
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

5

Area and Timing Analysis of Different PSU’S in P-Match

Algorithm for Data Compression in Cache Memories

Nisha Angeline. M

Assistant Professor (Sr.Gr.),
Department of ECE,

Velalar College of Engineering and Technology
Erode, Tamilnadu

Manikandan.S.K

Assistant Professor (Sr.Gr.),
Department of EEE,

Velalar College of Engineering and Technology
Erode, Tamilnadu

Shree Subhatra.K
PG Student,

Department of ECE,
Velalar College of Engineering and Technology

Erode, Tamilnadu

S.Valarmathy, PhD.
Professor and Head,
Department of ECE,

Bannari Amman College of Technology,
Sathyamangalam,Tamilnadu.

ABSTRACT

Microprocessors speeds have been increasing faster than the

speed of off-chip memory. In a multi-processor system, if the

processor number is increased, then the access time of the

memory is also high. Thus a ‘wall’ is raised between

processor number and memory access time. When compared

with on chip cache, to access the data, off-chip cache takes

one order of magnitude more time. Off chip cache also takes

two orders of magnitude more time for executing an

instruction, than on chip cache. Care should be taken in cache

compression, to increase the processor speed but it should not

contradict with the increase in the total chip’s power

consumption. The compression is based on pattern coding and

dictionary based matching and if the pattern matches, the code

is chosen. Otherwise the dictionary matching is done. The

compressor is composed of Pattern matching and Priority

Unit. In this paper three different architectures for the priority

selection unit is proposed and their area and timing analysis is

done.

General Terms
Data Compression, Frequent Patterns, Performance analysis,

Counters, Comparators, Adders.

Keywords

Cellular Automata (CA), Dictionary Matching (DM), Pattern

matching (PM), Priority Selection Unit (PSU).

1. INTRODUCTION
Memory latencies have long been a performance bottleneck in

modern computers. In fact, with each and every advancement

in technology, microprocessor execution rates outpace

improvements in main memory speeds. Memory speeds are

thus having increasing impact on overall processor

performance. The rift between processor and memory speeds

is alleviated primarily by using caches. Today’s

microprocessors have on-chip cache hierarchies incorporating

multiple megabytes of storage. Increasing the size of data in

the on-chip caches can greatly increase processor

performance. However, the amount of data storage in the on-

chip cannot be increased without bound. In built caches

almost consume most of the die area in high performance

microprocessors. The fabrication costs of larger die are high,

and ultimately depend on semiconductor manufacturing

technology. Practical cache sizes are constrained by the

increased Memory bandwidth which is also a scarce resource

in high-performance systems. Several researches use

hardware based compression to increase effective memory

size, reduce memory address and bandwidth and increase

effective cache size.

The main objective of this paper is to increase the

communicative capacity of the on-chip cache without

degrading the performance issues. The ongoing move to chip-

level multiprocessors (CMPs) is further increasing the

problem; when the number of processors is increased, more

accesses to memory occurs. This results in the reduced

performance of the processor-memory bus which is not in

pace. This problem is solved by techniques that reduce off-

chip communication without degrading the performance. Data

compression in memories is one such technique that helps to

keep the pace of the bus. Data compression presents several

challenges. The first one is increase in cache hit latency,

which will favor in reduced cache miss rates. So this enhances

extremely fast, data decompression and compression. Then

secondly for reliable transmission the hardware should occupy

little area compared to the corresponding decrease in the

physical size of the cache, and care should be taken not to

increase the total chip power consumption. Finally, cache

compression should not increase power consumption

substantially. The above requirements prevent the use of high-

overhead compression algorithms .A faster and lower-

overhead technique is required. Section II explains the related

work regarding the data compression in Microprocessor

Cache Memory. Section III explains the proposed work.

2. RELATED WORKS

2.1 Frequent Pattern Compression
This compression scheme [4] builds on significance-based

compression technique. The frequently occurring data patterns

are studied, and after observation it is compressed to bits with

a fewer number. For instance, many integers of small values

can be stored in bits of 4, 8 or 16, but are usually stored in a

full 32-bit word (or 64-bits for 64-bit architectures). The

values frequently occurring are enough to merit special

treatment, and storing them in a more compact form can

increase the cache capacity. In addition, special consideration

mailto:shreesubhatra90@gmail.com

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

6

is used for patterns like runs of zeros since they are very

frequent. The main idea behind FPC is that we want to get

most of the benefits of dictionary-based schemes, while

keeping the per-line overhead at a minimum. The FPC

compresses on a cache line basis. Each cache line is divided

into 32-bit words (e.g., 16 words for a 64-byte line).These

patterns are: a zero run (one or more all-zero words) and a one

run(one or more all-one words), 4-bit sign-extended

(including one-word zero runs), one byte sign-extended, one

half words sign-extended, one half word padded with a zero

half word, two byte sign-extended half words, and word

consisting of repeated bytes (e.g. “0x20202020”, or similar

patterns that can be used for data initialization). The input

patterns are selected based on their high frequency in many of

our integer and commercial benchmarks. A word that doesn’t

belong to any of these categories is stored in its original 32-bit

format.

The main idea behind compressing cache lines at L2 level in

frequent pattern compression technique is to store common

word patterns in a compressed format. Patterns are identified

by a 3-bit prefix. The main advantage of this method is the

decompression overhead, which helps to maintain cache lines

in predetermined sizes. The drawback of this method is that

there is no register-transfer-level hardware implementation or

FPGA implementation of FPC, and therefore its exact

performance, power consumption, and area overheads are

unknown.

2.2 Restrictive Compression Technique
With the CMOS scaling trends and slow scaling of wires as

compared to the transistors, the cache access latencies will

increase in the upcoming microprocessor generations. To

prevent the increasing latencies from affecting the cache

throughput, the L1 caches are small-sized and their accesses

are pipelined. Small-sized L1 data caches can result in

significant performance degradation due to increased miss

rates. Compression techniques can be used to boost the L1

data cache capacity. However, these compression techniques

cannot alter the byte-offset of the memory reference, to avoid

any increase in the cache access latency. Restrictive cache

compression techniques [8] does not require updates to the

byte-offset, and hence result in minimal, if any, cache access

latency impact is present. The basic technique AWN (all

words narrow) compresses a cache block only if all the words

are of minute size. The compressed cache blocks are then

combined together in a single physical cache block. The

AWN technique requires minimal additional storage in the

cache and results in a 20% increase in the cache capacity.

The AWN technique is extended by giving some

supplementary space for the upper half-word AHS (additional

half word space) of a few normal-sized words in a cache

block, with an aim to convert them into narrow blocks.

Further the AHS technique is extended to AAHS (adaptive

AHS) so that the number of upper half-words in a cache block

can adapt depending on the need. AHS and AAHS techniques

increase the cache capacity by about 50%, while incurring a

38% increase in the storage space required, compared to a

conventional cache. On the other hand, these techniques still

do not impact the cache access latency. To reduce the extra

tag requirements (which is inevitable with any cache

compression technique), this method focuses to reduce the

number of additional tag bits provided for the additional cache

blocks to be placed in a physical cache block, sinking the

overhead of the AHS techniques to about 30%.

The byte-offset value of every word present in the block is

greatly depended on the size of the words present before it in

the cache. This will result in recalculating the byte-offset to

read a word from the block. Therefore, it is crucial that any

compression technique that is used in the L1 caches will not

have the need of updating the byte-offset. Such compression

techniques can be called as restrictive compression

techniques. The drawback of this technique is that it cannot

alter the byte-offset of the memory reference, to avoid any

increase in the cache access latency.

2.3 Indirect Index Cache with Compression
Indirect index cache [5] allocates variable amount of storage

to different blocks, depending on their compressibility. The

Indirect Index Cache with Compression is based on the IIC.

The basic IIC consists of a data array containing the cache

blocks and a tag store which contains the tags for these

blocks. Every tag of IIC entry holds a pointer to the data block

with which it is currently associated. This indirection provides

the ability to implement a fully associative cache.

Replacements in the IIC are managed by a software algorithm

running on an embedded controller or as a thread on the main

CPU. The main algorithm, called Generational Replacement

(GEN), maintains prioritized pools (queues) of blocks;

updated periodically while referenced blocks are moved to

higher priority pools and unreferenced blocks are moved to

lower priority pools. At first replacements are done by

choosing the un-referenced blocks from the lowest priority

pool. Incase of reaching the highest priority pool, a block

must be referenced regularly over an extended period of time;

once there. After doing this it must remain unreferenced for a

similarly long period to return to the lowest priority pool. This

algorithm thus combines reference regency and frequency

information with a hysteresis effect, when dealing with block

reference bits and periodic data structure updates. To ensure

that adequate replacement candidates are available to deal

with bursts of misses, the algorithm can identify multiple

candidates per invocation and maintain a small pool of

replacement blocks. This small pool of replacement blocks are

used by hardware to handle incoming responses, while GEN

algorithm is used in the background to keep this pool at a

predetermined level. The IIC was originally designed to

utilize large on-chip caches to achieve better performance

over traditional LRU caches. The main drawback of this

technique is that one cannot reliably determine whether the

architectural schemes are beneficial without, a cache

compression algorithm and hardware implementation, while

they are designed and evaluated for effective system-wide

compression ratio, and other performance issues like hardware

overheads, and interaction with other portions of the cache

compression system.

2.4 Selective Compression Technique
In the Selective compression [6] technique the data block is

compressed only if its compression ratio is less than a specific

compression threshold value. The decompressed overhead is

reduced as the compressed blocks are only decompressed. The

compression of the well compressed blocks is the major

advantage which solves the data expansion problem. The

overall compression ratio of the data blocks is increased if the

threshold value becomes lower. As a result, the use of

compression technique does not suit low threshold values. On

the other hand, variation with the threshold value has an effect

on the decompression time and compression ratio. This shows

that by reducing the unnecessary decompression operation, a

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

7

high performance is achieved by increasing the compression

over head, with minimum loss in the retrieval of original data.

It is not easy to suggest that this architecture is beneficial

without a proper compression algorithm or its hardware

implementation, even though it has improved parameters like

over all compression ratio and performance metrics like

compression overhead and speed of responding to other

modules of the system, which is a the demerit of this

technique.

2.5 X-Match Compression Algorithm
X-Match is a dictionary-based compression algorithm that has

been successfully implemented on the FPGA kit [7]. It results

in relates 32-bit words using a content addressable memory

that results in partial matching with dictionary entries and

outputs of encoded data with variable size that depends on the

type of match. To enhance the coding efficiency, it also uses a

move-to-front coding approach and smaller indexes are

represented with fewer bits. Even though it is appropriate for

compressing main memory, such hardware typically has a

very large block size (1 KB for MXT and up to 32 KB for X-

Match), which is inappropriate for the compression of cache

lines. It is well known that for X-Match and two other

algorithms of Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the

compression ratio for the data in memory deteriorates with

smaller block size [5].For instance, the increased

compression ratio for LZ1 and X-Match algorithm is nearly

11% and 3% with the reduction in block size from 1KBto 256

B. It is studied that the increase in compression ratio could be

larger if the block size decreases from 256 B to 64 B. In

addition, such hardware has to challenge its use in cache

compression because of performance metrics like area and

power consumption costs. For instance, if the MXT hardware

was scaled to a 65 nm fabrication process and integrated

within a 1 GHz processor, the decompression latency would

be 16 processor cycles, almost two times higher than the

normal L2 cache hit latency.

2.6 C-Pack Compression Algorithm
C-Pack targets on-chip cache compression. Even when used

on small cache lines it gives a good compression ratio. The

performance metrics like area and power consumption

overheads are low such that it can suit a practical purpose.

This idea is in contrast with other schemes such as X-match

where a complicated hardware is needed to achieve an

equivalent effective system-wide compression ratio. The early

work in cache compression does not tolerably evaluate the

overheads resulting from the assumed cache compression

algorithms. C-Pack is almost two times faster than the best

existing hardware implementations potentially suitable for

cache compression. For other methods like FPC, to match this

performance, it would require at least 8* the area of C-Pack.

The main drawback of this technique is that Compression is

not performed in all the cases. When the total number of

compressed bits exceeds the uncompressed line size, the

content of the backup buffer is selected. Here the backup

buffer has the actual 64 bit uncompressed word. Compression

is made in the ratio of 2:1.Due to its efficiency it cannot be

expanded. Frequently used instructions are compressed and

stored in FIFO [3]. When that particular instruction leaves the

dictionary it re-enters the dictionary in uncompressed form

and it has to be again compressed. Hence the memory is not

properly used.

3. PROPOSED ARCHITECTURES

3.1 Compression Architecture 2:1 Ratio
In the proposed 2:1 architecture shown in Figure.2 is having

two pipeline stages. The compression is mainly done as

shown in Table1.

Table .1 Pattern encodings for the proposed method

Figure 1 Compression example

3.1.1 Pipeline stage1:

The first pipeline stage performs pattern and dictionary

matching on eight uncompressed words in parallel. Each of

the eight 8 bits will match with the instruction in dictionary

and produces four 4 bit words. After dictionary matching they

are concatenated .The output W1, W2, W3 and W4 each has

32 bit and it is fed to the next pipeline stage. The pattern and

dictionary matching is done as shown Figure 1.

3.1.2 Pipeline stage2:

The second pipeline stage performs the selection of word

from W1, W2, W3, and W4 depending on the priority. The

first priority is give to all

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

8

Figure.2. Compression architecture (2:1 compression ratio)

Figure.3 Compressor architecture (4:1 compression ratio)

one’s, Second priority will be give to all zero’s, third priority

will be given to the combination of zero’s and one’s, next

priority will be given to matched bytes and the least priority

will be given to unmatched bytes. This is possible only by

counting the number of zero’s, one’s, matched bytes and

unmatched bytes. Counter 0, counter 1 and counter W counts

the number of zero’s, one’s and the matched bytes. The

counting does not include the number of unmatched bytes.

Later they are selected based on their priority. This work is

performed by the comparators. If both the inputs to the

comparator have same numbers of zeros, ones and matched

bytes then the first input to the comparator will be the output

of the comparator. The output of the selection unit will be the

compressed 32 bit word. Thus a 64 bit word is compressed to

32 bit word with a compression ratio of 2:1.For example when

the input pattern is 11001001 and the dictionary patterns are

11000110, 11010010, 11100000 and 10101010 then the

output patterns will be 10xx, 10xx, 10xx and 10wx.If the

input pattern given is

10100101111000010110000101100001111

1000101110001011010011100001 the output pattern obtained

after compression is

1x0w1100w100w10011w0w1w0w1x01w0x which is

compressed in the ratio of 2:1.

3.2 Compression Architecture 4:1 Ratio
The proposed architecture can be enhanced by implementing

the compression with the compression ratio of 4:1. Figure.3

illustrates the hardware compression process. The compressor

is decomposed into two pipeline stages.

3.2.1 Pipeline stage1:

The first pipeline stage performs pattern and dictionary

matching on four uncompressed words in parallel. Each of the

four 16 bits will match with the instruction in dictionary and

produces four 4 bit words. After dictionary matching they are

concatenated .The output W1, W2, W3 and W4 each has 16

bit and it is fed to the next pipeline stage.

3.2.2 Pipeline stage 2:

The second pipeline stage performs the selection of one word

from W1, W2, W3, and W4 depending on the priority. The

first priority is give to all one’s, Second priority will be give

to all zero’s, third priority will be given to the combination of

zero’s and one’s, next priority will be given to matched bytes

and the least priority will be given to unmatched bytes. This is

possible only by counting the number of zero’s, one’s,

matched bytes and unmatched bytes. Counter 0, counter 1 and

counter W counts the number of zero’s, one’s and the

matched bytes. The counting does not include the number of

unmatched bytes. Later they are selected based on their

priority. This work is performed by the comparators. If both

the inputs to the comparator have same numbers of zeros,

ones and matched bytes then the first input to the comparator

will be the output of the comparator. The output of the

selection unit will be the compressed 16 bit word. Thus a 64

bit word is compressed to 16 bit word with a compression

ratio of 4:1.For example when the input pattern is 11001001

and the dictionary patterns are 11000110, 11010010,

11100000 and 10101010 then the output patterns will be

10xx, 10xx, 10xx and 10wx.If the input pattern given is

10100101111000010110000101100001111

1000101110001011010011100001 the output pattern obtained

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

9

after compression is

1x0w1100w100w10011w0w1w0w1x01w0x which is

compressed in the ratio of 4:1.

3.3 Priority Selection Unit (PSU)

In this compressor architecture, Priority selection unit plays

an important role. It selects the maximum matched word from

the pattern generated by the Pattern matching unit. Three

different structures are proposed and their corresponding

timing and area analysis is done using Xilinx Spartan 3E

FPGA Kit. Four inputs are given to each PSU. Out of these

four words one is chosen as the output. This output is the one

that has maximum number of zeros, ones, and most matched

bytes.

3.3.1 Priority selection unit 1(PSU 1):
The first structure of the priority selection unit has three

counters for counter 0, counter 1, counter w (to count number

of zeros, ones and matched bytes). Eight two input adders sum

the outputs of the counters. The greatest value of the sum is

selected with the help of three comparators. Finally the word

corresponding to the greatest value of the sum is selected from

the selector as in Figure.4

Figure.4 Priority selection unit 1 architecture.

3.3.2 Priority selection unit 2(PSU 2):

Figure.5 Priority selection unit 2 architecture

The second structure of PSU helps in reducing the adder

complexity, thereby reducing the counter complexity, as

shown in Figure.5. Since the number of zeros and ones remain

the same for all the four input words they are counted only

once. The eight adders in the above structure, is reduced to

five adders. The output of counter 0 and counter 1 is summed

up in the first adder. This sum along with the four outputs of

the counter w (counter of matched words) contribute as the

inputs to the next four adders. Due to this, area occupied will

be less compared to the previous work.

3.3.3 Priority selection unit 3(PSU 3):
When analyzing the above three structures we can come to a

conclusion that the output of counter 0 and counter 1 is the

same for all the four words. Hence neglecting both the

counters will not affect the selection of the most matched

word, as the priority selection mainly depends on the counter

w. The architecture for this unit is shown in Figure.6

Figure.6 Priority selection unit 3 architecture

4. RESULTS & DISCUSSIONS

4.1 Simulation Results

We simulated our design using Model sim version 10 and

obtained three simulation results for each priority selection

unit with four bit input word. Figure.7 has many internal

signals and shows the output for the architecture of PSU1,

while Figure.8 is the output for the architecture of PSU2. The

PSU3 output is shown in Figure.9

Figure.7 Priority selection unit 1 output

Figure.8 Priority selection unit 2 output

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

10

Figure.9 Priority selection unit 3 output

4.2 Comparison Tables

4.2.1 Compression ratio comparison

We compared our algorithm to several other hardware

compression designs namely C-pack, FPC, X-match, and

MXT, that may be considered for cache compression.

Table.2 Compression Ratio comparison

The Table.2 indicates the compression ratio which varies from

algorithm to algorithm. P-Match is being the best and MXT

being the worst.

4.2.2 Timing analysis
The advanced HDL synthesis showing the decreasing CPU

time for the PSU’s is in Table 3. The PSU1 has the largest

simulation time between 2.57ns and 2.65 ns while the PSU3

has the least simulation time between 2.33ns and 2.42ns.

4.2.3 Area analysis
The decreasing simulation time is due to the reduction in

hardware complexity, which can be understood from Table 4.

The PSU3 does not have adders and occupies the least area.

The PSU2 has 15 adders less when compared to the PSU1

structure.

5. CONCLUSIONS
This paper has proposed and evaluated an algorithm: P-match

for cache compression that honors the special constraints this

application imposes. The algorithm is based on pattern coding

and partial dictionary coding. Then the priority selection unit

chooses the most matched word. Four different PSU

structures have been proposed and they are compared. Though

the proposed hardware implementation mainly targets online

cache compression, it can also be used in other high-

performance lossless data compression applications with few

or no modifications.

Table.3 Timing analysis comparison

PARAMETER PSU1(ns) PSU2(ns) PSU3(ns)

CPU Time 2.57/2.65 2.49/2.58 2.33/2.42

Total real time to MAP completion 2 0 0

Total REAL time to PLACER

completion

2 0 0

Total REAL time to ROUTER

completion

2 1 1

Total REAL time to PAR (PLACE

AND ROUTE)completion

3 1 1

Table.4 Timing analysis comparison

PARAMETERS PSU1 PSU2 PSU3

1 bit adder carry out 8 4 -

2 bit adder 8 4 -

2 bit adder carry out 8 4 -

32 bit adder 8 5 -

TOTAL NO. OF ADDERS 32 17 -

32 bit comparator(equal) 3 3 3

32 bit comparator(less) 3 3 3

TOTAL NO. OF

COMPARATORS

6 6 6

6. SCOPE FOR FURTHER RESEARCH
The decompression of the proposed 2:1 architecture will be a

lossless method where as the decompression of the proposed

4:1 architecture is somewhat tedious process. Even though it

can be made easy, the decompression of the proposed 2:1 and

4:1 architecture is my future work which is not stated in this

paper. My only objective now is to design a compressor

architecture which compresses the input pattern without any

loss in data. My future work is to design an appropriate

hardware cache compressor architecture which produces the

input pattern as such after decompression without or with a

minimum loss in data. This architecture is mainly designed for

the compression of data in cache memory and can also be

extended to the compression of data in main memory and in

secondary devices also.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.22, March 2013

11

7. ACKNOWLEGMENTS
The authors acknowledge the contributions of the students,

faculty, Velalar College of Engineering and Technology, the

Research Center and would like to particularly thank Bannari

Amman Institute of Technology, Sathyamangalam for help in

the design of test circuitry, and for tools support. The authors

also thank the anonymous reviewers for their thoughtful

comments that helped improve this paper. The authors would

like to thank the anonymous reviewers for their constructive

critique from which this paper greatly benefited.

8. REFERENCES
[1] M.Nisha Angeline , Prof.S.Valarmathy ,

S.K.Manikandan , Prof. C.Palanisamy, ‘‘VLSI Design

Of Cache Compression in Micro Processor using Pattern

Matching Technique’’ in IOSR journal of Electronics

and Communication Engineering, Vol 1,Issue 6, July-

August 2012.

[2] A.Deepa, M.Nisha Angeline and C.N. Marimuthu, “ P-

Match: A Microprocessor Cache Compresion

Algorithm”, 2nd International Conference on Intelligent

Information Systems and Management (IISM’11), July

14- 16, P.No.98, 2011.

[3] Xi Chen, Lei Yang, Robert P. Dick “C-Pack: A High –

performance Microprocessor Cache Compression

Algorithm.”. IEEE transactions on very large scale

integration (VLSI) systems, Vol. 18, No. 8, August 2010.

[4] A.Alameldeen and D. A. Wood, (2004) “Frequent

pattern compression: A significance-based compression

scheme for 12 caches,” Dept. Comp. Scie. , Univ.

Wisconsin-Madison, Tech. Rep. 1500.

[5] E.G.Hallnor and S.K.Reinhardt, (2004) “A compressed

memory hierarchy using an indirect index cache,” in

Proc. Workshop Memory Performance Issues, pp. 9–15.

[6] J.-S. Lee et al., (1999) “Design and evaluation of a

selective compressed memory system,” in Proc. Int.

Conf. Computer Design, pp. 1

[7] J. L. Nunez and S. Jones, “Gbit/s lossless data

compression hardware,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 11, no. 3, pp.499–510, Jun.

2003

[8] P. Pujara and A. Aggarwal, (2005) “Restrictive

compression techniques to increase level 1 cache

capacity,” in Proc. Int. Conf. Computer Design, pp. 327–

333.

AUTHOR’S PROFILE
Nisha Angeline. M received her B.E degree in Electronics

and Instrumentation Engineering from the Indian Engineering

College, Thirunelveli District in 2003 and M.E –VLSI Design

in Kongu Engineering College, Perundurai in the year 2006.

She is working as a Professor (Sr.Gr) in the department of

ECE, Velalar College of Engineering and Technology, Erode.

Currently she is doing Ph.D under Anna University in the area

of VLSI Design. She has published two papers in

International Journals and presented five papers in National

and International Conferences. Her areas of interest are

Digital Electronics, VLSI Architecture, and VLSI Signal

Processing.

Shree Subhatra.K received her B.E degree in Electronics and

Communication Engineering from Anna University,

Coimbatore, 2011. She is currently pursuing Master of

Engineering in VLSI Design in Velalar College of

Engineering and Technology under Anna University,

Chennai. Her areas of interest in research are VLSI Signal

Processing, VLSI architectures.

Manikandan.S.K has received B.E degree in Electronics and

Communication Engineering from Annai Mathammal Sheela

Engineering College, Namakkal District, 2003 and M.E –

Embedded Systems from Sasthra University, Tanjore District

in the year 2006. He is working as a Professor (Sr.Gr.) in the

department of EEE, Velalar College of Engineering and

Technology, Erode. Currently he is doing Ph.D under Anna

University in the area of VLSI Design. He has published two

papers in International Journals and presented five papers in

National and International Conferences. His areas of interest

are Microprocessor and Microcontroller, ARM Processor,

VLSI architectures.

Dr. S. Valarmathy received her B.E. (Electronics and

Communication Engineering) degree and M.E. (Applied

Electronics) degree from Bharathiar University, Coimbatore

in April 1989 and January 2000 respectively. She received her

Ph.D. degree at Anna University, Chennai in the area of

Biometrics in 2009. She is presently working as Professor&

Head in the department of Electronics and Communication

Engineering, Bannari Amman Institute of Technology,

Sathyamangalam. She is having a total of 20 years of teaching

experience in various engineering colleges. Her research

interest includes Biometrics, Image Processing, Soft

Computing, Pattern Recognition and Neural Networks. She is

the life member in Indian Society for Technical Education and

Member in Institution of Engineers. She has published 14

papers in International and National Journals, 48 papers in

International conferences and National Conferences.

