has addressed scheduling for parallel tasks [9]–

[10], but it does not consider task deadlines. Soft Real time

scheduling (where the goal is to meet a certain subset of

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.5, March 2013

40

deadlines based on application-specific criteria) has been

studied for various parallel task models and for various

optimization criteria [11]–[13].Hard real-time scheduling

(where the goal is to meet all task deadlines) is intractable for

most cases of parallel tasks without resource augmentation [14].

The problem of scheduling implicit-deadline periodic task sets

on multiprocessor systems under fork-join structure was

introduced in [6]. A task stretch transform was defined which is

to be performed by OS scheduler. Partitioned fixed priority

scheduling algorithm was used for scheduling periodic fork-join

task set. The problem of scheduling periodic parallel task by

considering intra task parallelism was addressed in [5]. A

synchronous task model was considered .A new task

decomposition technique was introduced to transform each

parallel task into a set of sequential tasks. These tasks were then

scheduled using global EDF and partitioned deadline monotonic

scheduling. All parallel segments in a task have an equal

number of threads which cannot exceed the number of

processor cores. It transforms every thread to a subtask, and

proves a resource augmentation bound of 3:42 under partitioned

Deadline Monotonic (DM) scheduling. For the synchronous

model with arbitrary numbers of threads in segments, our

earlier work in [6] proves a resource augmentation bound of 4

and 5 for global EDF and partitioned DM scheduling,

respectively. For the unit-node DAG model where each node

has unit execution requirement, this approach converts each

task to a synchronous task, and then applies the same approach.

A scheduling method, ‘spread-cognizant’ was proposed in [13]

that decreases average and maximum spreads in global EDF

scheduling algorithms. The scheduling mechanism for

individual threads of multithreaded real time tasks was

discussed.

In this paper, a more general model of deterministic parallel

real-time tasks is considered where each task is modeled as a

DAG, and different nodes of the DAG may have different

execution requirements.

3. PARALLEL TASK MODEL

Parallel implicit-deadline real time tasks are considered for

scheduling, where the deadline of a task equals to their period,

and each task of this model is represented by a directed acyclic

graph (DAG), which is a collection of subtasks and directed

edges, which represents the execution flow of the task and the

precedence constraints between the subtasks. Precedence

constraint means that each node can start its execution when all

of its predecessors have finished theirs.

A set of ‘n’ periodic parallel tasks is considered to be scheduled

on a multi-core platform consisting of m identical cores. The

task set is represented by τi ={ τ1, τ2,….,τn }.Each task τi , 1≤ i ≤n,

is represented as a Directed Acyclic Graph(DAG),where the

nodes stand for different execution requirements, and the edges

represent dependencies between the nodes. A node in τi is

denoted by Wi
j; 1 ≤ j ≤ ni, with ni being the total number of

nodes in τi . The execution requirement of node Wi
j is denoted

by Ei
j. A directed edge from node Wi

j to node Wi
k, denoted as

Wi
j → Wi

k, implies that the execution of Wi
k cannot start unless

Wi
j has finished execution. Wi

j in this case, is called a parent of

Wi
k, while Wi

k is its child. A node may have 0 or more parents

or children. A node can start execution only after all of its

parents have finished execution. Figure 1 shows a task τi with ni

= 6 nodes.

Fig 1 A parallel task τi represented as a DAG

The total execution requirement of τi is the sum of the execution

requirements of all of its nodes, and is denoted by Ci (time

units). The period of task τi is denoted by Pi. The deadline Di of

each task τi is considered implicit, i.e., Di = Pi. Task set τ is said

to be schedulable by algorithm A, if A can schedule τ such that

every τi ε τ can meet deadline Di. Representing jobs and

their precedence constraints as a DAG is very convenient. It

gives some interesting information about the problem like the

degree of parallelism that application can attain the minimum

amount of time required by the application (the critical path of

the graph), etc. These properties can be used for the

development of heuristics to solve scheduling problems.

There are various graph generation algorithms which can be

used in the validation of scheduling algorithms. A random

graph is obtained by starting with a set of n vertices and adding

edges between them at random. Different random graph models

produce different probability distributions on graphs. Most

commonly used methods are the Erd˝os-Rényi methods. There

are two methods G(n,p) and G(n,M).We consider G(n,p) for

graph generation.

It is the most intuitive and most widely utilized graph

generation method. For given n number of vertices, the G (n,p)

method generates a graph where each element of the (n,2)

possible edges is present with independent probability p. Erdos

and Renyi first defined this method for non-oriented graphs,

but it is easy to adapt this for DAG generation:

 Algorithm: G (n,p) method

 Require: n ε N; p ε R.

 Ensure: a graph with n nodes.

Let M be an adjacency matrix n x n initialized as the

zero matrix.

 for all i = 1 to n do

 for all j = 1 to i do

 if Random() < p then

 M[i][j] = 1

 else

 M[i][j] = 0

 return the graph represented by M.

4. TASK DECOMPOSITION

Scheduling parallel tasks by decomposing them into sequential

subtasks is considered here. This strategy allows leveraging

existing schedulability analysis for multiprocessor scheduling

(both preemptive and non-preemptive). In this section, the

decomposition of a parallel task under general DAG model is

presented. The method decomposes a task into nodes. Thus,

each node of a task becomes a sequential subtask with

execution requirement equal to the execution requirement of the

node. All nodes of a DAG are assigned appropriate deadlines

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.5, March 2013

41

and release offsets such that when they execute as individual

subtasks all dependencies among them in the DAG (i.e., in the

original task) are preserved. Thus, an implicit deadline DAG is

decomposed into a set of constrained deadline sequential

subtasks with each subtask corresponding to a node of the

DAG.

4.1 Related Terms

4.1.1 Execution Requirement of task

 Ci: It is the sum of the execution requirements of all

nodes in Ti.

 Ci,v : Maximum execution time of task Ti on a multi-core

platform where each processor has speed v.

4.1.2 Critical path length

 Pi: It is the Sum of the execution requirements of the

nodes on a critical path. Denotes Minimum execution time of

task τi .

4.1.3 Utilization of task

4.1.4 Density of task

4.2 Decomposition Technique

In the decomposition, each node of a task becomes an

individual sequential subtask with its own execution

requirement and an assigned constrained deadline. To preserve

the dependencies in the original DAG, each node is assigned a

release offset. Since a node cannot start execution until all of its

parents finish, its release offset is equal to the maximum sum of

the release offset and deadline among its parents. That is, a

node starts after its latest parent finishes. The (relative)

deadlines of the nodes are assigned by distributing the available

slack of the task. The slack for each task considering a multi-

core platform where each processor core has speed 2 is

calculated. The slack for task τi , denoted by Li, is defined as the

difference between its deadline and its critical path length on 2-

speed processor cores.

 Li = Di − Pi,2 = Ti − Pi,2 = Ti − Pi / 2

 For task τi, the deadline and the offset assigned to

node Wi
j are denoted by Di

j and Φi
j, respectively. Once

appropriate values of Di
j and Φi

j are determined for each node

Wi
j (respecting the dependencies in the DAG), task τi is

decomposed into nodes. Upon decomposition, the dependencies

in the DAG need not be considered, and each node can execute

as a traditional multiprocessor task. Hence, the decomposition

technique for τi boils down to determine Di
j and Φi

j for each

node Wi
j.

 Consider DAG given in Figure 1, here we assign

execution requirement to each node as Ei
1=4, Ei

2=2, Ei
3=4,

Ei
4=5 and Ei

5=3. First, DAG τi is represented as a timing

diagram τi
original. Specifically, τi

original indicates the earliest start

time and the earliest finishing time of each node. For any node

Wi
j that has no parents, the earliest start time and the earliest

finishing time are 0 and Ei
j, respectively. For every other node

Wi
j, the earliest start time is the latest finishing time among its

parents, and the earliest finishing time is Ei
j time units after that.

For example, in τi of Figure 1, nodes Wi
1,Wi

2, and Wi
3 can start

execution at time 0, and their earliest finishing times are 4, 2,

and 4,respectively. Node Wi
4 can start after Wi

1 and Wi
2

complete, and finish after 5 time units at its earliest, and so on.

Thus, Figure 2(a) shows τi
original of the DAG τi of Figure 1.

The calculation of Di
j and Φi

j for each node Wi
j

involves the following two steps. In Step 1, for each node,

distribution of slack among different parts of the node is done.

In Step 2, the total slack assigned to different parts of the node

is assigned as the node’s slack.

Step 1 (slack distribution): In DAG τi, a node can

execute with different numbers of nodes in parallel at different

time. Such a degree of parallelism can be approximated based

on τi
original .For example, in Figure 2(a), node Wi

5 executes with

Wi
1 and Wi

3 in parallel for the first 2 time units, and then

executes with Wi
4 in parallel for the next time unit. In this way,

identification of the degrees of parallelism at different parts of

each node is carried out. Intuitively, the parts of node which

execute with a large number of nodes in parallel require more

slack. Therefore, different parts of a node are assigned different

amounts of slack considering their degrees of parallelism and

execution requirements. Later, the sum of slack of all parts of a

node is assigned to the node itself. To identify the degree of

parallelism for different portions of a node based on τi
∞,

assignment of slack to a node in different (consecutive)

segments is done. In different segments of a node, the task may

have different degrees of parallelism. In τi
∞, starting from the

left, a vertical line at every time instant is drawn where a node

starts or ends (as shown in Figure 2(b)). This is done using a

breadth-first search over the DAG. The vertical lines now split

τi
∞ into segments. For example, in Figure 2(b), τi is split into 2

segments (numbered in increasing order from left to right).Once

τi
∞ is split into segments, each segment consists of an equal

amount of execution by the nodes that lie in the segment. Parts

of different nodes in the same segment can now be thought of

threads that can run in parallel, and the threads in a segment can

start only after those in the preceding one finish. Such a model

is thus similar to the synchronous task model used in [6]. This

model is denoted by τi
syn. Assignment of slack to the segments

is done, and finally addition of all slack assigned to different

segments of a node is carried out to calculate its overall slack.

Distribution of slack is done among the nodes based

on the number of threads and execution requirement of the

segments where a node lies in τi
syn. For every j-th segment of

τi
syn, we calculate a value di

j, called an intermediate subdeadline

.That is, each thread in the segment gets this “extra time”

beyond its execution time.

Step 2 (deadline and offset calculation): Intermediate

sub deadlines to (the threads of) each segment of τi
syn are

assigned in Step 1. Since a node may be split into multiple

(consecutive) segments in τi
syn, now we have to remove all

intermediate sub deadlines of a node. Addition of all

intermediate sub deadlines of a node is done, and the total is

assigned as the node’s deadline.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.5, March 2013

42

Now let a node Wi
j of τi

 belong to segments k to r (1 ≤

k ≤ r ≤ si) in τi
syn. Therefore, the deadline Di

j of node Wi
j is

calculated as follows.

Di
j = di

k+ di
k+1 + +di

r

The execution requirement Ei
j of node Wi

j is

 Ei
j =ei

k+ei
k+1 + +ei

r

 Node Wi
j cannot start until all of its parents complete.

Hence, its release offset Φi
j is determined as follows.

Φi
j=

Appropriate deadline Di
j and release offset Φi

j to each node Wi
j

of τi are assigned. The DAG τi is now decomposed into nodes.

Each node Wi
j is now an individual (sequential) multiprocessor

subtask with an execution requirement Ei
j, a constrained

deadline Di
j, and a release offset Φi

j.

Fig 2 (a) τi
original : Timing diagram for DAG τi

Fig 2 (b) Slack distributions in τi
syn

5. CONCLUSIONS

With the advent of the era of multi-core computing,

real time scheduling of parallel tasks is crucial for real-time

applications to exploit the power of multi-core processors.

While recent research on real-time scheduling of parallel tasks

has shown promise, the efficacy of existing approaches is

limited by their restrictive parallel task models. To overcome

these limitations, in this paper generalized parallel task model

for real-time scheduling is presented. A general synchronous

parallel task model is considered where each task consists of

segments, each having an arbitrary number of parallel threads.

Then a novel task decomposition algorithm is discussed which

decomposes each task into a set of tasks which can be

scheduled on multiple cores.

6. REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time

scheduling for multiprocessor systems,” ACM Comp.

Surv., vol. 43, pp. 35:1–44, 2011.

[2] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core

real-time scheduling for generalized parallel task models,”

in RTSS ’11.

[3] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling

parallel realtime tasks on multi-core processors,” in RTSS

’10.

[4] “OpenMP,” http://openmp.org.

[5] “Intel CilkPlus,” http://software.intel.com/en-

us/articles/intel-cilk-plus.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.5, March 2013

43

[6] X. Deng, N. Gu, T. Brecht, and K. Lu, “Preemptive

scheduling of parallel jobs on multiprocessors,” in SODA

’96.

[7] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson,

“Adaptive task scheduling with parallelism feedback,” in

PPoPP ’06.

[8] J. M. Calandrino and J. H. Anderson, “On the design and

implementation of a cache-aware multicore real-time

scheduler,” in ECRTS ’09.

[9] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger,

“A hybrid real-time scheduling approach for large-scale

multicore platforms,” in ECRTS ’07.

[10] J. H. Anderson and J. M. Calandrino, “Parallel real-time

task scheduling on multicore platforms,” in RTSS ’06.

[11] C.-C. Han and K.-J. Lin, “Scheduling parallelizable jobs

on multiprocessors,” in RTSS ’89.

[12] S. Baruah, “Techniques for multiprocessor global

schedulability analysis,”in RTSS ’07.

[13] J. Goossens, S. Funk, and S. Baruah, “Priority-driven

scheduling of periodic task systems on multiprocessors,”

Real-Time Syst., vol. 25, no.2-3, pp. 187–205, 2003.

[14] S. Baruah, “The non-preemptive scheduling of periodic

tasks upon multiprocessors,” Real-Time Syst., vol. 32, pp.

9–20, 2006.

[15] Jos´e Carlos Fonseca, Lu´ıs Nogueira, Cl´audio Maia, and

Lu´ıs Miguel Pinho,”Real-Time Scheduling of Parallel

Tasks in the Linux Kernel”

[16] D.I. George Amalarethinam and G.J. Joyce Mary, “A new

DAG based Dynamic Task Scheduling Algorithm

(DYTAS) for Multiprocessor Systems”, in International

Journal of Computer Applications (0975 – 8887) Volume

19– No.8, April 2011

[17] D.I. George Amalarethinam1 and G.J. Joyce Mary,

”DAGEN - A Tool To Generate Arbitrary Directed

Acyclic Graphs Used For Multiprocessor Scheduling”, in

International Journal of Research and Reviews in

Computer Science (IJRRCS) Vol. 2, No. 3, June 2011

[18] C.-C. Han and K.-J. Lin, “Scheduling parallelizable jobs

on multiprocessors,”in RTSS ’89.

[19] K. Jansen, “Scheduling malleable parallel tasks: An

asymptotic fullypolynomial time approximation scheme,”

Algorithmica, vol. 39, no. 1,pp. 59–81, 2004.

[20] W. Y. Lee and H. Lee, “Optimal scheduling for real-time

parallel tasks,”IEICE Trans. Inf. Syst., vol. E89-D, no. 6,

pp. 1962–1966, 2006.

[21] S. Collette, L. Cucu, and J. Goossens, “Integrating job

parallelism in real-time scheduling theory,” Inf. Process.

Lett., vol. 106, no. 5, pp.180–187, 2008.

[22] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A

new approach for scheduling of parallelizable tasks inreal-

time multiprocessor systems,” Real-Time Syst., vol. 15,

no. 1, pp. 39–60, 1998

[23] S. Kato and Y. Ishikawa, “Gang EDF scheduling of

parallel task systems,” in RTSS ’09.

[24] N. Fisher, T. P. Baker, and S. Baruah, “Algorithms for

determining the demand-based load of a sporadic task

system,” in TCSA ’06.

[25] J. Goossens, S. Funk, and S. Baruah, “Priority-driven

scheduling of periodic task systems on multiprocessors,”

Real-Time Syst., vol. 25, no. 2-3, pp. 187–205, 2003.

[26] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis

Trystram, Jean-Marc Vincent, Frédéric Wagner, ”Random

graph generation for scheduling simulations” in

simutools’10

[27] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread

scheduling for multiprogrammed multiprocessors,” in

SPAA ’98.

[28] Ricardo Garibay-Martínez, Luis Lino Ferreira, Luis

Miguel Pinho,”A Framework for the Development of

Parallel and Distributed Real-Time Embedded Systems “

[29] R. I. Davis and A. Burns, “A survey of hard real-time

scheduling for multiprocessor systems,” ACM Comp.

Surv., vol. 43, pp. 35:1–44, 2011.

