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ABSTRACT 

Radiation effects on MHD free convective flow of a viscous 

incompressible electrically conducting fluid past an oscillating 

vertical porous plate with uniform suction or blowing at the plate 

in the presence of a uniform magnetic filed have been studied. 

The governing equations are solved analytically. It is observed 

that the velocity decreases near the plate and it increases away 

from the plate with an increase in either magnetic parameter or 

radiation parameter or Prandtl number or suction parameter or 

frequency parameter or phase angle. The fluid velocity increases 

with an increase in Grashof number. The solution exists for the 

blowing at the plate. It is seen that the fluid temperature decreases 

near the plate and it increases away from the plate with an 

increase in either radiation parameter or Prandtl number or suction 

parameter or frequency parameter. Further, it is seen that the 

amplitude of the shear stress and the tangent of the phase angle at 

the plate decrease with an increase in either radiation parameter or 

Prandtl number or suction parameter. 

Keywords:: MHD free convection, radiation, porous plate, heat 

flux, suction/blowing and phase angle. 

 

1. INTRODUCTION 
Free convective flow occurs frequently in an environment where 

differences between land and air temperature can give rise to 

complicated flow patterns. The subject of magnetohydrodynamics 

has attracted the attention of a large number of scholars due to its 

diverse application. In astrophysics and geophysics, it is applied 

to study the stellar and solar structures, interstellar matter, radio 

propagation through the ionosphere etc. In engineering, it find its 

application in MHD pumps, MHD bearing etc. The study of 

effects of magnetic field on free convection flow is important in 

liquid metals, electrolytes and ionized gasses. At the high 

temperature attained in some engineering devices, gas, for 

example, can be ionized and so becomes an electrical conductor. 

The ionized gas or plasma can be made to interact with the 

magnetic field and alter heat transfer and friction characteristic. 

Recently, it is of great interest to study the effect of magnetic field 

on the temperature distribution and heat transfer when the fluid is 

not only an electrical conductor but also when it is capable of 

emitting and absorbing thermal radiation. Heat transfer by thermal 

radiation is becoming of greater importance when we are 

concerned with space applications, higher operating temperatures 

and also power engineering. The radiative free convective flows 

are encountered in countless industrial and environment processes 

e.g. heating and cooling chambers, fossil fuel combustion energy 

processes, evaporation from large open water reservoirs, 

astrophysical flows, solar power technology and space vehicle re-

entry. The radiative heat transfer play an important role in 

manufacturing industries for the design of reliable equipment. 

Nuclear power plants, gas turbines and various propulsion device 

for aircraft, missiles, satellites and space vehicles are examples of 

such engineering applications. Such a flow past an infinite vertical 

plate oscillating in its own plane was first studied by 

Soundalgekar [1] in case of an isothermal plate. M.A. Mansour 

[2] studied the interaction of free convection with thermal 

radiation of the oscillatory flow past a vertical plate. Zhang et al 

[3] studied the free convection effects on a heated vertical plate 

subjected to a periodic oscillation. The effects of thermal radiation 

on flow past an oscillating plate with variable temperature were 

studied by Pathak et al. [4]. Free convection effects on a vertical 

oscillating porous plate with constant heating was studied by Toki 

[5]. Chandrakala [6] investigated the radiation effects on flow past 

an impulsively started vertical oscillating plate with uniform heat 

flux. In many industrial applications, hydromagnetic flows also 

occur at very high temperatures in which thermal radiation effects 

become significant. Radiation magnetohydrodynamic convection 

flows are also important in astrophysical and geophysical regimes. 

Soundalgekar [7] worked in hydro-magnetic natural convection 

flow past a vertical surface. Helmy [8] investigated MHD 

unsteady free convective flow past a vertical porous plate. 

Hossain et al. [9] investigated heat transfer response of MHD free 

convective flow along a vertical plate to surface temperature 

oscillation. Kim [10] founded an unsteady MHD convective heat 

transfer past a semi-infinite vertical porous moving plate with 

variable suction. The hydrodynamic free convective flow of an 

optically thin gray gas in the presence of radiation, when the 

induced magnetic field is taken into account was studied by 

Raptis et al. [11]. Chandrakala and Antony Raj [12] studied the 

effects of thermal radiation on the flow past a semi infinite 

vertical isothermal plate with uniform heat flux in the presence of 

transversely applied magnetic field. Chandrakala and Bhaskar 

[13] studied the effects of thermal radiation on the flow past an 

infinite vertical oscillating isothermal plate in the presence of 

transversely applied magnetic field. Abd El-Naby et al. [14] 

numerically investigated magnetohydrodynamic (MHD) transient 

natural convection-radiation boundary layer flow with variable 

surface temperature, showing that velocity, temperature, and skin 

friction are enhanced with a rise in radiation parameter whereas 

Nusselt number is reduced. MHD flow over a moving infinite 

vertical porous plate with uniform heat flux in the presence of 

thermal radiation has been investigated by Rani and Murthy [15]. 

Das [16] analyzed the exact solution of MHD free convection 

flow and mass transfer near a moving vertical plate in presence of 

thermal radiation. Effects of radiation on unsteady MHD free 

convective flow past an oscillating vertical porous plate 
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embedded in a porous medium with oscillatory heat flux have 

been studied by Manna et al. [17]. 

In this paper, we study the radiation effects on MHD 

free convective flow of a viscous incompressible electrically 

conducting fluid past an oscillating vertical porous plate with 

uniform suction or blowing at the plate. The plate is oscillating in 

its own plane with a velocity 
0 cosu t ,   being the frequency of 

the oscillations and 
0u  is a positive constant. A uniform 

transverse magnetic field of strength 
0B  is imposed perpendicular 

to the plate. The governing equations along with the boundary 

conditions are solved analytically. It is observed that the velocity 

1u  decreases near the plate and it increases away from the plate 

with an increase in either magnetic parameter 2M  or radiation 

parameter R  or Prandtl number Pr  or suction parameter S  or 

frequency parameter n  or phase angle n . The fluid velocity 
1u  

increases with an increase in Grashof number Gr . The solution 

also exists for the blowing at the plate. It is seen that the fluid 

temperature   decreases near the plate and it increases away 

from the plate with an increase in either R  or Pr  or S  or n . 

Further, it is seen that the amplitude of the shear stress 
0R  and the 

tangent of the phase angle   at the plate decreases with an 

increase in either R  or Pr  or S . 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 
 

Consider the unsteady flow of a viscous incompressible 

electrically conducting fluid past an oscillating vertical porous 

plate with uniform suction or blowing at the plate. The plate 

oscillates in its own plane with the velocity 
0 cosu t  in a given 

direction. We choose a cartetian coordinates with the x -axis 

along the plate, y - axis perpendicular to the plate. A uniform 

magnetic field of strength 
0B  is imposed perpendicular to the 

plate [See Fig.1] and the plate is taken electrically non-

conducting. Thermal radiation acts as a unidirectional flux in the 

y -direction. The fluid is gray and absorbing-emitting but non-

scattering. Effects of Hall and ion-slip currents are also neglected. 

The electromotive force generated by a magnetic field is a 

function of the speed of the fluid and the magnetic field strength. 

The velocity components are ( , )u v  relative to a frame of 

reference. Since the plate lying on the plane 0y   is infinitely 

long, all the physical quantities will be the function of y  and t  

only. The equation of continuity 0q   gives 0
v

y





 which on 

integration yields 
0(constant)v v  , where ( , )q u v . The 

constant 0v  which denotes the normal velocity at the plate is 

positive for suction and negative for blowing. We assume that the 

magnetic Reynolds number for the flow is small so that the 

induced magnetic field can be neglected. This assumption is 

justified since the magnetic Reynolds number is generally very 

small for partially ionized gases. The solenoidal relation 0B   

for the magnetic field gives 0yB B   constant everywhere in the 

fluid where  , ,x yB B B . 

  

 
  

Fig.1. Geometry of the problem 

 

   Then the fully developed flow of a radiating gas is governed by 

the following equations  

 
2 2

0
0 2

,
u u u B

v g T T u
t y y


 




  
    

  
               (1) 

2

0 2
,r

p

T T T q
c v k

t y y y


    
   

    
                            (2) 

where u  is the fluid velocity in the y -direction, g  the 

acceleration due to gravity,   the kinematic viscosity,   the 

electrical conductivity of fluid,   the fluid density, k  the 

thermal conductivity, pc  the specific heat at constant pressure and 

rq  the radiative heat flux. 

     The boundary conditions of the problem are  

0 cos , cos at 0,
T q

u u t t y
y k

 


   


 

0, 0 asu T y   ,                               (3) 

 where 
0u  is a constant. 

     The radiative heat flux can be found from Rosseland 

approximation [17] and its formula is derived from the diffusion 

concept of radiative heat transfer in the following way  

 
44

,
3

r

T
q

k y

 




 


                                       (4) 

where    is the Stefan-Boltzman constant and k   the spectral 

mean absorption coefficient of the medium. It should be noted 

that by using the Rosseland approximation we limit our analysis 

to optically thick fluids. If the temperature differences within the 

flow are sufficiently small, then equation (4) can be linearized by 

expanding 4T  into the Taylor series about T
 and neglecting 

higher order terms to give:   

 4 3 4= 4 3 .T T T T                                        (5) 

    It is emphasized here that equation (5) is widely used in 

computational fluid dynamics involving radiation absorption 

problems [18] in expressing the term 4T  as a linear function. 

 

    On the use of (4) and (5), the equation (2) becomes  
2 3 2

0 2 2

16
.

3
p

T T T T T
c v k

t y y k y










    
   

    
               (6) 

    Introducing the non-dimensional variables  
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2

0 0 0
1 2

0 0

( )
, , , , ,

u u T T ku u
y u t n

u q u


  

  


           (7) 

 equations (1) and (6) become  
2

21 1 1
12
,

u u u
S Gr M u

  

  
   

  
                           (8) 

2

2
,S

  


  
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  
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                                             (9) 

where 
2

2 0

2

0

B
M

u

 


  is the magnetic parameter, 

34

k k
R

T







  the 

radiation parameter, 
pc

Pr
k


  the Prandtl number, 

2

4

0

g q
Gr

k u

 
  the Grashof number, 0

0

v
S

u
  the suction 

parameter and 
3

3 4

RPr

R
 


. 

   On the use of (5), the boundary conditions (3) become  

          1

1 1
, at = 0,

2 2

i n i n i n i nu e e e e   




 
    


    (10) 

       
1 0, 0 as .u      

    To solve equations (8) and (9) subject to the boundary 

conditions (10), we assume the solution in the following form  

1 1 1( , ) ( ) ( ) ,i n i nu f e f e                                      (11) 

1 1( , ) ( ) ( ) .i n i ng e g e                                        (12) 

      Substituting (11) and (12) in equations (8) and (9) we find that 

1( )f  , 
1( )f  , 

1( )g   and 
1( )g   satisfy the following equations  

 1 1 1( ) ( ) = ( ),''ing S g g                                     (13) 

 1 1 1( ) ( ) = ( ),''ing S g g                                   (14) 

2

1 1 1 1 1( ) ( ) ( ) ( ) ( ),''in f S f Gr g f M f            (15) 

              2

1 1 1 1 1( ) ( ) ( ) ( ) ( ),''in f S f Gr g f M f            (16) 

 where primes denote differentiation with respect to  . 

    The corresponding boundary conditions for 
1( )f  , 

1( )f  , 

1( )g   and 
1( )g   are  

        1 1 1 1

1 1 1
(0) (0) , (0) = , (0) = ,

2 2 2
g g f f             

       
1 1 1 10, 0, 0, 0 a .g g f f s                       (17) 

       

    Solutions of equations (15) and (16) subject to the boundary 

conditions (17) are  

( ) ( )

1 1

1 1
( ) , ( ) ,

2( ) 2( )
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i i

      
   
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     (18) 

( ) ( ) ( )1 1 1 1
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1
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2 2
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f e A i B e e

        
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 
      (19) 

( ) ( ) ( )1 1 1 1
1

1
( ) ( ) ,

2 2

i i iGr
f e A iB e e

        
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 
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 where  

     

1
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      2 2 2

1 1, 2 ,A S M B S n            
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On the use of (18)-(20), equations (12) and (11) yield  

   2 2
( , ) = cos( ) sin( ) ,

e
n n



        
 



  


           (22) 

 1
1 1 1( , ) (1 )cos( ) sin( )u e Gr A n GrB n

 
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
      

             cos( ) sin( ) .e A n B n                            (23) 

Solutions (22) and (23) are valid for both suction and blowing at 

the plate. Equations (14) and (15) of Rani and Murty [15] are 

incorrect as they are independent of time t . This is due to error in 

boundary condition (4) of Rani and Murty [15]. The correct 

boundary condition is given by equation (3) and hence the 

equations (22) and (23) are not identical with the equations (14) 

and (15) of Rani and Murty [15] in the absence of suction/ 

blowing ( 0S  ). 

 

3. RESULTS AND DISCUSSION 
We have presented the non-dimensional velocity 

1u  and the 

temperature   for several values of magnetic parameter 2M , 

radiation parameter R , Prandtl number Pr , Grashof number Gr , 

suction parameter S , frequency parameter n  and phase angle 

n  in Figs.2-13. Fig.2 shows that the velocity 
1u  decreases near 

the plate and it increases away from the plate with an increase in 

parameter 2M . The presence of a magnetic field in an 

electrically-conducting fluid introduces a force called Lorentz 

force which acts against the flow if the magnetic field is applied 

in the normal direction as considered in the present problem. This 

type of resistive force tends to slow down the flow field. Since the 

magnetic field has a stabilizing effect, the maximum velocity 

overshoot is observed for the conducting air while minimum 

overshoot takes place for the water. It is observed from Fig.3 that 

the fluid velocity 1u  decreases near the plate and it increases 

away from the plate with an increase in radiation parameter R . 

The radiation parameter arises only in the energy equation in the 

thermal diffusion term and via coupling of the temperature field 

with the buoyancy terms in the momentum equation, the fluid 

velocity is indirectly influenced by thermal radiation effects. An 

increase in radiation parameter R  clearly reduces substantially 

the fluid velocity in the boundary layer i.e. decelerates the flow. 
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Fig.4 reveals that the fluid velocity 
1u  decreases near the plate 

and it increases away from the plate with an increase in Prandtl 

number Pr . Physically, this is true because the increase in the 

Prandtl number is due to increase in the viscosity of the fluid 

which makes the fluid thick and hence causes a decrease in the 

velocity of the fluid. It is seen from Fig.5 that the velocity 
1u  

increases near the plate but on moving away from the plate, the 

opposite trend is observed with an increase in Grashof number 

Gr . An increase in Grashof number leads to increase the fluid 

velocity, this is because, an increase in Grashof number means 

more heating and less density. Fig.6 displays that the fluid 

velocity 
1u  decreases near the plate and it increases away from 

the plate with an increase in suction parameter S . This means 

that the suction at the plate have a retarding influence on the flow 

field. It is seen from Figs.7-8 that the fluid velocity 
1u  decreases 

near the plate and it increases away from the plate with an 

increase in either frequency parameter n  or phase angle n . This 

means that the frequency parameter or the phase angle have a 

retarding influence on the flow field. It is observed from Fig.9 that 

the temperature ( )   decreases near the plate and it increases 

away from the plate with an increase in radiation parameter R . 

Increasing radiation parameter clearly depressed the fluid 

temperature in presence of conducting air ( 0.71)Pr   and 

magnetohydrodynamic flow. Also, the plate temperature 

decreases with an increase in radiation parameter R . Fig.10 

reveals that the temperature ( )   decreases near the plate and it 

increases away from the plate with an increase in Prandtl number 

Pr . Prandtl number controls the relative thickness of the 

momentum and thermal boundary layers. When Pr  is of low 

value, heat diffusion exceeds momentum diffusion. For <1Pr , 

the thickness of the thermal boundary layer therefore exceeds the 

thickness of the velocity boundary layer that is, temperatures will 

be greater. In Fig.10, temperatures are seen to decrease 

considerably with an increase in Pr  values as we progress into 

the boundary layer regime; profiles also decay much more sharply 

for higher Pr  values since momentum diffusion exceeds energy 

diffusion for >1Pr . It is found from Figs.11-12 that the 

temperature ( )   decreases near the plate and it increases away 

from the plate with an increase in either suction parameter S  or 

frequency parameter n . Fig.13 demonstrates that the fluid 

temperature ( )   increases near the plate and it decreases away 

from the plate with an increase in phase angle n . It is seen that 

there exists a boundary layer of thickness of the order  1

1O    

where 
1  is given by (21). It is seen that the thickness of this 

boundary layer decreases with an increase in either magnetic 

parameter 2M  or suction parameter S  or frequency parameter 

but it is independent of radiation parameter R . 

 

 
Fig.2: Velocity profiles for 2M  when = 4R , = 0.5S , 

0.71Pr  , 5Gr  , 2n  , = 0.5  and 
4

n


    

 
Fig.3. Velocity profiles for R  when 2 5M  , 0.5S  , 

0.71Pr  , 5Gr  , 2n  , 0.5   and 
4

n


    

 
Fig.4. Velocity profiles for Pr  when 2 5M  , 0.5S  , 4R  , 

5Gr  , 2n   and 
4

n


    
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Fig.5. Velocity profiles for Gr  when 2 5M  , 0.5S  , 4R  , 

0.71Pr  , 2n   and 
4

n


    

   
Fig.6. Velocity profiles for S  when 2 5M  , 5Gr  , 4R  , 

0.71Pr  , 2n   and 
4

n


    

   
Fig.7. Velocity profiles for the variation of n  when 2 5M  , 

5Gr  , 4R  , 0.71Pr  , 2n   and 
4

n


    

  
Fig.8. Velocity profiles for n  when 2 = 5M , = 5Gr , = 4R , 

= 0.71Pr , = 2n  and = 0.5S   

  
 Fig.9. Temperature profiles for Ra  when = 0.71Pr , = 0.5S , 

= 2n  and =
4

n


   

  
Fig.10. Temperature profiles for Pr  when = 4R , = 0.5S , 

= 2n  and =
4

n


   



International Journal of Computer Applications (0975 – 8887)  

Volume 65– No.3, March 2013  

33 

  
Fig.11. Temperature profiles for S  when = 0.71Pr , = 4R , 

= 2n  and =
4

n


   

  
Fig.12. Temperature profiles for n  when = 0.71Pr , = 4R , 

= 0.5S  and =
4

n


   

 

  
Fig.13. Temperature profiles for n  when = 4R , = 0.71Pr , 

= 0.5S  and = 2n   

 

    The non-dimensional shear stress at the plate 0   is given by  

         1
0

=0

= cos( ),x

u
R n



  


 
   

 
                                (24) 

 where  

       
2

0 1= (1 )R Gr A B A GrB       


 

          
1

2 2

1 1(1 )Gr A A B GrB        


                (25) 

   1 1

1

(1 )
tan = ,

(1 )

Gr A A B GrB

Gr A B A GrB

   


   

   

   
                         (26) 

 where  ,  , 
1 , 

1 , A  and B  are given by (21). 

       Variations of the amplitude of the shear stress 
0R  and the 

tangent of the phase angle of the shear stress tan  respectively 

against 2M  for several values of R , Pr , S  and n  with 
4

n


   

are shown in Figs.14-20. It is observed from Figs.14-16 that the 

amplitude 
0R  decreases with an increase in either radiation 

parameter R  or Prandtl number Pr  or suction parameter S . 

Fig.17 shows that the amplitude 
0R  first increases, reaches a 

maximum and then decreases with an increase in frequency 

parameter n . It is observed from Figs.18-20 that the tangent of 

the phase angle tan  decreases with an increase in either 

radiation parameter R  or Prandtl number Pr  or suction 

parameter S .  

  

   
Fig.14. Amplitude 

0R  for R  when 0.5S  , 0.71Pr  , 0.5S   

and 2n     
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 Fig.15. Amplitude 
0R  for Pr  when = 4R , 0.5S   and = 2n   

   
Fig.16. Amplitude 

0R  for S  when = 4R , = 0.71Pr  and = 2n   

 

  

  
Fig.17. Amplitude 0R  for n  when = 4R , = 0.5S  and 

0.71Pr    

  
Fig.18. The tangent of phase angle tan  for R  when 0.5S  , 

0.71Pr   and 2n    

   
Fig.19. The tangent of phase angle tan  for Pr  when 4R  , 

0.5S   and 2n    

   

   
Fig.20. The tangent of phase angle tan  for S  when 4R  , 

0.71Pr   and 2n    
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4. CONCLUSION 
We have studied the radiation effects on an MHD free convection 

flow of a viscous incompressible electrically conducting fluid past 

an oscillating vertical porous plate with a uniform suction or 

blowing at the plate. It is observed that the fluid velocity 
1u  

decreases near the plate and it increases away from the plate with 

an increase in either magnetic parameter 2M  or radiation 

parameter R  or Prandtl number Pr  or suction parameter S  or 

frequency parameter n  or phase angle n . The fluid velocity 
1u  

increases with an increase in Grashof number Gr . It also is 

observed that the solution also exists for the blowing at the plate. 

The fluid temperature   decreases near the plate and it increases 

away from the plate with an increase in either R  or Pr  or S  or 

n . Further, it is seen that the amplitude of the shear strass 
0R  and 

the tangent of the phase angle   at the plate decrease with an 

increase in either R  or Pr  or S . 
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