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ABSTRACT 
An exact solution of the governing equations has been obtained 

for the free and forced convection flow between infinitely long 

horizontal parallel plates embedded in a porous medium. It is 

found that the fluid velocity decreases with an increase in 

porosity parameter. It is also found that the critical Grashof 

number for which there is no flow reversal near the upper plate 

decreases with an increase in porosity parameter. Further, the 

fluid temperature increases with an increase in either porosity 

of the porous medium or the Grashof number. 
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1. INTRODUCTION 
The study of flows through a porous medium is of great 

importance due to its wide applications in many engineering 

and technical fields, namely, in Petroleum technology to study 

the movement of natural gas, oil and water through the oil 

reservoirs, in the fields of agricultural engineering to study the 

underground water. The study of convection process in porous 

media is a well-developed field of investigation because of its 

important roles and wide applications in thermal insulation, 

geothermal energy technology, building thermal insulation, heat 

exchangers, underground disposal of chemical and nuclear 

waste, coal and grain storage etc. The literature on the topic of 

free and forced  convection in porous medium is well surveyed 

by Nield and Bejan [1], Bejan [2], Ingham and Pop [3], 

Kaviany [4] and Kennedy[5]. The study of Combarnous and 

Bia [6] was one of the first to apply experiments and numerical 

computation to the effect of mean flow on the onset of 

convection in a porous medium bounded by isothermal planes. 

Cheng [7] and Minkowycz et al.[8] conducted a series of 

studies on mixed convection over vertical, inclined and 

horizontal plates in porous media. Haajizadeh and Tien [9] have 

investigated mixed convective flow through a horizontal porous 

channel that connected two reservoirs. The convection in a 

porous medium with inclind temperature gradient has been 

studied by Nield [10]. The combined free and force convective 

flow in a vertical channel on taking viscous dissipation and 

pressure work have been studied by Barletta and Nield [11, 12]. 

Magyari [13] reconsiders the Berletta and Nield's [11] problem 

and discussed the concept of  eigen flow in detail. Fully 

developed combined free and forced convection flow in a 

vertical channel bounded by two parallel plates embedded in a 

porous medium have been studied by Kumar et al. [14]. 

     In the present paper, we have considered the free and forced 

convective flow between infinitely long horizontal parallel 

plates embedded in a porous medium. It is found that the fluid 

velocity increases with an increase in porosity of the porous 

medium. Further, it is seen that for small values of porosity 

parameter  , there is a flow reversal near the upper plate. It is 

found that the critical Grashof number at the upper plate for 

which there is no flow reversal near the upper plate decreases 

with an increase in  . It is also found that the fluid 

temperature increases with an increase in porosity parameter 

 . Further, the effect of porosity on the fluid temperature is 

prominent for small values of porosity parameter  . 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 
 

We consider the steady viscous incompressible fluid flow 

through a porous medium between infinitely long horizontal 

parallel plates. The distance between the two plates is 2L . 

Choose a Cartesian co-ordinate system with the x -axis in the 

direction of the flow and z -axis perpendicular to the plates 

shown in Fig.1. 

  

   
 

    Fig.1. Geometry of the problem   
 

     The governing equations for the free and forced convective 

steady flow through a porous medium on taking Brickmann 

model can be written as  
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where u is the fluid velocity, p  the fluid pressure,   the 

viscosity of the fluid,   the viscosity of the porous medium, 

  the density of the fluid, k   the permeability of the porous 

medium and g  the acceleration due to gravity. 

The equation of state under the Boussinesq approximation is 

assumed to be  

 0 0= [1 ( )],T T                                                  

(3) 

where T  is the fluid temperature,   the co-efficient of thermal 

expansion, 0  and 0T  are respectively the density and the 

temperature in the reference state. 

      On the use of (3), the equation (2) can be written as  
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       Integrating the equation (4), we get  

0 0[1 ( )] ( ).p g T T dz F x                               

(5) 

      In the above equation the integration constant may be an 

arbitrary function of x , say ( )F x . Assuming that the wall 

temperature has a uniform gradient N  along the x -direction, 

the temperature of the fluid can be written as  

 
0 = ( ).T T Nx z                                    

(6) 

     On the use of equations (5) and (6), the equation (1) 

becomes  
2
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where 
0





  is the kinematic viscosity. 

    The velocity boundary conditions are the no-slip conditions 

at the inner surface of the wall  

 0 at .u z L                                       

(8) 

     Introducing non-dimensional variables  
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 the equation (7) becomes  
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Again, the equation (6) asserts that positive and negative values 

of N  correspond to the heating and the cooling along the 

channel walls respectively. Evidently, it follows that >Gr  or 

< 0  according as the channel walls are heated or cooled in the 

axial direction. 

      The corresponding boundary conditions (8) become  

1 0 at 1.u                                                       

(11) 

      The solution of the equation (10) subject to the boundary 

conditions (11) is  
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     On taking Brickmann model, [see Ingham and Pop [3]] the 

energy equation is  
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where   is the thermal diffusivity of the fluid and pc  the 

specific heat. The last two terms in the above equation are due 

to the porosity of the medium. 

      On the use of (6) and (9), the equation (13) becomes  

     

22 2
2 21 1

1 1 12 2
= ,

d du d u
Pru PrEc u u

d d d




  

  
    

   

                

(14) 

where  
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     As for the temperature boundary conditions, we take the 

reference temperature 
0T  such that the temperature at the lower 

plate ( 1)    is 
0T N x  and this, by virtue of (6), implies 

( 1) = 0  . Hence, using (15), the boundary condition for ( )   

are given by  

(1)
( 1) 0 and (1) ,Tr
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(16) 

 where 
Tr  is the plate temperature parameter. 

        On the use of (12), the equation (14) becomes  
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where  
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      The solution of the equation (17) subject to the boundary 

conditions (16) is  
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3. RESULTS AND DISCUSSION 
To study the effect of the porosity of the porous medium and 

the Grashof number on the velocity field, we have plotted the 

fluid velocity 
1u  against   for several values of the porosity 

parameter   and Grashof number Gr  when =1P  in Figs.2 

and 3. It seen from Fig.2 that for fixed value of Grashof number 

Gr , the fluid velocity 
1u  decreases with an increase in porosity 

parameter  . Fig.3 shows that with an increase in 

( > 0)Gr Gr , that is, for heating the fluid velocity 
1u  increases 

in the lower half of the channel while it decreases in the upper 

half of the channel. The situation is clearly reversed for the 

negative values of ( < 0)Gr Gr , i.e. for cooling. It is observed 

that the velocity profiles are asymmetric due to the presence of 

buoyancy force ( 0)Gr  . 

     
Fig.2: Variations of velocity 

1u  for different   when = 2Gr .  

 
Fig.3: Variations of velocity 1u  for different Gr  when 

= 0.5    

 

We consider the following particular cases of interest. 
 

  (i) When 1 , then the velocity field is given by  
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    Equation (20) shows that the effect of porosity on the fluid 

velocity is important only when we consider the order  2O  .       

    Further, if 0   and 0Gr  , then we have  

 2

1 = 1 .
2

P
u                                                           

(21) 

    Equation (21) gives the fluid velocity for the hydrodynamic 

viscous incompressible fluid flow between two infinitely long 

horizontal parallel plates. 

 

  (ii) When 1 , then the velocity field is given by  
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    It is seen from the equation (22) that for large values of  , 

there exists a thin boundary layer near the vicinity of the upper 

plate. The thickness of this layer is of order  1O    which 

decreases with an increase in porosity parameter  . 

    The non-dimensional shear-stress at the plates 1    and 

1   are respectively given by  
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      1
1 2

=1

tanh ( coth 1).
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     The values of non-dimensional shear stresses at the plates 

1    and 1   are shown in Figs.4 and 5 respectively for 

several values of   and Gr . It is observed from Fig.4 that the 

shear stress at the lower plate increases with an increase in Gr  

while it decreases with an increase in  . On the other hand, 

Fig.5 shows that for fixed values of   the shear stress at the 

upper plate increases with an increase in Gr . Further, the shear 

stress at the upper plate increases or decreases according to Gr  

is small or large. 

       
 Fig.4: Variations of shear stress 0  for against Gr  for    
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 Fig.5: Variations of shear stress 

1  against Gr  for    

 

     It is seen from the equation (23) that in the absence of 

buoyancy forces ( = 0)Gr , the shear stress at the lower plate 

1    is always positive. Thus, in this case, there is no flow 

separation. The shear stress at the lower plate 1    

progressively decrease when the lower plate is cooling more 

and more (which corresponds to negative values of Gr ). 

    The shear stress 
0  at the lower plate vanishes if  
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0crit
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,
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P
Gr

 
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                                      (25) 

which leads to occur the incipient flow reversal near the lower 

plate 1   . Further, this leads us to conclude that for fixed 

value of the porosity of the medium cooling at the lower plate 

causes tendency towards instability. The cooling of the lower 

plate gives rise to a component of buoyancy force opposite to 

the direction of the pressure gradient along the channel which 

drives the forced convection flow. 

      The equation (24) shows that the shear stress 
1  is always 

negative for cooling ( < 0)Gr  at the upper plate 1  . That is 

why, there is no flow reversal near the upper plate. However, 

the shear stress 
1  at the upper plate vanishes if  
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.

coth 1

P
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 
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    This implies that for fixed values of  , heating of the upper 

plate ( > 0)Gr  causes incipient flow reversal there and thus 

increases the tendency of instability. It is seen from Table 1 that 

the critical Grashof number   
1crit

Gr  at  the upper plate 1   

decreases with an increase in porosity parameter . 

 

Table 1. critical Grashof number   
1crit

Gr  at the plate 1   

when =1P  

 
  0.1 0.2 0.5 2 10 

 
1crit

Gr  2.99205 1.96853 2.81859 1.79416 1.11111 

 

      The fluid temperature distribution have been drawn for 

several values of   and Gr  when = 0.71Pr , =1P , = 0.5Ec  

and = 0.5Tr  in Figs.6 and 7. It is seen from Figs.6 and 7 that 

the fluid temperature increases with an increase in either 

Grashof number Gr  or porosity parameter  . 

 

  
Fig.6: Variations of temperature ( )   for   with = 2Gr , 

= 0.71Pr , 0.5Ec   and 0.5Tr  .  

     
 Fig.7. Variations of temperature ( )   for Gr  with 0.5  , 

= 0.71Pr , 0.5Ec   and 0.5Tr  .   

     The rate of heat transfer at the plates 1    and 1   are 
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     The rate of heat transfer at the plates 1    and 1   are 

respectively entered in Tables 2 and 3 for several values of   

and Gr  when =1P , 0.71Pr   and 0.02Ec  . It is observed 

from Table 2 that the magnitude of rate of heat transfer at the 

lower plate 1    first decreases, reaches a minimum and then 

increases with an increase in porosity parameter   except for 

Grashof number 0Gr   while it decreases with an increase in 

Gr . Table 3 shows that the rate of heat transfer at the upper 

plate 1   decreases with an increase in either   or Gr . 

 

Table 2. Rate of heat transfer at the plate  = 1   when =1P  

  

  1   

\Gr   0.2 0.4 0.6 0.8 1.0 

0 

4 

8 

12 

16 

0.19869 

0.18371 

0.14870 

0.09317 

0.01836 

0.18881 

0.17427 

0.13999 

0.08597 

0.01221 

0.17416 

0.16122 

0.12908 

0.07773 

0.00718 

0.15676 

0.15315 

0.13103 

0.09043 

0.03133 

0.13845 

0.17993 

0.23037 

0.20992 

0.19843 

  

Table 3. Rate of heat transfer at the plate  = 1  when =1P  

  

  1  

\Gr   0.2 0.4 0.6 0.8 1.0 

0 

4 

8 

12 

16 

0.47369 

0.46864 

0.44355 

0.39794 

0.33306 

0.46381 

0.45860 

0.43366 

0.38897 

0.32454 

0.44916 

0.44289 

0.41742 

0.37275 

0.30887 

0.43176 

0.41688 

0.38351 

0.33164 

0.26128 

0.41345 

0.35433 

0.27755 

0.18312 

0.07104 

  

    The critical Eckert number at the plates 1    and 1   

for which there is no flow of heat either from plates to fluid or 

fluid to plates are given by  

   1

crit
1

1

,
X

Ec
PrY

                                    (30) 

  
crit

2
,

X
Ec

PrY
                                    (31) 

 where X , Y , 1X  and 
1Y  are given by (29). 

    The values of  
crit

1
Ec  and  

crit
2

Ec  are entered in the Table 

4 and 5 for several values of   and Gr . It is observed from 

Table 3 that with an increase in Gr  the critical Eckert number 

 
crit

2
Ec  at the plate 1    increases for 0.4   while it 

decreases for > 0.4 . Further,  
crit

1
Ec  decreases with 

increase in porosity parameter   when Gr  is fixed. Table 5 

shows that the critical Eckert number  
crit

2
Ec  at the plate 

1   decreases with an increase in porosity parameter  . On 

the other hand, an increase in Gr  leads to increase the critical 

Eckert number  
crit

2
Ec  for 0.2   but > 0.2  and decrease 

first, reaches a minimum and then increases. 

 

 

 

 

 

Table 4. Critical Eckert number at the plate ( 1)    when =1P  and = 0.71Pr  

  

  
crit

1
Ec  

\Gr   0.2 0.4 0.6 0.8 1.0 

0 

4 

8 

12 

16 

1.04484 

1.09482 

1.17800 

1.29418 

1.44305 

0.67552 

0.68496 

0.70146 

0.73418 

0.99216 

0.24524 

0.24414 

0.24296 

0.23873 

0.23011 

0.11364 

0.11334 

0.11193 

0.10619 

0.07794 

0.06444 

0.06393 

0.06291 

0.05805 

0.03207 

  

   



International Journal of Computer Applications (0975 – 8887)  

Volume 65– No.3, March 2013  

41 

Table 5. Critical Eckert number at the plate 1   when =1P  and = 0.71Pr  

  

  
crit

2
Ec  

\Gr   0.2 0.4 0.6 0.8 1.0 

0 

4 

8 

12 

16 

0.44988 

0.45754 

0.46907 

0.48263 

0.49655 

0.17169 

0.17018 

0.16845 

0.17034 

0.18369 

0.07021 

0.06867 

0.06703 

0.06995 

0.09308 

0.03624 

0.03541 

0.03449 

0.03755 

0.05913 

0.02194 

0.02132 

0.02080 

0.02364 

0.04249 

  

     It is observed from the equation (28) that the heat will flow 

from the plate 1   to the fluid if 
=1

> 0
d

d






 
 
 

 which in turn 

yields, from the equation (31)  
crit

2
>

X
Ec

PrY
 while heat will 

start flowing from the fluid to the plate if  
crit

2
<

X
Ec

PrY
. 

Similarly, the heat flows from the plate 1    to the fluid if 

1

> 0
d

d







 
 
 

 which gives, on using (36)   1

crit
1

1

>
X

Ec
PrY

. 

However, heat starts flowing from the fluid to the plate 1    

if   1

crit
1

1

<
X

Ec
PrY

. This reversal of heat flow may be due to the 

fact that when there is a significant viscous dissipation then the 

temperature of fluid near plates may exceed the plate 

temperature. This will cause flow of heat from the fluid to 

plates even if the plate temperature greater than the fluid 

temperature. In our heat transfer analysis, we have not only 

considered the viscous dissipation into account but also taken 

dissipation due to the porosity of the porous medium. Hence, 

there is a strong reason for the flow of heat from the fluid to 

plates under certain conditions. 

 

4. CONCLUSION 
The steady free and forced convective flow between two 

infinitely long horizontal parallel plates embedded in a porous 

medium has been investigated. It is found that the fluid velocity 

decreases with an increase in porosity parameter. It is also 

found that the heating of the upper plate causes flow reversal 

there while cooling of the lower plate causes flow reversal near 

the lower plate. It is seen that the rate of heat transfer at the 

lower plate decreases with an increase in porosity parameter. 

On the other hand, the rate of heat transfer at the upper plate 

first decreases, reaches a minimum and then increases with an 

increase in porosity parameter. 
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