
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.25, March 2013

23

Validating Extendibility of the Object-Oriented Software
using Fuzzy Computing Techniques

Vibhash Yadav

Computer Science & Engineering Department
Krishna Girls Engineering College

Kanpur, India

Raghuraj Singh

Computer Science & Engineering Department
Harcourt Butler Technological Institute

Kanpur, India

ABSTRACT
A large number of metrics have been proposed for measuring

quality of object-oriented software from its code. These

include size, inheritance, cohesion and coupling, abstraction,

hierarchies, encapsulation, composition, polymorphism,

messaging etc. These object-oriented metrics affect the design

quality of object oriented software as they are related with the

design attributes like Reusability, Functionality, Effectiveness

and Extendibility. In this paper, a fuzzy logic based model

have been proposed that analyses object oriented metrics for

one of the important attributes i.e. Extendibility. The model

can be used to validate the precise role of design quality

metrics in Extendibility of a software design. On the basis of

results obtained, it has been concluded that the design quality

of Object Oriented Software can be best assessed by fuzzy

analysis of design quality metrics.

General Terms
Object Oriented Design Quality

Keywords
Design Quality, Product Quality, Design Quality Metrics,

Design Properties, Design Quality Attributes, Fuzzy

Computing.

1. INTRODUCTION
Object-oriented design and programming is the dominant

development paradigm for software systems today. With the

growing complexity and size of object oriented systems, the

ability to reason about quality attributes based on

automatically computable measures is becoming increasingly

important(1,2). Set of metrics have been suggested which are

independent and are useful to compute the design quality of

software. Table 1 lists some of the important identified

metrics for design quality.

Table 1. Metrics For Design Quality

Sr.

No.
Metric

Name of the

Metric
Description

1. DC Design size in class
It counts the total

number of classes

2. NH
Number of

hierarchies

It is a count of total

number of class

hierarchies

3. ACA
Average count of

ancestors

This metric count the

average number of

classes from which a

class inherits the

information

4. DAM Data access metrics

This metric is ratio of

number of

protected/private

attributes to the total

number of attributes

defined in the class

5. CC Class coupling

It counts the value

through which

different classes are

directly related to

6. CAM
Cohesion among

methods in class

This compute the

value through which

methods of a class are

related

7. MA
Measures of

aggregation

It count the number

of data declarations

whose types are user

defined

8. CPM

Count of

polymorphic

methods

This count the

methods of

polymorphic behavior

9. CIS Class interface size

It counts the number

of public methods in

a class

10. TNM
Total number of

methods

It counts the total

number of methods in

a class

11. MOA
Measure of

abstraction

It is the ratio of the

number of the

methods inherited by

a class to the total

number of methods

accessible by member

methods of the class

Each of the above metric is related with one specific design

property. The standard properties for the metrics are given in

the table 2.

Table 2. Design Property

Design property Definition

Design Size
The total number of classes used in a

design.

Hierarchies

These are used to represent different

generalization-specialization perceptions

in a design. It is the total number of

classes containing children in a design and

are non inherited.

Abstraction

A measure of a generalization-

specialization on aspect of the design

classes in a design which has one or more

descendants exhibit this property of

abstraction.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.25, March 2013

24

Encapsulation

Defined as the bundling of data and

behavior within a single module. In object

oriented design it means that the internal

representation of an instance is hidden

from view outside of the instances

definition.

Coupling

Defines the interdependency of an object

on other object in a design. It is a measure

of the number of other object that would

have to be accessed by an object in order

for that object to function correctly.

Cohesion

Accesses the relatedness of methods and

characteristics in a class. Strong cohession

is indicated by strong overlap in the

module parameters and characteristics.

Composition

Measure the aggregation relationship in an

object oriented design like “part-of”,

“has”, “consist-of”, “part-whole”

relationship.

Inheritance

It is a method to find the relationship

amoung/between classes which is related

to the level of nesting of classes in an

inheritance hierarchy.

Polymorphism

Defines the substitution of objects with

matching interfaces at runtime.It also

measures dynamically determined services

at run time.

Messaging

A count of the number of public methods

that are available as services to other

classes.it is the services measure which a

class provieds to others.

Complexity

The difficulty level in understanding and

interpreting the entire structure of classes

along with their relationships.

Six higher order design quality attributes are described in the

Table 3 below. These attributes can be treated as major

decisive factors for the design quality Object Oriented

Software.

Table 3. Standard Design Quality Attributes

Quality

Attributes
Definition

Extendibility

 It is a systemic measure of the ability to

extend a system and the level of effort

required to implement the extension.

Effectiveness

It is the method to get the functional

working and its behaviour for object

oriented systems.

Functionality

The obligations assigned to the classes

of a design, that are made accessible by

the classes by using their public

interfaces.

Reusability

Reusability is object oriented design

property that allows a design to be

reapplied to a problem without any

significant effort.

Flexibility

This characteristic allows the

incorporation/ changes in the design. It

is inversly proportional to the software

quality.

Understandability

This is the property of design that

enables understandability to be easily

learned. It is directly related to the

complexity of the software design .

2. EXISTING QUALITY MODELS
For evaluating quality indirect models have been developed

by researchers to measure software product quality by using a

set of quality attributes, characteristics and metrics (1,3). The

main assumption for determining the quality models is that

external product attributes are influenced by characteristics of

internal products and also evaluation of internal

characteristics concludes about external quality attribute of

products (2, 3, 4).
Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

2.1 McCall’s Quality Model (1977)
The quality model presented by Jim McCall et al,(also known

as the General Electric Model of 1977) is one of the most

renowned predecessor of today’s quality models.

For determining the product quality of a software, McCall

quality model gives three major aspects:

a) Product revision- ability to undergo changes.

b) Adaptability to new environments

c) Product operations its operation characteristics.

 The main idea behind this model is that a complete

software quality picture should be provided by synthesized

quality factors. Answers to yes and no questions accomplish

the actual quality metric that then is put in relation to each

other.

2.2 Boehm’s Quality Model (1978)
Barry W. Boehm’s quality model is the second basic and

commencing predecessors of today’s quality models. Boehm

addresses the contemporary shortcomings of models that

automatically and quantitatively evaluate the software quality.

Software quality is qualitatively defined by a given set of

attributes and metrics through his models (3,5,6). Overall

quality level contributed by a hierarchical quality model,

structured around primitive, intermediate and high level

characteristics presented in both Boehm’s as well as in

McCall’s quality model..

2.3 Dromey’s Quality Model
R. Geoff Dromey’s quality model is the most recent model

that is similar to McCall’s and Boehm’s quality model. A

product based quality model proposed by Dromey identifies

that quality evaluation differs for each product and also there

is a need for a more dynamic idea for modeling the process

that can be applied for product transition in different systems

(4,7). In this model the relationship between the quality

attributes and the sub-attributes is focused along with the

attempt to connect software product properties with software

quality attributes.

Elements of this model are:

a) Product properties that influence quality

b) High level quality attributes

c) Means of linking the product properties with the quality

attributes.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.25, March 2013

25

2.4 ISO 9126
ISO 9126 is the software product evaluation standard from the

International Organization for Standardization. It defines six

properties which describe software quality and minimum

overlap.

ISO 9126 also introduces another type of quality-quality in

use-having following elements:-

a) Effectiveness

b) Productivity

c) Safety

d) Satisfaction

ISO 9126 describes the following quality parameters:

a) Functionality

b) Reliability

c) Usability

d) Efficiency

e) Reusability

f) Portability.

3. FUZZY COMPUTING
Concept of Fuzzy Logic began in 1965 with the proposal of

fuzzy set theory by Lotfi Zadeh. Fuzzy logic is a form of

many-valued logic; it deals with reasoning that is fluid or

approximate rather than fixed and exact.[8] In contrast with

"crisp concept", where binary sets have two-valued: 1 for true

or 0 for false, fuzzy logic variables may have a true value that

lie between 0 and 1. Fuzzy logic has been again extended to

handle the concept of partial truth, where the value of truth

may exist between completely true and completely false.

Furthermore, for linguistic variables, these degrees may be

managed by specific/defined functions.

3.1 Using Fuzzy Logic to represent Metric

Data

The proposed solution to the problem of boundary definition

is fuzzy logic. Fuzzy logic provides the ability for a machine

to perceive the world as humans do by representing vague and

ambiguous knowledge (Negnevitsky, 2005).The intention is to

blur the boundaries of binary thinking by allowing the

classification of objects into multiple sets. Fuzzy sets are

intended to blur boundaries so that various items can belong

to any set (Hopgood, 2001).

3.2 Mamdani's Method

The process can be described using four steps [9]:

Step 1. Evaluate the antecedent for each rule

Given the inputs (crisp values), we obtain the membership

values for those one (inputs). This whole process of finding

membership function is known as 'input fuzzification'. If the

rule antecedent has more than one part, a fuzzy operator (t-

norm or t-conorm) is applied to obtain a single membership

value.

Step 2. Obtain each rule's conclusion

Given the consequent of each rule (a fuzzy set) and the

antecedent value obtained from step 1, we proposed/apply a

fuzzy implication operator to obtain a new fuzzy set. Two of

the most commonly used implication methods are:

1) minimum, which truncates the consequent's membership

function, and

 2) product, which scales it.

Step 3. Aggregate conclusions

In this step, we combine the outputs obtained for each rule in

step 2 (obtain conclusion) into a single fuzzy set, using a

fuzzy aggregation operator. Some of the most commonly used

aggregation operators are the sum, the probabilistic sum and

the maximum.

Step 4. Defuzzification

When we try to solve a decision problem, we want the output

in crisp value set and not a fuzzy set. Therefore, we need to

transform the fuzzy set we obtained in step 3 into a single

value. The most famous methods of defuzzification are the

centroid, which returns the area of the center under the fuzzy

set obtained in the step 3.

It is worth mentioning that Mamdani's method is useful when

there is a small number of a variable. Otherwise, the following

difficulties may rise:

a) The number of rules increases exponentially with the

number of variables in the antecedent.

b) The more rules we construct, the harder is to know if they

are suitable for our problem.

c) If the number of variables in the antecedent is too much

large, then it would be difficult to grasp the casual

relationship between the antecedents and the consequents. So,

constructing new rules will become too harder.

3.3 Fuzzy Logic Implementation in Matlab
Fuzzy inference is the process of formulating the mapping

from a given input to an output using fuzzy logic. The

mapping then provides a basis from which decisions can be

made, or patterns discerned. Mamdani-type inference, as

defined for the toolbox, expects the output membership

functions to be fuzzy sets. After that for the aggregation

process, there exist a fuzzy set for each output variable that

requires defuzzification. It is possible, and in many cases it is

much efficient, to use a single spike as the output membership

functions instead of distributed fuzzy set.

The Fuzzy Inference System in MATLAB consists of the FIS

Editor, Rule Editor, Rule Viewer, Surface Viewer and

Membership Function Editor. In the FIS Editor, The drop-

down lists let you modify the fuzzy inference functions. The

Current Variable Area displays the name of an input or output

variable, its type, and default range. A status line at the

bottom displays information about the most recent operation.

The Membership Function Editor is the tool that lets display

and edit all of the membership functions associated with all of

the input and output variables for the entire fuzzy inference

system. The Rule Viewer displays a roadmap of the whole

fuzzy inference process.

4. MODEL DEVELOPMENT
Here two approaches have been used for the assessment of

Software Quality. The first approach calculates Design

Quality from UML diagrams of Object Oriented Software as

input. In the second approach, code base is taken for

assessment of the product quality. The results of both the

approaches are compared. Regression and other analysis

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.25, March 2013

26

approaches are used to show the relationship between design

quality and product quality and establish the co-relation

between the two metrics. Design quality and Product quality

are assessed for three category of software; i.e. Good,

Medium and Bad which is known priori. Thus, fuzzy logic

can be applied at its best for the analysis of design quality

metric data

As specified in table 3, six quality attributes have been

identified which affect the overall quality of an object

oriented design software system. In order to evaluate their

individual impact on software quality, identification of

various design properties & corresponding metrics for each

individual quality attribute have been done. Then the rules for

quality attributes defined and generated membership function

through which we get rule view for each one. From these rule

views the metric values corresponding to the attribute can be

analyzed. In the following subsection, work shows for one of

these qualities attributes i.e. Extendibility.

4.1 Extendibility
This refers to the presence and usage of properties in an

existing system that allows for the incorporation of new

requirements in the design (3,9). This property of software

quality is measured by the following design properties:

Table 4. Design Properties For Extendibility

Combined impact of these metrics on Extendibility is in

proportionately relation which has been established as [5]:

Extendibility = 0.5*Abstraction - 0.5*coupling + 0.5*

 Inheritance +0.5* Polymorphism

Metrics that are connected with extendibility have been

detailed in Table 6.

Table 6: Metrics used for predicting Extendibility

Metric Name Category Description

ANA

Average

number of

Ancestors

Abstraction

This Metric value

signifies the average

number of classes

from which a class

inherits information.

DCC

Direct

class

coupling

Coupling

Counts of different

no of classes that a

class is directly

related to.

MFA

.

Measure of

functional

abstraction

Inheritance

The ratio of the

number of methods

inherited by a class

to the total no of

methods accessible

 by member methods

of class

NOP

No. of

polymorph

ic

methods

Polymorphis

m

Count of the

methods that can

exhibit polymorphic

behavior.

The FIS Editor (Figure 1) for extendibility takes the four

metrics i.e. ANA, DCC, MFA and NOP as input. Membership

function for extendibility has been defined as follows: Low (0

- 0.7 with 0.3 as Peak Value), Fuzzy Value (0.4-0.7), High

(0.4 – 0.9 with 0.8 as Peak Value). The Membership Function

definition for Extendibility is shown in Figure 2.

Fig 1: The FIS Editor for Extendibility

Fig 2: Membership Function Definition for Extendibility

 Combined impact of extendibility related metrics on

Software Quality has been analyzed using fuzzy logic. Rules

view for the same is given in Figure 3.

Fig 3: Rules View for Extendibility

Sr. no. Design property Metric

1 Abstraction ACA

2 Coupling CC

3 Inheritance MOA

4 Polymorphism CPM

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.25, March 2013

27

This work is a part of a bigger project related to the

assessment of design quality of Object Oriented Software

from UML Design and Product Code. Fuzzy logic technique

has been used for validating the design quality metrics. In this

paper, we have considered one of the six design quality

attributes i.e., Extendibility. The details of software selected

for this purpose are given in the Table 5.

Table 5. Chosen Open Source Software with Priori Known

Design Quality

Project

No.
Name of Software Level of Quality

Project1 Student project Low design quality

Project2 EviewApplet Low design quality

Project3 Bonforum Medium design quality

Project4 Taming Java Thread High design quality

Project5 Jdom High design quality

5. RESULTS AND DISCUSSIONS
Our Initial results confirm that fuzzy logic based design

quality assessments have given better validation in terms of

good, intermediate and poor design quality of Object Oriented

Software. Values of Extendibility for the five chosen open

source software obtained using fuzzy logic based approach are

better confirming with the results of product-based approach

as compare to the traditional approach. Figure 4 summarizes

the results obtained from the two approaches with reference to

product- based approach.

Fig 4: Extendibility Values: Fuzzy vs. Traditional

Approaches

6. CONCLUSIONS
This work makes the analysis of one of the important design

quality attributes i.e., Extendibility using the fuzzy analysis of

its related design quality metrics. The same approach shall be

used for the validation of the other remaining design attributes

in our ongoing project i.e. assessment of design quality of

Object Oriented Software.

The evaluation of software quality is an important aspect for

software providers as well as users. The model proposed by us

is based on fuzzy logic which could be an exclusive tool for

making decision at design level. Since the model is not

subjective, the prediction of software quality can effectively

be done by it using object oriented metrics. The quality of

software has the linear relation with the metrics. These

metrics provide the approximate values on which the desired

quality can be achieved. The evaluation results are based on

the relationship of the metrics with the parameters of quality.

7. REFERENCES
[1] K K Agarwal, Y Singh, Arvinder Kaur and Ruchika

Malhotra: Empirical study of Object Oriented Metrics,

Journal of Object Technology, Vol. 5, No. 8, Nov-Dec

2006.

[2] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the

applicability of fault-proneness models across object-

oriented software projects", IEEE Transactions on

Software Engineering, vol. 28, no. 7, pp. 706-720, July

2002.

[3] W.J. Brown, R.C. Malveau, H.W. McCormick, III, and

T.J. Mowbray, “AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis”, John Wiley Press,

1998.

[4] Yuming Zhou and Hareton Leung, “Empirical Analysis

of Object-Oriented Design Metrics for Predicting High

and Low Severity Faults,” IEEE Trans. Software Eng.,

vol. 32, no. 10, pp. 771-789, Oct. 2006.

[5] Jagdish Bansiya and Carl G Devis: A Hierarchical Model

for Object Oriented Design Quality Assessment, IEEE

transactions of Software Engineering, Vol 28, No. 1,

January 2002.

[6] W.J. Brown, R.C. Malveau, H.W. McCormick, III, and

T.J. Mowbray, “AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis”, John Wiley Press,

1998.

[7] S.R. Chidamber, C.F. Kemerer,” A metrics suit for object

oriented design”, IEEE Trans. On Software eng., vol. 20,

no. 6, p.p. 476-493, June 1994.

[8] Zadeh, L.A. (1965). "Fuzzy sets", Information and

Control 8 (3): 338–35

[9] MATLAB tutorial on Fuzzy Logic

0

1

2

3

4

5

6
Fuzzy
Approach

Traditional
Approach

Product-
based
Approach

