Superior Multibrots for Multicorns for Fractional Values

Sunil Shukla
Assistant Professor
Department Of Computer
Science

Omkarananda Institute Of Management & Technology, Rishikesh, Tehri Garhwal Ashish Negi
Associate Professor
Department Of Computer
Science & Engineering
G.B Pant Engg. College,
Pauri Garhwal

Sumiti Kapoor Associate Professor Department Of Computer Application Institute of Management Studies, Dehradun

ABSTRACT

The Multibrots for Multicorns is defined by the complex function $A_c = \overset{-d}{z} + c; d \geq 2$ where d and c is a constant. The Multibrot for Multicorns fractal is interesting, with striking shapes. In this paper we have presented different characteristics of Multibrot function for Multicorns using superior iterates, like fixed point, complex dynamics and its behaviour towards Julia set.

The Mandelbrot set is defined by Benoit Mandelbrot. In terms

Keywords

Superior Multibrot, Tricon and Multicorns

1. INTRODUCTION

of mathematical function the Mandelbrot function could be defined in terms function $z_{n+1}=z_n^{\ 2}+c;c\in C$ where c is a complex number. The anti-polynomial $\overline{z}^n + c$ of the complex polynomial $z^n + c$ has similarities Mandelbrot set for the antipolynomials, especially, when n =2 or n = 3, the dynamics of the antipolynomial leads to interesting study of Tricorns and Multicorns. The purpose of this paper is to generate new Superior Multibrot for Multicorns by using Mann iterates, also called as superior iterates, by Rani and Kumar [6] and [11]. In the study of chaos and fractal were found to be very effective in generating the fractals beyond the traditional limits [3-4]. In this paper we have introduced a new set of Multibrot named as Superior Multibrot for Multicorns for fractional powers and explored their corresponding Julia sets. Further, different properties like trajectories [7], fixed point, its complex dynamics and its behaviour towards Julia set [5], [9] and [10] are also discussed in the paper.

2. PRELIMINARIES

Definition 2.1: Julia sets

French mathematician Gaston Julia [5] investigated the iteration process of a complex function. Now, Julia set has been applied widely in computer graphics, biology, engineering and other branches of mathematical sciences. Consider the complex-valued quadratic function

$$z_{n+1} = z_n^2 + c; c \in C$$

where \mathcal{C} be the set of complex numbers and \mathcal{N} is the iteration number. The Julia set for parameter \mathcal{C} is defined as the boundary between those of z_0 that remain bounded after repeated iterations and those escape to infinity. The Julia set on the real axis are reflection symmetric, while those with complex parameter show rotation symmetry with an exception to $\mathcal{C} = (0,0)$ see Rani and Kumar [6] and [11].

Definition 2.2: Multibrot set

The Multibrot function is given by complex function $z_{n+1}=z_n^d+c$; $d\geq 2$ where \mathbf{n} and \mathbf{c} is a constant. So, the collection of point that satisfies the relation $z_{n+1}=z_n^d+c$; $d\geq 2$ is called Multibrot set. The Mandelbrot function is defined in terms of the function $z_{n+1}=z_n^d+c$; d=2. It is always possible for \mathbf{d} to have any value other than 2 *i.e.* an integer, negative, rational, irrational, imaginary or complex value. As the exponent varies interesting collection of multibrot sets are obtained. The complex dynamics of Multibrot function, generally known as Multibrot fractal, is a modification of the classic Mandelbrot and Julia sets.

Definition 2.3: Superior Orbit

Let A be a subset of real or complex numbers and $f:A \to A$. For $x_0 \in A$, construct a sequence $\{x_n\}$ in A in the following manner

$$x_{1} = s_{1} f(x_{0}) + (1 - s_{1}) x_{0}$$

$$x_{2} = s_{2} f(x_{1}) + (1 - s_{2}) x_{1}$$

$$\vdots$$

$$x_{n} = s_{n} f(x_{n-1}) + (1 - s_{n}) x_{n-1}$$

where $0 < s_n \le 1$ and $\{s_n\}$ is convergent to a non-zero number. The sequence $\{x_n\}$ constructed above is called Mann sequence of iterates or superior sequence of iterates. Let z_0 be an arbitrarily element of C. Construct a sequence $\{z_n\}$ of points of C in the following manner:

$$z_n = sf(z_{n-1}) + (1-s)z_{n-1}, n = 1, 2, 3...$$

where f is a function on a subset of C and the parameter s lies in the closed interval [0,1]. The sequence $\{z_n\}$ constructed above, denoted by $SO(f,z_0,s)$, is the superior orbit for the complex valued function f with an initial choice z_0 and parameter s. We may denote it by $SO(f,x_0,s_n)$. Notice that $SO(f,x_0,s_n)$ with $s_n=1$ is $O(f,x_0)$. We remark that the superior orbit reduces to the usual Picard orbit when $s_n=1$.

Definition 2.4. Superior Multibrot for Multicorns

Let $A_c = \stackrel{n}{z} + c$ denote the antipolynomial of the complex polynomial $z^n + c$, where $c \in C$, the set of complex numbers. The sequence $\{x_n\}$ constructed above is called Mann sequence of iterates or superior sequence of iterates. Let z_0 be an arbitrarily element of C. Construct a sequence $\{z_n\}$ of points of C in the following manner:

$$z_n = sf(z_{n-1}) + (1-s)z_{n-1}, n = 1, 2, 3...$$

where f is a function on a subset of C and the parameter s lies in the closed interval [0,1]. Now we define the superior Multibrot set for Multicorns.

3. ANALYSIS OF SUPERIOR MULTIBROT SET FOR MULTICORNS

CASE 3. (For fractional value of power ie d=fractional)

For d=2, the Multibrot set converts to Mandelbrot set. For d=2, we notice that the superior Multibrot fractal for the multicorns fractal converts to usual superior Mandelbrot fractal. The case is also true for the corresponding superior Julia sets. When $0 < s \le 1$ and d > 2, we obtain superior Multibrot for the Multicorn. Further, we investigate the dynamics of the superior multibrot sets for the transformation

function $A_c(z) = \overline{z}^d + c$ and analyze the z plane fractal images generated from the iterations of this functions using Mann iteration procedure and changes that occur in the visual characteristics of the images for negative, positive and fractional powers.

Further investigate the various characteristics of the superior multibrot for multicorns. We divide our analysis in three categories on the basis of power d.

Case 1. For the Positive power or $d \ge 2$

Case 2. For the Negative power or d < 0

Case 3. For the Non integer Power or d = fractional

In this paper we are going to present the third case i.e. fractional power of d

Here we have presented the **Superior Multibrot for Multicorn** at d=3, 4, 5 and 10 are represented in Fig. [1] - [4]. Further we get the new set having some striking similarities to the superior Mandelbrot set. We also observe that for odd powers, the superior Multibrot set for multicorn is symmetric along both the x and y axis, whereas for the even powers we find the symmetry to be along x axis only but in continuity of this as we increase the power of superior multibrot function for multicorn, we get d+1 ovoid in each image. Here it is noticed that the birth of new ovoid as the power come to whole number see Fig 5.

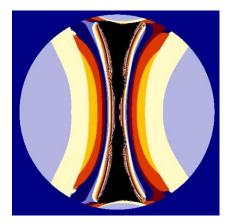


Fig. 1. Superior Multibrot set for Multicorn for d = 3.1 and s = 0.1

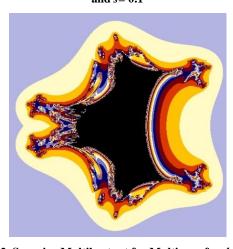


Fig. 2. Superior Multibrot set for Multicorn for d = 4.3 and s = 0.5

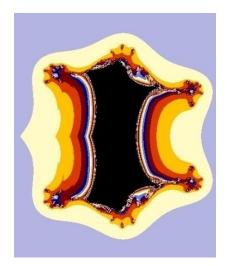


Fig. 3. Superior Multibrot set for Multicorn for d = 5.5 and s = 0.5

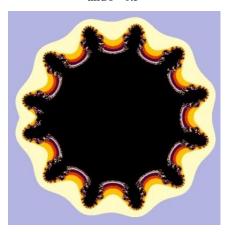


Fig. 4. Superior Multibrot set for Multicorn for d = 10.7 and s = 1.0

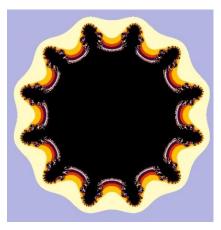


Fig. 5. Superior Multibrot set for Multicorn for d = 11 and s = 1.0

SUPERIOR JULIA SETS FOR MULTICORN AT d = fractional AND THEIR FIXED POINTS

On iterating the Multicorn function At z = (0.5389, -2.0400), d=3.5 and s=0.5 we obtain the distortion along x axis and the plot for points converges to infinity see Fig. [6] and [7]. Further It is also observe that at point z = (-5.269, 0.629),

d=4.9 and s = 0.1 an interesting image is found which resemble with the Den droid and after few iteration the graph is converges to a fixed point see Fig. [8] and [9]. We also get two symmetric images along x axis on point at z = (-0.82, 1.038), d = 5.5 and s = 0.1 & z = (-0.7938, 0.0721), d=10.2 and s = 0.5 and plotted graph is converges to a fixed point see Fig. [10] - [13].

Third degree superior Julia sets for Multicorn family

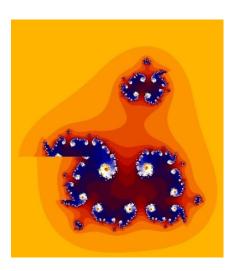


Fig. 6. Superior Julia set for (z = 0.5389, -2.0400) at d=3.5 and s = 0.5

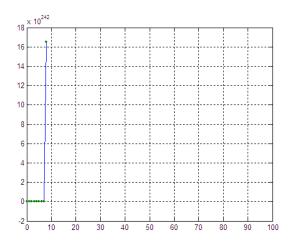


Fig. 7. Orbit of Julia set for (z = 0.5389, -2.0400) at d=3.5 and s = 0.5

Number of iteration i	F(z)
1	0
2	0.26945
3	0.19814
7	-1.27E+19

8	4.74E+69
9	1.65E+243
10	NaN
11	NaN
12	NaN
13	NaN
14	NaN
15	NaN

Table 1. For (z = 0.5389, -2.0400) at d=3.5 and s=0.5 (Some Intermediate iteration has been skipped intentionally)

Fourth degree superior Julia sets for Multicorn family

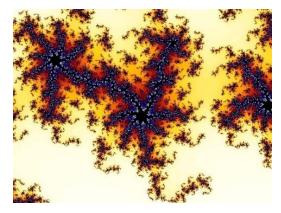


Fig. 8. Superior Julia set for (z = -5.269, 0.629) at d=4.9 and s = 0.1

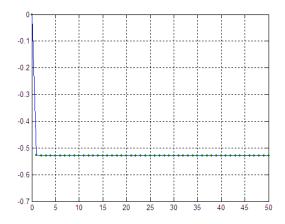


Fig. 9. Orbit of Julia set for (z = -5.269, 0.629) at d=4.9 and s = 0.1

Number of iteration i	F(z)
1	0
2	0.53064
3	0.53302
4	0.53321
5	0.53321
6	0.53321
7	0.53321
8	0.53321
9	0.53321
10	0.53321
11	0.53321
12	0.53321

Table 2. For (z = -5.269, 0.629) at d=4.9 and s=0.1 (Some Intermediate iteration has been skipped intentionally)

Higher degree superior Julia sets for Superior Multibrot set for Multicorns

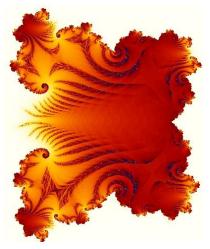


Fig. 10. Superior Julia set for (z = -0.82, 1.038) at d=5.5 and s = 0.1

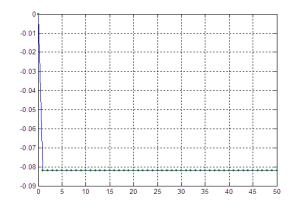


Fig. 11. Orbit of Julia set for (z = -0.82, 1.038) at d=5.5 and s = 0.1

Number of iteration i	F(z)
1	0
2	0.13228
3	0.13228
4	0.13228
5	0.13228
6	0.13228
7	0.13228
8	0.13228
9	0.13228
10	0.13228

Table 3. For (z = -0.82, 1.038) at d=5.5 and s = 0.1

(Some Intermediate iteration has been skipped intentionally)

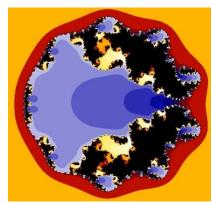


Fig. 12. Superior Julia set for (z = 0.7938, 0.0721) at d=10.2 and s = 0.5

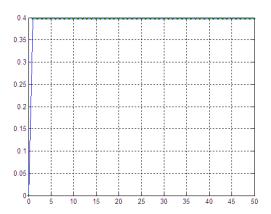


Fig. 13. Orbit of Julia set for (z = -0.7938, 0.0721) at d=10.2 and s = 0.5

Number of iteration i	F(z)
1	0
2	0.39853
3	0.39856
4	0.39856
5	0.39856
6	0.39856
7	0.39856
8	0.39856
9	0.39856
10	0.39856

Table 4. For (z = -0.7938, 0.0721) at d=10.2 and s=0.5

(Some Intermediate iteration has been skipped intentionally)

4. CONCLUSION

In this paper we have presented the dynamics and fixed point analysis of superior Multibrot for Multicorn at different power of d see Fig. [1] – [12]. Further we have presented the geometric properties of superior Julia sets along different axis. We also observe distortion along x axis see Fig. [6].

5. REFERENCES

- [1] Barcellos, A. and Barnsley, Michael F., Reviews: Fractals Everywhere. *Amer. Math. Monthly*, No. 3, pp. 266-268, 1990.
- [2] Barnsley, Michael F., Fractals Everywhere. Academic Press, INC, New York, 1993.
- [3] Edgar, Gerald A., Classics on Fractals. Westview Press, 2004.

- [4] Falconer, K., *Techniques in fractal geometry*. John Wiley & Sons, England, 1997.
- [5] Julia, G., Sur 1' iteration des functions rationnelles. *J Math Pure Appl.* pp.47-245.
- [6] Kumar, Manish. and Rani, Mamta., A new approach to superior Julia sets. *J. nature. Phys. Sci*, pp. 148-155, 2005.
- [7] Negi, A., Fractal Generation and Applications, *Ph.D Thesis*, Department of Mathematics, Gurukula Kangri Vishwavidyalaya, Hardwar, 2006.
- [8] Orsucci, Franco F. and Sala, N., Chaos and Complexity Research Compendium. Nova Science Publishers, Inc., New York, 2011.
- [9] Peitgen, H. O., Jurgens, H. and Saupe, D., Chaos and Fractals. *New frontiers of science*, 1992.
- [10] Peitgen, H.O., Jurgens, H. and Saupe, D., Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York, Inc, 2004.
- [11] Rani, M., Iterative Procedures in Fractal and Chaos. Ph.D Thesis, Department of Computer Science. Gurukula Kangri Vishwavidyalaya, Hardwar, 2002.