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ABSTRACT  
This study is aimed to develop a noise robust distributed 

speech recognizer (DSR) for real-world applications by 

employing Blind Equalization (BEQ) for robust feature 

extraction. The main focus of the work is to cope with 

different noisy environments in recognition phase. To realize 

this objective, Mel-LP based speech analysis has been used in 

speech coding on the linear frequency scale by applying a 

first-order all-pass filter instead of a unit delay. Mismatch 

between training and test phases is reduced through robust 

feature extraction and this is achieved by applying BEQ on 

Mel-LP cepstral coefficients as an effort to reduce additive 

noise and channel distortion. The performance of the proposed 

system has been evaluated on test set A and set C of Aurora-2 

database. The baseline performance, that is, for Mel-LPC the 

average word accuracy has found to be 59.05% and 63.99% 

for sets A and C, respectively. By applying the BEQ on Mel-

LP cepstral coefficients, the performance has been improved 

to 65.66% and 64.65% for sets A and C, respectively. 
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1. INTRODUCTION 
The accuracy of Automatic Speech Recognizers (ASRs) has 

reached to a satisfactory level under controlled and matched 

training and recognition conditions. However, the 

performance of ASR severely degrades when there is a 

mismatch between training and test phases, caused by additive 

noise and channel effect. Environmental noises as well as 

channel effects contaminate the speech signal and change the 

data vectors representing the speech, for instance, reduce the 

dynamic range, or variance of feature parameters within the 

frame[1][2]. Consequently, a serious mismatch is occurred 

between training and recognition conditions, resulting in 

degradation in recognition accuracy. 

Noise robust ASR can be achieved in many ways, such as, 

enhancement of speech signal either in time domain [3] or in 

frequency domain[4][5][6][7][8], enhancement in cepstral domain 

[9][10][11][12], that is, feature parameter compensation, and 

acoustic model compensation or model adaptation[13][14][15]. 

In HMM based recognizer, the model adaptation approaches 

have been shown to be very effective to remove the mismatch 

between training and test environments. However, for a 

distributed speech recognition system, speech enhancement 

and parameter compensation approaches are suitable than the 

model adaptation approach. Because the acoustic model 

resides at a server, so adaptation or compensation of model 

from the front-end is not feasible. Therefore, this paper deals 

with the design of front-end with parameter compensation, 

such as BEQ.  

Since the human ear resolves frequencies non-linearly across 

the speech spectrum, designing a front-end incorporating 

auditory-like frequency resolution improves recognition 

accuracy[16][17][18]. In nonparametric spectral analysis, Mel-

frequency Cepstral Coefficient (MFCC)[16] is one of the most 

popular spectral features in ASR. This parameter takes account of 

the nonlinear frequency resolution like the human speech 

perception system. 

In parametric spectral analysis, the linear prediction coding (LPC) 

analysis [19][20] based on an all-pole model is widely used because 

of its computational simplicity and efficiency. While the all-pole 

model enhances the formant peaks as an auditory perception, 

other perceptually relevant characteristics are not incorporated 

into the model unlike MFCC. To alleviate this inconsistency 

between the LPC and the auditory analysis, several auditory 

spectra have been simulated before the all-pole modeling 

[17][[21][22][23]. 

In contrast to the different spectral modification, Strube [24] 

proposed an all-pole modeling to a frequency warped signal 

which is mapped onto a warped frequency scale by means of the 

bilinear transformation [25], and investigated several computational 

procedures. However, the methods proposed by Oppenheim and 

Johnson [25] to estimate warped all-pole model have rarely been 

used in automatic speech recognition. Recently, as an LP-based 

front-end, a simple and efficient time domain technique to 

estimate all-pole model is proposed by Matsumoto et al.[26], 

which is referred to as a “Mel-LPC” analysis. In this method, the 

all-pole model has been estimated directly from the input signal 

without applying bilinear transformation. Hence, the prediction 

coefficients can be estimated without any approximation by 

minimizing the prediction error power at a two-fold 

computational cost over the standard LPC analysis. 

In our previous work [12] effect of CMN has been examined on 

test set A of Aurora 2 database. As an extension of that study 

this paper deals with the design of Mel-LP based front-end 

with BEQ as parameter compensation. As compared to 

previous work this research uses test sets A and C of Aurora 2 

database in the evaluation phase.  It should be noted that the 

filtering characteristics for sets A and C are different which is 

mentioned in subsection 4.1. 

2. MEL-LP ANALYSIS  
The frequency-warped signal ][~ nx ),,0(  n  obtained 

by the bilinear transformation [25] of a finite length windowed 

signal )1,,1,0(][  Nnnx   is defined by 
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where 
1~z  is the first-order all-pass filter, 
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where 10   is treated as frequency warping factor. 

The phase response of 
1~z   is given by 

 










 






cos1

sin
tan2

~ 1
         (3)

  

This phase function determines a frequency mapping. As 

shown in Fig. 1, 35.0  and 40.0 can approximate 

the mel-scale and bark-scale [27][28] at the sampling frequency 

of 8 kHz respectively. 

 

Fig. 1: The frequency mapping functions by bilinear 

transformation. 

Now, the all-pole model on the warped frequency scale is 

defined as 
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where ka~  is the k-th mel-prediction coefficient and 
2~
e  is the 

residual energy[24]. 

On the basis of minimum prediction error energy for ][~ nx  

over the infinite time span, ka~  and e~  are obtained by 

Durbin’s algorithm from the autocorrelation coefficients 

][~ mr  of  ][~ nx  defined by 
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which is referred to as mel-autocorrelation function. 

The mel-autocorrelation coefficients can easily be calculated 

from the input speech signal ][nx  via the following two 

steps[26][29]. First, the generalized autocorrelation coefficients 

are calculated as 
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where ][nxm  is the output signal of an m-th order all pass 

filter 
mz ~  excited by ][][0 nxnx  . That is, ][~ mr  is 

defined by replacing the unit delay 
1z  with the first order 

all-pass filter 
1)(~ zz  in the definition of conventional 

autocorrelation function as shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

                 Fig. 2: Generalized autocorrelation function. 
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which is derived from 

 
2~

)(
~

~




 jeW
d

d
                                  (8) 

Thus, in the second step, the weighting is removed by inverse 

filtering in the autocorrelation domain using 

  11)~(
~

)~(
~ zWzW . 

As feature parameters for recognition, the Mel-LP cepstral 

coefficients can be expressed as:  
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where  kc  are the mel-cepstral coefficients. 

The mel-cepstral coefficients can also be calculated directly 

from mel-prediction coefficients  ka~ [30] using the following 

recursion: 
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It should be noted that the number of cepstral coefficients 

need not be the same as the number of prediction coefficients. 

3. ENHANCEMENT OF MEL-LP 

CEPSTRUM 

3.1 Blind Equalization  

Blind equalization is a technique effective for minimizing the 

channel distortion which is caused by the differences in the 

input devices’ frequency characteristics. It uses adaptive 

filtering technique to reduce these effects. It can be applied 
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both in spectral domain as well as in cepstral domain [31][32]. 

But in the cepstral domain it is easier to implement, and it 

requires less operations than in the spectral domain. This 

technique is based on the least mean square (LMS) algorithm, 

which minimizes the mean square error computed as a 

difference between the current and reference cepstrum. 

In this study, the same algorithm is used as that implemented 

in [3] with same values of different parameters, and the long-

term cepstrum of training clean speech is used as reference 

cepstrum.  

The algorithm is as follows: 

)75.4ln,0(,1(  EMaxMinw

 
wstep *008.0
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where w is the weighting parameter, lnE indicates the log 

energy of the current frame, bias[i] is initialized on 0.0  

 

(0 ≤ i ≤ 13) and CRef[i] is the reference cepstrum. 

4.  EVALUATION ON AURORA 2 

DATABASE 

4.1  Experimental Setup  

The proposed system was evaluated on Aurora-2 database [33], 

which is a subset of TIDigits database [34] contaminated by 

additive noises and channel effects. This database contains the 

recordings of male and female American adults speaking 

isolated digits and sequences up to 7 digits. In this database, 

the original 20 kHz data have been down sampled to 8 kHz 

with an ideal low-pass filter extracting the spectrum between 

0 and 4 kHz. These data are considered as clean data. Noises 

are artificially added with SNR ranges from 20 to -5 dB at an 

interval of 5 dB. 

To consider the realistic frequency characteristics of terminals 

and equipment in the telecommunication area an additional 

filtering is applied to the database. Two standard frequency 

characteristics G.712 and MIRS are used which have been 

defined by ITU [35]. The frequency responses of G.712 and 

MIRS filters have been shown in Fig. 3 and Fig. 4, 

respectively. 

It should be noted that the whole Aurora 2 database was not 

used in this experiment rather a subset of this database was 

used as shown in Table 1. 

Table 1: Definition of training and test data. 

 Filter Data set Noise Type SNR [dB] 

Training G.712 Clean  ∞ 

Test G.712 Set A subway, babble, 

car, exhibition 

clean, 20, 15, 

10, 5, 0, -5 

MIRS Set C subway, street clean, 20, 15, 

10, 5, 0, -5 

The recognition experiments were conducted with a 12th 

order prediction model of Mel-LPC analysis. The pre-

emphasized speech signal with a pre-emphasis factor of 0.95 

was windowed using Hamming window of length 20 ms with 

10 ms frame period. The frequency warping factor was set to 

0.35. As front-end, 14 cepstral coefficients and their delta 

coefficients including 0th terms were used. Thus, each feature 

vector size is 28. 

The reference recognizer was based on HTK (Hidden Markov 

Model Toolkit, version 3.4) software package. The HMM was 

trained on clean condition. The digits are modeled as whole 

word HMMs with 16 states per word and a mixture of 3 

Gaussians per state using left-to-right models. In addition, two 

pause models ‘sil’ and ‘sp’ are defined. The ‘sil’ model 

consists of 3 states which is illustrated in Fig. 5. This HMM 

shall model the pauses before and after the utterance. A 

mixture of 6 Gaussians models each state. The second pause 

model ‘sp’ is used to model pauses between words. It consists 

of a single state, which is tied with the middle state of the ‘sil’ 

model.  

 
Fig. 3: Frequency response of G.712 filter. 

 

 
Fig. 4: Frequency response of MIRS filter. 

The recognition accuracy (Acc) is evaluated as follows: 

 %100
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              (12) 

where N is the total number of words. D, S and I are deletion, 

substitution and insertion errors, respectively. 

 

 

 

 
 

 

 
Fig. 5: Possible transition in the 3-state pause model ‘sil’. 
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4.2 Experimental Results 
The detail recognition results are presented in this section. 

The word accuracy for Mel-LPC without applying BEQ is 

listed in Table 2 for test set A, which is considered as baseline 

result. The average word accuracy over all noises within the 

set A and over SNRs 20 to -5 dB is found to be 59.05% for 

the baseline, while the average recognition performance of 

Mel-LPC with BEQ is 65.66% as listed in Table 3. It is also 

observed that noticeable improvements in recognition 

accuracy are achieved for babble and car noises with BEQ as 

compared to baseline performance. The average recognition 

accuracy does not differ significantly for subway noise. From 

Tables 2 and 3 it has been also observed that greater 

improvements are found to be at SNRs 10 to 0 dB conditions. 

It has also been noticeable that the recognition accuracy is not 

improved significantly for exhibition noise at any level of 

SNR conditions. 

In the case of set C, the baseline performance is found to be 

63.99% while the accuracy with BEQ is 64.65% on the 

average as shown in Tables 4 and 5, respectively. It has also 

been observed that the improvement is obtained only at SNR 

conditions of 5 to -5 dB for both subway and street noises. 

As compared to our previous work [12] where CMN has been 

used to minimize channel distortion, it has been found that 

BEQ gives outstanding performance over CMN for car noise 

only. 

5. CONCLUSION 
An HMM-based automatic speech recognizer (ASR) was 

developed and as an enhancement technique in the cepstral 

domain, the performance of BEQ on Mel-LPC was evaluated 

on test sets A and C of Aurora 2 database. It is observed that 

the BEQ has significant effect for babble and car noises. It is 

also found that BEQ exhibits best performance for car noise. 

The average word accuracy does not differ significantly for 

subway noise and slightly degrades for exhibition noise of set 

A after applying BEQ. The recognition performance for 

babble and car noises has been improved from 48.06% to 

61.08% and from 53.77% to 76.28%, respectively. The 

improvement is also significant for 15 to 0 dB speech signals. 

No significant improvement has been found for any level of 

exhibition noise. The overall recognition accuracy for test set 

A has been improved from 59.05% to 65.66%. 

For test set C, the BEQ is only effective for SNR conditions 5 

to -5 dB. 

Table 2: Word accuracy [%] for Test set A without BEQ (baseline). 

Noise SNR [dB] Average 

(20 to 0 dB) Clean 20 15 10 5 0 -5 

Subway 98.71 96.93 93.43 78.78 49.55 22.81 11.08 68.30 

Babble 98.61 89.96 73.76 47.82 21.95 6.80 4.44 48.06 

Car 98.54 95.26 83.03 54.25 24.04 12.23 8.77 53.77 

Exhibition 98.89 96.39 92.72 76.58 44.65 19.90 11.94 66.05 

Average 98.69 94.64 85.74 64.36 35.05 15.44 9.06 59.05 
 

Table 3: Word accuracy [%] for Test set A with BEQ. 

Noise SNR [dB] Average 

(20 to 0 dB) Clean 20 15 10 5 0 -5 

Subway 97.14 93.37 88.24 74.79 54.93 27.54 7.18 67.77 

Babble 96.83 92.65 85.40 71.61 44.11 11.64 -8.40 61.08 

Car 97.35 96.18 94.72 87.24 68.86 34.42 3.67 76.28 

Exhibition 97.56 89.63 82.57 65.32 38.63 11.23 -1.88 57.48 

Average 97.22 92.96 87.74 74.74 51.64 21.21 0.15 65.66 
 

Table 4: Word accuracy [%] for Test set C without BEQ (baseline). 

Noise SNR [dB] Average 

(20 to 0 dB) Clean 20 15 10 5 0 -5 

Subway 99.08 93.89 86.95 72.15 43.75 18.18 8.87 62.99 

Street 98.46 93.95 87.7 71.98 47.67 23.67 11.97 65.00 

Average 98.77 93.92 87.33 72.07 45.71 20.93 10.42 63.99 
 

Table 5: Word accuracy [%] for Test set C with BEQ. 

Noise SNR [dB] Average 

(20 to 0 dB) Clean 20 15 10 5 0 -5 

Subway 97.08 79.86 74.46 67.24 57.32 42.83 22.54 64.35 

Street 96.52 83.74 77.66 67.41 56.74 39.21 19.38 64.96 

Average 96.80 81.80 76.06 67.33 57.03 41.02 20.96 64.65 
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