
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.3, March 2013

6

Direct Migration Method of RDB to Ontology while
Keeping Semantics

Jamal Bakkas

University Hassan I, FSTS
Department of Mathematics

and computer science

Mohamed Bahaj
University Hassan I, FST Settat

Department of Mathematics
and computer science

Abderrahim Marzouk
University Hassan I, FST Settat

Department of Mathematics
and computer science

ABSTRACT

The lack of semantic richness is one of the biggest drawbacks

of the data stored in the classic relational databases (RDB).

This paper provides a method that gives a meaning to these

data to serve the semantic web. This method allows a direct

and automatic conversion of RDB to ontology, it operates on

two levels: The first one is based on the principle of reverse

engineering; its purpose is to extract the RDB schema and

convert it directly to an ontology model (TBOX). The second

level aims to populate the ontology by individuals (ABOX)

using data of different records of the RDB and basing on the

model of the ontology. Our approach takes into account the

relationships established via foreign keys between tables, and

the semantic of integrity constraints during the conversion,

which allows keeping the consistency and integrity of data.

General Terms

RDB, Ontology

Keywords

RDB, Ontology, Mapping, Semantic web.

1. INTRODUCTION
The mapping between ontologies and RDBs in both directions

has a major importance. Thus, a mapping of ontology to RDB

can exploit the power and performance of DBMSs regarding

the storage and access speed mainly for large ontologies. In

this area there are several researches like that conducted by

Fankam, Pierra & al who introduced the notion of Ontology-

Based DataBases [1],[2].The mapping in the other direction

allows conversion of existing data in RBDS, which are

semantically poor to ontology for supplying the semantic web,

thus Pérez & al have proposed the introduction of the notion

of "Relational.OWL" which consists to represent a RDB into

RDF/OWL, and then use the SPARQL query language to

make queries on this representation in order to create the

equivalent ontology[3]. Bizer and Seaborne have introduced

D2R MAP and D2RQ which are declarative languages to

describe the mapping between RDB and the semantic web [4],

[5]. Other solutions propose conversion tools for mapping

such as RDB2Onto [6] and DataMaster [7] and others.

This paper presents a method for automatic and direct

conversion of a RDB to an ontology maintaining the

consistency and integrity of data. This conversion is done in

two steps one is interested in schemas and the other focuses

on data. The objective of the first step is to extract the schema

of the RDB and convert it into ontology model (TBOX),

while distinguishing tables that represent entities of those that

represent associations. And the second step focuses on the

conversion of records from different tables of RDB to

instances (ABOX) of the elements of TBOX. The conversion

process takes into account the conservation of the RDB

semantic values presented by integrity constraints, primary

keys, and foreign keys.

What remains of this paper is organized as follows: Section 2

provides a general description of our method and its two

levels. In Section 3, we describe the conversion of schema

level and present the conversion algorithm. Section 4

discusses the conversion at the data level and provides the

algorithm used at this level. In Section 5, we show - in detail -

a case study with the presentation of our validation tool that

implements both algorithms. A conclusion and perspectives of

this work are the subject matter of section 6.

2. DESCRIPTION OF THE METHOD
Our method operates on two levels: schema level and data

level. The first level focuses on the extraction of the RDB

schema, rummaging through catalogs of DBMS to create the

model of ontology which is composed of a set of classes with

data type properties and linked to each other (classes) by

object properties. This model constitutes the TBOX part of

ontology. The second level aims to extract data (records) of

the RDB and use them for assertions of the various elements

of the model obtained in the first level. The set of these

assertions constitutes the ABOX part of ontology.

Fig 1: Descriptive schema of the proposed method

We have defined the database as a set of tables. Each table is

characterized by its name, the list of its attributes and a list of

its records. Each attribute is characterized by: its name, its

type, a Boolean to test whether the field is a primary key,

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.3, March 2013

7

another Boolean to test whether the converted field is a

foreign key, and the table to which it refers if it is a foreign

key. A record is a set of pairs (attribute, value), which

associates for each attribute a corresponding value. We can

therefore define an RDB as follows:

DB={Table/

Table=(tableName , attributeList, recordList/

attributeList={(attributeName,attributType,is_p

rimaryKey,is_forenKey,tableSource)}

recordList={ (attribute,value)/

attribute attributeList

}

}

With

tableSource: The name of the table referenced by the attribute

if it is a foreign key, otherwise tableSource has no value.

Fig 2: Database description

3. CONVERSION AT THE SCHEMA

LEVEL
Before starting the conversion process at this level, we have

defined the model of ontology as a set of classes, a set of

properties of data type, and a set of object properties, each

class is characterized by name and the name of its super class.

Each of the data type properties and object properties is

characterized by its name, its domain, and range as indicated

below:

TBOX : { C,{dataTP},{ object} /

 C= (className,classParent),

 dataTP= (dataTPDomain, dataTPName, dataTPRange) ,

 objectP=(objectPDomain, objectPName, objectPRange)

}

Fig 3: description of ontology model

3.1 Conversion process
Before starting the conversion, we have created two classes

"ENTITY" and "ASSOCIATION"; these two classes are used

to classify the RDB tables: the tables which represent entities

are converted to classes that inherit from class "ENTITY" and

the tables which represent associations (n,n) are converted to

classes that inherit from "ASSOCIATION". Let’s recall that

an association (n,n) is represented at the physical level by a

table with the primary key which is made of the foreign keys

linking this table with the tables related by this association.

3.2 Conversion of fields
Each field is converted to a data type property whose name is

the field name, its domain is the class that represents its table

and its range is the type of field. And to ensure the atomicity

of attributes, we declare these properties as functional

properties.

If a field is a primary key, it requires unique values for

records. This implies that the values of the data type property

that represent this field must be different. Therefore, these

properties must be declared as InverseFunctional properties.

3.3 Conversion of foreign keys
The field which is a foreign key generates an object property

linking the class that represents the table of field to the class

that represents the table referenced by the foreign key. A field

of a table can be referenced by multiple foreign keys in

different tables, so to avoid creating object properties with the

same name; we propose to name these properties by

concatenating the names of the two classes linked.

If these foreign keys compose the primary key of the table,

this table is converted into class that inherits from the class

ASSOCIATION, and each of these foreign keys generates

object property as described above.

<owl:ObjectProperty rdf:ID="Teach_Professor ">

<rdfs:domain rdf:resource="#Teach"/>

<rdfs:range rdf:resource="#Professor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="Teach_Module ">

<rdfs:domain rdf:resource="#Teach"/>

<rdfs:range rdf:resource="#Module"/>

</owl:ObjectProperty>

Fig 4: Preservation of the foreign key semantics at

schema-level

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.3, March 2013

8

3.4 The conversion algorithm at the

schema level
Creat TBOX

Creat Class "ENTITY"

Creat Class "ASSOCIATION"

For each T of DB do

 Create C of TBOX

 C.ClassName= "T.tableName"

 For each A of T.attributList do

 If not(A.is_ forenKey) then

 Creat dataTP of SchemaOntology

 dataTP.dataTPName = "A.attributeName "

 dataTP.dataTPDomain = "T. tableName"

 dataTP.dataTPRange = "getType(A.attributType)"

 dataTP is FunctionnalProperty

 If A.is_primaryKey then

 C.classParent = "ENTITY "

 dataTP is InverseFunctionalProperty

 endif

 Else

 Create objectP of SchemaOntologiy

 objectP.objectPName=

 concatenate("T.tableName","_","T. tableSource ")

 objectP.objectPDomain="T.tableName"

 objectP.objectPRange ="A.tableSource"

 objectP is FunctionnalProperty

 If A.is_primaryKey then

 C.classParent = "ASSOCIATION "

 endif

 endif

 EndForEach

EndForEach

Fig 5: Algorithm 1: conversion at the schema level

4. CONVERSION AT THE DATA

LEVEL
The result of the previous conversion is the model of the

ontology which represents the diagram of the RDB.

Thereafter, we make assertions of the elements of this model

using the values of records from the RDB for create

individuals.

Before starting the conversion at this level, we define a

ABOX as a list of individuals, each individual is characterized

by a name (individualName), type (individualType) which is

the class instantiated by the individual, a list of assertions of

data type property (assertionDTPList), and another list of

assertions of object properties (assertionOPList). The list of

assertions data type property is a set of triplets (dTPname,

dTPtype, dTPvalue), while an assertion of an object property

is a pair (oPname, individualTarget), where individualTarget

is the individual connected to the individual by the current

object property. We define, therefore, ABOX as follows:

ABOX : { I /

I = (individualName, individualType,

assertionDTPList,assertionOPList /

assertionDTPList ={ (dTPName,dTPtype,dTPvalue)}

assertionOPList={(oPName, individualTarget)}

}

Fig 6: description of ABOX

4.1 Conversion of records
Each record of RDB is converted to an individual of ontology.

This individual is the assertion of the class that represents the

table of record to convert. So we generate as many instances

of a class as records of the corresponding table. And to

guarantee the uniqueness of these individuals, we propose to

give for each of them a name obtained by concatenating the

name of the table and the primary key value corresponding to

the converted record as follows:

<owl:NamedIndividual

 rdf:about="tableName_primarykeyValue">

Once the individual is created, it must be filled by the values

of all fields of the record, including primary keys and foreign

keys, these values are used for the assertion of the data type

properties corresponding to these fields.

4.2 Semantic conservation of integrity

constraints
Each record of a table with a foreign key value which

connects it to another record in another table is converted into

an individual containing an assertion of the object property

linking the classes corresponding to the two tables

[paragraph3]. This assertion connects the individual of record

to convert, to the individual (target) corresponding to the

record referenced by the value of the foreign key. The name

of the target individual is obtained by concatenating the name

of the table referenced and the value of the foreign key, since

this value is the same as the value of primary key of target

individual.

Fig 7: conservation of the semantics of foreign key at data

level

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.3, March 2013

9

The generated code is as follow:

<owl:NamedIndividual rdf:about="Professor_1">

 <rdf:type rdf:resource="Professor"/>

 <idProf rdf:datatype="&xsd;integer">1</idProf>

 <name rdf:datatype="&xsd;string">Ahmed Badaoui

 </name>

 <grade rdf:datatype="&xsd; string ">PES</grade>

 <Professor_Faculty rdf:resource="Department_2"/>

</owl:NamedIndividual>

4.3 The conversion algorithm at the data

level

Creat ABOX

For each T of DB do

 For each R of T.recordList do

 Create I of ABOX

 I.individualName = "concatenate(T.tableName,"_"

 ,primaryKeyValue(R))"

 I. individualType ="T.tableName"

 //With the following data type properties Assertions

 For each P of R do

 Creat a of I.assertionDTPList

 a.dTPName=P.attribute.attributeName

 a.dTPType=P.attribute.attributeType

 a.dTPValue=P.value

 If (P.attribute.is_foreingKey) then

 Creat o of assertionOPList

 o.oPName= "P.attribute. attributeName"

 o.individualTarget="P.attribute. tableSource"

 End if

 End For each

 End For each

End For each

with:

primaryKeyValue (R): a function that takes as a parameter the

record R and returns value corresponding to the primary key.

Fig 8: Algorithm 2: conversion at the data level

5. CASE STUDY AND

IMPLEMENTATION OF ALGORITHMS
Consider the database below [Fig. 5] which includes various

characteristics and types of relationships between tables

namely, primary keys, foreign keys, and primary key

composed by foreign keys.

To validate our algorithms, we have developed a tool [Fig. 10]

which takes as input a RDB, then extracts its schema and

applies Algorithm 1 [Fig. 2] to create the ontology model.

Then browse the records to create instances by applying the

second Algorithm [Fig. 8]. Both results constitute the

resulting ontology which is stored in a file with the name of

the RDB with the extension ". owl".

To avoid any ambiguity of interpretation of the different

identifiers of our ontology, we defined a namespace which

bears the name of the RDB with an URI which is the URL of

the ontology. Thus, all of our ontology identifiers are prefixed

by the name of the RDB.

To view our ontology and test its consistency, we loaded in

Protégé. The figure below [Fig. 11] is obtained using the

plugin OntoGraf protégé; it shows the hierarchy of classes and

individuals of each class. This figure clearly shows that

classes and individuals of resultant ontology have kept the

semantic links between tables and between records of the

RDB:

Fig 9: Example of a RDB with different types of

relationships between tables

Fig 10: Our tool for automatic creation of ontology from a

RDB

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.3, March 2013

10

Fig 11: OntoGraf schematic of the resulting ontology

6. CONCLUSION AND PERSPECTIVES:
In this paper, we show that our conversion method of RDB to

ontology keeps certain semantic characteristics of the RDB,

while distinguishing the schema of the data. Our future

searches will focus, first, on the interrogation of the resultant

ontology from this conversion by analogy to interrogation of

the RDB by requests formulated by the SQL language, and

secondly, the inverse conversion of an ontology to a RDB,

which will allow us to exploit the strengths of a DBMS

namely the access speed, and mass storage, to store large

ontologies that are beginning to appear on the net, and the size

of which increasingly disquieting.

7. REFERENCES
[1] Chimene Fankam, Stephane Jean, and Guy Pierra:

“Numeric reasoning in the Semantic Web” In ESWC

First International Workshop on Semantic Metadata

Management and Applications (SeMMA), volume 346,

pages 84–103. CEURWorkshop Proceedings. 2008.

[2] Hondjack Dehainsala, Guy Pierra, and Ladjel

Bellatreche: “OntoDB: An Ontology-Based Database for

Data Intensive Applications”. In Proceedings of the 12th

international conference on Database systems for

advanced applications, Bangkok, Thailand, April 09-12.

2007

[3] Cristian Pérez de Laborda and Stefan Conrad :

“Database to Semantic Web Mapping using RDF Query

Languages ”. 25th International Conference on

Conceptual Modelling, Tucson Arizona. November

2006.

[4] Christian Bizer, Andy Seaborne : “D2RQ – Treating

Non-RDF Databases as Virtual RDF Graphs ”. In

Proceedings of the 3rd International Semantic Web

Conference (ISWC2004). 2004.

[5] Christian Bizer : “D2R MAP - A Database to RDF

Mapping Language ”. In WWW2003, The Twelfth

International World Wide Web Conference, Budapest,

HUNGARY. Poster presentation. 2003

[6] Martin Šeleng, Michal Laclavík, Zoltán Balogh, Ladislav

Hluchý “RDB2Onto: Approach for creating semantic

metadata from relational database data”. In: Informatics

2007, the ninth international conference on informatics.

2007

[7] Csongor Nyulas, Martin O’Connor and Samson Tu “

DataMaster – a Plug-in for Importing Schemas and Data

from Relational Databases into Protégé ”. In: 10th

international Protégé conference. 2007.

[8] Chimene Fankam : “OntoDB2 : Support of Multiple

Ontology Models within Ontology Based Database ”. In

ACM International Conference Proceeding Series.

Volume 326, pp.21-27. 2008

