
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.23, March 2013

12

Expressing Object-Oriented Thoughts Functionally

Clarence J M Tauro

Center for Research
Christ University

Bangalore

Infant Arockiaraj A
Dept. of Computer Science

Christ University
Bangalore

Dhanashree K
Dept. of Computer Science

Christ University
Bangalore

ABSTRACT

Scaling web applications by adding processors is important as

the number of users increase by the day, database size is on

the rise which results in huge volume of work. The

complication that exists in scaling does not just depend on

increasing the count of new processors as the paradox also

exists in extensive scaling of Java applications. This limitation

is bounded specifically to Java programming language and not

to Java platform as a whole.

We explore the Object oriented functional languages such as

Scala, Clojure and Groovy in Java platform. The peripheral

languages take advantage on the infinite scalability of Java

platform. The interoperability of Scala, Clojure and Groovy is

an asset in Java platform as they run parallel with other Java

applications. Additionally, we discuss on how the elasticity

and adaptability of the Object Oriented functional languages

allows simple and efficient execution in Java platform.

1. INTRODUCTION
Web Applications are gaining unprecedented popularity due

to their integration in business models. Leading platforms for

Web application developments are Java and .NET [1]. The

major goals of developing a web application are to increase

productivity, ensure quality and take advantage of more

sophisticated performance optimizations available in modern

hardware [2].

Designed with many advanced features, such as automatic

memory management, cross-platform portability and enforced

security check, Java is an excellent programming language

used on various platforms. The Multi-threading feature of

Java is also employed on platforms, largely on the server

systems to gain higher throughput and faster response time.

Java is undisputedly leading in development of Web

applications in current market scenario. However, the

performance and scalability of Java applications running on

multicore systems remain as a major concern and were rarely

reported [3].

These were rarely reported because, scaling Java applications

until the Number’s of processors are in single digit it works

well but the real issue arises when the processors are added

beyond [2].

The limitation is subjected to Java applications alone but not

to Java platform as a whole. This opens new possibilities for

Java applications to scale linearly with dependencies.

Scala and Clojure are two of the most successful Object

Oriented functional languages used in order to rectify the

shortcomings of Java applications. These Object Oriented

languages seamlessly integrate features of Object Oriented

and functional languages, allowing Java and other language

programmers to be more fruitful [4].

“Scala is a hybrid Object-Oriented (OO) and functional

language developed by Martin Odersky - one of the original

authors of the Java compiler. Scala runs on the Java virtual

machine (JVM), compiles to .class files and is completely

interoperable with the Java programming environment” [5].

“Clojure is a dynamic, Lisp like programming language that

originally targeted the Java Virtual Machine (JVM). It has

been successful on the JVM platform because of its

combination of expressiveness, performance and host

interoperability” [6].

“Groovy is a powerful Object oriented agile programming

language which works on the Java Virtual Machine (JVM)

and utilizes all the benefits of Java. Groovy can also be used

as a scripting language for the Java platform [4].” In the

following segments this paper highlights the shortcomings of

Java applications and how Java platform overcomes

scalability issues.

2. PARADOX IN JAVA
The paradox of scalability in Java isn’t something unforeseen.

There has been many works that has been put in place to

address such issues. We put forth three of the most efficient

projects in overcoming the drawbacks in the form of Object

Oriented programming languages named Scala, Clojure and

Groovy. The paradox in Java provides differential view

points. The contradictor statement lies in the fact that the java

programming language possesses characteristics of high

scalability. The constructs in Java are said to help while there

is increase in scalability in all the systems it is used in.

However, we do understand that Java encourages scalability

mechanisms through the uses of features such as multi-

threading, but they do not provide provision for scalability on

an infinite scale.

The time taken to run a program is halved when the numbers

of processors are doubled is called linear scaling,.e. a single

processor takes twice the time when compared to two

processors. Practically there is no ideal linear scaling but the

emphasis has always been on linear scalability. The

apprehension on why the Java application fails to scale boils

down to locking.

The drawback Java faces in linear scaling: The question

which is common in our minds is that the code is same

whether there is one processor or ten processors. In Java

programming the composition of threads and locks implement

concurrency. On adding the number of processors, Java

programs invest more time on worrying about the locks. This

occurs primarily when there aren’t any fundamental data

connection issues, as a result you initiate scaling programs

into many processors due to the deadlock that is created.

The performance issues in Java are apparently hard to deal

with due to its complexity. Achieving maximal performance

is the bigger challenge faced as Multi-threaded Java

applications scale considerably. The simultaneous Java

programs use threads that lock to other pieces of data when

access is required. Consider two threads X and Y of a

particular program. If X needs access to a particular set of

data then the data is locked i.e. unavailable for thread Y to

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.23, March 2013

13

access. The data is available for thread Y only when method

X unlocks the data.

We all do understand that Java is a core programming

language, being used extensively for many applications and

systems. Java possesses object-Oriented characteristics that

are widely used in the field of development of applications on

multiple platforms such as mobile applications, web

applications, servlets, etc. Though Java is a powerful language

used for development it does have few shortcomings, one of

them being the inconsistency to cope with the working of

Domain Specific Languages (DSL’s).

These shortcomings are limited to the programming language

alone, Java platform as a whole is vast field and the

drawbacks of Java programming are overcome with the

introduction of code of other programming languages into

Java. Inspite of the drawbacks, Java language can however be

brought back to life by use of Object Oriented programming

languages such as Groovy, Scala and Clojure. These

languages have additional features and functionalities that

further aid the shortcomings of the scalabilities of Java and

hence, end to enhance an overall scalability and functionality

of the system in which they are used.

To further answer questions on Java programming we

compare to Scala, Clojure or Groovy on the basis of which

being the more compact code, which of these needs more

effort and how the functional imperatives are being used. We

analyze moving ahead.

2.1 Scala
The Java based language Scala, adds to the scalability of Java.

Scala is a multi-paradigm programming language, helping

programmers to build more concise and less complex code,

and at the same time being more functional, which java lacks

on its own. Scala offers better functional features than Java

[8].

 The functional features and Object Oriented features are

uniformly integrated that complying Java to be more fruitful.

This productivity is evident as many companies are currently

migrating to Scala to boost their productivity. Recently, due to

their fast growing tweet rates, Twitter has moved their core

message queue from Ruby to Scala.

Since Scala runs in JVM, the existing Java code is functional.

They both are highly interoperable and we can invoke Scala

methods from Java, and vice-versa. The Scala language

provides many features such as, type inferencing, function

passing, etc. This clearly provides options to the programmer

to reduce the amount of code used in the program by use of

efficient structures and syntax found in Scala. Scala reduces

complex tasks and hence increases scalability of Java [4].

According to the official release by Scala the below are the

key aspects of Scala [8].

 Scala has a uniform object model, in the sense that every

value is an object and every operation is a method call.

 It has uniform and powerful abstraction concepts for both

types and values.

 Scala is extensible; it supports composition of data

structures through mixins and self type annotations.

 By pattern matching, Scala allows decomposition of

objects.

 It also allows external extensions of components using

views.

Scala language also offers capabilities where it can even

simplify an inheritance mechanism in Java, and therefore

reduce the amount of code used in the program.

Scala being highly functional in nature provides very simple

syntax. It can be used to represent very complex code, in very

simple form. Scala can be used to define unified type systems,

where all objects can be a subclass of a single class. Scala also

gives the provision of pattern matching models, which are

used extensively. This feature presents Scala more suitable for

building web applications.

Scala also increases scalability in Java by helping the

programmer add constructs of different programming

languages by use of a combination of unique mechanisms.

This feature helps to invoke methods of different code, which

can perform multiple operations to produce the desired

results. We also understand that Scala shares similar

compilation models as Java. This will increase the

interoperability between Java and Scala thereby inducing

seamless working between the two languages.

Figure 1: Sample program in Scala and Java

Scala is statically checked duck typing via structural typing

like dynamic languages but in a type-safe way. It has higher-

order function, the first-class functions that other functions

can pass as arguments and accept as return types. Scala has

lexical closures, the bedrock of functional programming

support. Scala’s closure support leads to easy development of

control abstractions and domain-specific languages.

Scala also has immutable data structures which are included

as a part of the standard library, which encourage developers

to design referentially transparent abstractions. Advanced

generator constructs: for example, for-comprehension that

makes code more expressive and succinct. Patterns in Scala

are represented internally as partial functions, which

developers can compose using various combinators to

construct extensible abstractions. Lastly Scala is event-driven

programming via the actor model. These features make Scala

practically feasible in JVM.

// Java

class PrintOptions {

 public static void main(String[] args) {

 System.out.println("Options selected:")

 for (int i = 0; i < args.length; i++)

 if (args[i].startsWith("-"))

 System.out.println(

 args[i].substring(1));

 }

}

//Scala

object PrintOptions {

 def main(args: Array[String]): unit = {

 System.out.println

 ("Options selected:")

 for (val arg <- args)

 if (arg.startsWith("-"))

 System.out.println(

 arg.substring(1));

 }

}

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.23, March 2013

14

Scala boasts that it requires smaller number in terms of the

lines of code when compared to Java. As per the research

conducted in "ClojureScript: Functional Programming for

JavaScript Platforms [6]" the result upholds the claims. Scala

language also provides additional facilities to define new

control structures without the use of macros.The applicability

in production environment in last few years has affirmed its

high dependability. Scala has the advantage of being

functional and simultaneously Object Oriented. The

extensibility provides a unique combination of language

Mechanisms that makes it effortless to add new language

constructs in the form of libraries.

 Thus we can safely say that, the Scala programming language

helps in overcoming the shortcomings of scaling applications

developed in Java. The features of Scala can be effectively

constructed into Java programs to increase scalability with use

of less complex, concise, expressive and high functionality

code.

2.2 Clojure
Clojure a recent dialect from the Lisp language family

compiles directly to the Java Virtual Machine, CLR and Java

Script. “Clojure is designed to be a general purpose language,

combining the approachability and interactive development of

a scripting language with an efficient and robust infrastructure

for Multi-threaded programming [10]”.

The discrete characteristic of lisp programming language is

that ‘code is data’. The syntax of lisp is simple yet extensible

data structure. The adaptation of nested lists is subsequent and

has definitive conventions as executable code. The benefit in

formulating the code in data structure is that lisp can easily

generate and execute other lisp code. From the beginning the

programmers have materialized this through lisp macros [11].

In comparison with Java, the application of multicore

architecture through Multi-threading can be benefited to the

programmers by concurrency API that clojure possesses. As

in Java the low level thread co-ordination tasks doesn’t stress

programmers.

The functional programmability of Clojure has its advantages.

It is a combination of immutable data and first class functions.

Clojure inherits the various feature of lisp programming

language such as simplicity, compliancy and high

expressiveness. The data structures are consistent and

immutable that supports recursion.

Designed for pure functional programming, Clojure has data

structures highly optimized such as vectors, lists, maps and

sets. It offers extensive support for concurrency. Clojure was

outlined and designed for Java Virtual Machine with easier

interoperability with other languages including Java being its

objective [11].

Multi-threading has always been Java’s way of supporting

concurrency. The usage of multicore machines has been fully

optimized by concurrency, i.e. concurrency is execution of

multiple threads simultaneously. Genuine thread based

concurrency is not supported by every language with Multi-

threading API, Ruby and Python being standard examples.

Nevertheless, the programmer is challenged in Java

multithreading on whether requiring Multi-threads are safe or

not. Let us consider a program writing to the same memory

location simultaneously. The same address space are being

shared by threads in a single process, this results in the

programmer being responsible for synchronizing threads

rather than the operating system.

This becomes a challenging task for programmers as a Multi-

threaded program runs too long in a single thread node due to

excessive synchronization, which decreases the performance

and may even lead to a deadlock. The reliability and

correctness of a program are undermined due to insufficient

synchronization as it promotes race conditions. Hence the

daunting task is to have synchronization just enough [16].

The interfaces and Java classes can be completely utilized by

Clojure. Even without importing a package java.lang classes

can be used in Java. By either individualizing their package or

adopting the import function other preferred packages can be

used in Java classes. The concurrency issues in Java being

disaster for the programmers, Clojure overcomes its impacts

by modeling data structures as immutable objects represented

by interfaces. In other ways an own class system is not

presented to clojure itself [12].

The support for thread-safe concurrency has been

significantly improved by Java in the past few years. The

basic Java construct continues to remain the synchronized

block.

Figure 2: Basic Java construct

synchronized (lock) {

 // code that must be

 //executed one thread at a time

}

java.util.concurrent one of the latest Java libraries

provides support for thread coordination at a higher level. The

foundation of Java multithreading API is a combination of

synchronization constructs and explicit locking constructs

formed as a synchronized block [16].

The below are the features of Clojure that makes Clojure

advantageous when compared to Java [10].

 Dynamic development: The interactivity of Clojure sets it

apart. It is not just a program you compile and run but

there is a dynamism associated with this programming

language. Clojure is an environment, not just a language

abstraction where virtually all the language constructs are

ratified.

 Functional Programming: This feature of Clojure provides

tools and helps avert inconsistent state of Java. Clojure

articulates recursive iteration in place of side-effect based

loop. To make the program robust, the ideology in Clojure

is to write most parts of programs functionally.

 Runtime Polymorphism: Employing runtime

polymorphism makes it easier for a system to be

extensible and change.

Three levels of polymorphism that clojure supports,

 Java Interface defines proximately all core infrastructure

data structures at runtime.

 Using proxy, Clojure supports implementation of Java

Interfaces.

 Multimethod in clojure is the first and foremost language

construct in polymorphism.

In Object Oriented languages such as Java, a particular object

is the programming construct that encapsulates state. Let us

consider an object of point type. This object will have x and y

coordinates and their values would compose its state. In order

to access this state of object, which is combination of get

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.23, March 2013

15

functions or set functions such as p.getx(). benefitted for

x’s coordinate the current value is returned. p.set(val)

updates x coordinate to val. By design since objects are

mutable, through any thread of execution they are subjected to

change. By estimation the, flow of control must be anticipated

by the programmer where the properties of objects can be

modified by multiple threads. Without appropriate

synchronization if two threads modifies point x’s coordinate

then the state of an object becomes indeterminate and hence

the accuracy of the program will be threatened.

The advantage of Clojure and other Functional advantages is

that they treat mutability as an exception and not a rule. A

program is collection of immutable structures, pure functions

and not collection of objects in various states. A pure function

is defined as the mapping of same arguments to same values

and other than the value returned by the invoked function it

has no external effects. To be precise, a pure function has

neither states nor side effects.

In the example,

(def teams {:gracie "george" :lou "bud"})

An immutable map is defined here, a collection of value pairs

called teams.

The below statement,

(assoc teams :dickie "tommy")

It-creates a new expanded map with an additional value pair

from the original map. By definition the function ‘assoc’

clones the existing map and then appends a new member to

the clone rather than original. In combining the immutable

structure and pure functions they are secure from

unintentional modifications during the program execution.

Clojure advocates the use of both pure functions and

immutable structures and refrains from the ideals to facilitate

efficiency and convenience of programs.

Clojure’s multithreading API’s advantages when compared to

Java are highlighted in the above examples. Also the

interoperability with JVM, the rapidly expanding

infrastructure of Clojure has made it preferable for numeric

processing.

The stakeholders and customers have major investments in

platforms like JVM. This is result of being convenient and

comfortable with stability, security and stability of JVM.

Though the productivity and flexibility of dynamic languages

are coveted by Java developers, the performance running on

customer authorized infrastructure and access to libraries,

existing code base have been cause of concerns [14].

The existing issue of concurrency in Java using native threads

and locking has resulted in efforts to overcome them. Clojure

is an efficient dynamic design language in this respect. It aims

to be general purpose language applicable in areas where Java

fails. It emulates the fact that for the future of concurrent

programming omnipresent and liberate mutation simply has to

go [11].

By embracing the industry standard platform such as JVM

clojure adheres its objective. Renovating an age old language

Lisp, adopting functional programming and advance it with

immutable persistent data structures. Through asynchronous

agents and software transactional memory Clojure provides

built in concurrency support. Thus overcoming the practical

implications of Java and resulting in fast, robust and practical

language [13].

2.3 Groovy
Groovy is a swift and dynamic language for JVM. Though

groovy has features influenced from the likes of Python,

Smalltalk and Ruby are mostly built upon the strength of Java.

Java developers get access to the latest programming features

with negligible leaning curve. It is probably the first language

written at a targeted community of programmers i.e. Java

programmers [16].

The upcoming performance issues in Java in recent years are

simply because of the decisions made during its early

development and now it only complicates it further than

simplifying it. Here we brief points which are identified as the

core issues in Java for scalability and performance issues, how

Groovy capabilities enable Java to be convenient and useful

[18].

2.3.1 Static typing in Java
Though static typing was seen as an advantage in Java, the

composition of dynamic binding and static typing had enough

structure in Java to capture the issues immediately and yet had

adequate space to implement and apply polymorphism. Java

has dynamic binding constraints overriding is not possible

unless the two classes are connected by inheritance.

Operator overloading and optional typing are features in

Groovy that enable the developers to have superior flexibility

with comparatively less code.

2.3.2 In Java methods must be contained in a

class
In Java you cannot have a method by itself. It is a must that, a

method has to reside within classes. This may not seem to be

an issue always but when it comes to sorting strings it is

definitely not recommendable. Though collections have been

a part of Java since beginning, they do not have native support

for collections like Clojure. All this may not seem to be a

greater problem in smaller applications but when the

application is scaled to higher number of processors they just

are composed to a priority issue at hand.

The complexity of the code is reduced in Groovy; also the

automatic imports and the native syntax for collections

minimize the amount of required code. The ability of Groovy

being autonomous to treat method as objects called as

Closures is an advantage during extending.

2.3.3 Java being over extensive
Figure 4, is a POJO (Plain Old Java Object). It consists of a

class (Project) probably a part of project management. The

name, priority, start and end dates of the task represent the

attributes.

Although the below Java code can be auto generated through

IDE still, the result is being extensive.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.23, March 2013

16

Figure 3: POJO (Plain Old Java Object)

Now we take a look at POGO (Plain old Groovy object),

Figure 4: Plain Old Groovy Object

The capabilities of Groovy such as dynamic generation

exceptionally reduce the burden of code in a class and hence

the focus is largely on essence and not the ceremony.

We have seen earlier achieving maximum performance in

scaling Multi-threaded Java applications being a major

preference. The above example as an indication of Groovy

overcoming the extensibility issues faced in Java.

The Groovy language is highly dynamic in nature. Hence it

offers multiple functionalities where the programmer can

dynamically add or call the functions or methods during run-

time of a program. Such useful meta-programming

characteristics, help us to dynamically work with domain

specific languages in a more efficient and seamless manner.

One example of such a case could be the use of SQL

programming statements in a Java program, where the SQL

statements that perform some database operations will be

extended into the Java program using Groovy to work

dynamically [17].

Groovy is a Java based language that helps the domain

specific languages to work seamlessly with Java. Java has

internal structural differences that do not help it to work with

domain specific languages, where its structure and syntax do

not offer much support. Also java being a static language,

furthermore opposes the seamless working of domain specific

languages. However, the use of the Groovy programming

language, offers more flexibility in terms of structure and

syntax to handle domain specific languages more efficiently

[16].

One of the biggest advantages of Groovy is that it is, able to

integrate the libraries and Java classes seamlessly. Since the

compilation is directly on Java byte code, groovy can be used

anywhere Java is used. The above mentioned features of

Groovy establish it as a very good platform for prototyping,

developing utilities, and also they are adequately constructed

into Java programs to increase scalability with use of less

complex, precise, meaningful and high functionality code.

The Groovy provides multiple syntax and structures to

efficiently incorporate domain specific languages into Java,

turning into a real boon for the Java language [17].

3. Conclusion
Java without, any doubt is a very powerful language and

large. Acquiring certain problems and inconsistencies over a

period of time due to some decisions made during the initial

stage of its development. Java is still dominant in the market

and is everywhere. Its infrastructure, tools, libraries and

infrastructure are still favorable and useful.

In this paper we have presented the peripheral languages as an

extension to Java. We have listed the capabilities of Scala,

Clojure and Groovy that will be a rich source of ideas in order

to abridge the short comings of the programming language

Java. As powerful as the peripheral languages and also fun to

use, this paper does not recommend replacing the existing

Java with Scala, Clojure or Groovy instead we advocate a

blended approach. Our ideology is to use the peripheral

languages wherever it helps the most.

The paper still leaves scope for the performances of the

peripheral languages to be evaluated on various parameters

such as concurrency, memory utilization, response time, code

efficiency and memory utilization which could be taken up for

further studies.

import java.util.Date;

public class Project {

 private String title;

 private int preference;

 private Date beginDate;

 private Date finalDate;

 public Project () {}

 public Project

 (String title, int preference,

 Date startDate, Date endDate){

 this.name = name;

 this.preference = preference;

 this.beginDate = beginDate;

 this.finalDate = finalDate;

 }

public String getTitle(){

 return title;

}

 public void setTitle(String title)

{ this.title = title; }

 public int getPreference(){

 return preference;

}

 public void setPreference

 (int preference){

 this.preference = preference;

}

 public Date getBeginDate(){

return beginDate; }

 public void setBeginDate

 (Date beginDate){

 this.beginDate = beginDate;

}

 public Date getFinalDate(){

 return finalDate;

 }

public void setFinalDate

(Date finalDate){

this.finalDate = finalDate;

}

 @Override

public String toString() {

 return "Task [title="

 + title

 + ", preference="

 + preference

 + ",beginDate="

 + beginDate

 + ", finalDate="

 + finalDate + "]";

 }

}

class Project {

 String title

 int preference

 Date beginDate

 Date finalDate

 String toString() {

 "($title,$preference,

 $beginDate,$finalDate)"

}

}

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.23, March 2013

17

4. REFERENCES
[1] Stella, L.F.F.; Jarzabek, S.; Wadhwa, B.; , "A

comparative study of maintainability of web applications

on J2EE, .NET and Ruby on Rails," Web Site Evolution,

2008. WSE 2008. 10th International Symposium on ,

vol., no., pp.93-99, 3-4 Oct. 2008 doi:

10.1109/WSE.2008.4655401

[2] Pankratius, V.; Schmidt, F.; Garreton, G.; , "Combining

functional and imperative programming for multicore

software: An empirical study evaluating Scala and

Java," Software Engineering (ICSE), 2012 34th

International Conference on , vol., no., pp.123-133, 2-9

June 2012 doi: 10.1109/ICSE.2012.6227200

[3] Kuo-Yi Chen; Chang, J.M.; Ting-Wei Hou; ,

"Multithreading in Java: Performance and Scalability on

Multicore Systems," Computers, IEEE Transactions on ,

vol.60, no.11, pp.1521-1534, Nov. 2011 doi:

10.1109/TC.2010.232

[4] Bhat, M.S.; Nair, D.G.; Bansal, D.; Vaishnavi, J.; , "Data

structure based performance evaluation of emerging

technologies — A comparison of Scala, Ruby, Groovy,

and Python," Software Engineering (CONSEG), 2012

CSI Sixth International Conference on , vol., no., pp.1-5,

5-7 Sept. 2012 doi: 10.1109/CONSEG.2012.6349515

[5] Ghosh, D.; Vinoski, S.; , "Scala and Lift Functional

Recipes for the Web," Internet Computing, IEEE ,

vol.13, no.3, pp.88-92, May-June 2009 doi:

10.1109/MIC.2009.68

[6] McGranaghan, M.; , "ClojureScript: Functional

Programming for JavaScript Platforms," Internet

Computing, IEEE , vol.15, no.6, pp.97-102, Nov.-Dec.

2011 doi: 10.1109/MIC.2011.148

[7] Yue Luo; John, L.K.; , "Workload characterization of

multithreaded java servers," Performance Analysis of

Systems and Software, 2001. ISPASS. 2001 IEEE

International Symposium on , vol., no., pp.128-136, 2001

doi: 10.1109/ISPASS.2001.990688

[8] Scala Official website: http://www.scala-

lang.org/node/25, Dec 18,2012.

[9] Scala Official release:

http://www.scalalang.org/docu/files/ScalaOverview.pdf,

Dec 18,2012

[10] Clojure official website: http://clojure.org, Dec 23,2012.

[11] Hinsen, K.; , "The Promises of Functional

Programming," Computing in Science & Engineering ,

vol.11, no.4, pp.86-90, July-Aug. 2009

doi: 10.1109/MCSE.2009.129

[12] Djuric, D.; Devedzic, V.; , "Incorporating the Ontology

Paradigm Into Software Engineering: Enhancing

Domain-Driven Programming in Clojure/Java," Systems,

Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on , vol.42, no.1, pp.3-14,

Jan. 2012

doi: 10.1109/TSMCC.2011.2140316

[13] Hinsen, K.; , "The Promises of Functional

Programming," Computing in Science & Engineering ,

vol.11, no.4, pp.86-90, July-Aug. 2009

doi: 10.1109/MCSE.2009.129

[14] Vanderburg, G.; , "Clojure Templating Libraries: Fleet

and Enlive," Internet Computing, IEEE , vol.14, no.5,

pp.87-90, Sept.-Oct. 2010 doi: 10.1109/MIC.2010.111

[15] Di Pierro, Massimo; Skinner, David; , "Concurrency in

Modern Programming Languages [Guest editors'

introduction]," Computing in Science & Engineering ,

vol.14, no.6, pp.8-10, Nov.-Dec. 2012

doi: 10.1109/MCSE.2012.111

[16] Martin Kalin, David Miller, "Clojure for Number

Crunching on Multicore Machines," Computing in

Science and Engineering, vol. 14, no. 6, pp. 12-23, Nov.-

Dec., 2012

[17] Sateanpattanakul, S.; Walairacht, A.; , "JGroovy - an

extensible Java Programming Language with

Groovy," Advanced Communication Technology

(ICACT), 2010 The 12th International Conference on ,

vol.2, no., pp.1139-1144, 7-10 Feb. 2010

[18] Bhat, M.S.; Nair, D.G.; Bansal, D.; Vaishnavi, J.; , "Data

structure based performance evaluation of emerging

technologies — A comparison of Scala, Ruby, Groovy,

and Python," Software Engineering (CONSEG), 2012

CSI Sixth International Conference on , vol., no., pp.1-5,

5-7 Sept. 2012

http://www.scala-lang.org/node/25
http://www.scala-lang.org/node/25
http://www.scalalang.org/docu/files/ScalaOverview.pdf
http://clojure.org/

