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ABSTRACT 

Microprocessors speeds have been increasing faster than the 

speed of off-chip memory. In a multi-processor system, if the 

processor number is increased, then the access time of the 

memory is also high. Thus a ‘wall’ is raised between 

processor number and memory access time. When compared 

with on chip cache, to access the data, off-chip cache takes 

one order of magnitude more time. Off chip cache also takes 

two orders of magnitude more time for executing an 

instruction, than on chip cache. Care should be taken in cache 

compression, to increase the processor speed but it should not 

contradict with the increase in the total chip’s power 

consumption. The compression is based on pattern coding and 

dictionary based matching and if the pattern matches, the code 

is chosen. Otherwise the dictionary matching is done. The 

compressor is composed of Pattern matching and Priority 

Unit. In this paper three different architectures for the priority 

selection unit is proposed and their area and timing analysis is 

done. 

 

General Terms 
Data Compression, Frequent Patterns, Performance analysis, 

Counters, Comparators, Adders. 

Keywords 

Cellular Automata (CA), Dictionary Matching (DM), Pattern 

matching (PM), Priority Selection Unit (PSU). 

 

1. INTRODUCTION 
Memory latencies have long been a performance bottleneck in 

modern computers. In fact, with each and every advancement 

in technology, microprocessor execution rates outpace 

improvements in main memory speeds. Memory speeds are 

thus having increasing impact on overall processor 

performance. The rift between processor and memory speeds 

is alleviated primarily by using caches. Today’s 

microprocessors have on-chip cache hierarchies incorporating 

multiple megabytes of storage. Increasing the size of data in 

the on-chip caches can greatly increase processor 

performance. However, the amount of data storage in the on-

chip cannot be increased without bound. In built caches 

almost consume most of the die area in high performance 

microprocessors. The fabrication costs of larger die are high, 

and ultimately depend on semiconductor manufacturing 

technology. Practical cache sizes are constrained by the 

increased Memory bandwidth which is also a scarce resource 

in high-performance systems. Several researches use 

hardware based compression to increase effective memory 

size, reduce memory address and bandwidth and increase 

effective cache size. 

 

The main objective of this paper is to increase the 

communicative capacity of the on-chip cache without 

degrading the performance issues. The ongoing move to chip-

level multiprocessors (CMPs) is further increasing the 

problem; when the number of processors is increased, more 

accesses to memory occurs. This results in the reduced 

performance of the processor-memory bus which is not in 

pace. This problem is solved by techniques that reduce off-

chip communication without degrading the performance. Data 

compression in memories is one such technique that helps to 

keep the pace of the bus. Data compression presents several 

challenges. The first one is increase in cache hit latency, 

which will favor in reduced cache miss rates. So this enhances 

extremely fast, data decompression and compression. Then 

secondly for reliable transmission the hardware should occupy 

little area compared to the corresponding decrease in the 

physical size of the cache, and care should be taken not to 

increase the total chip power consumption. Finally, cache 

compression should not increase power consumption 

substantially. The above requirements prevent the use of high-

overhead compression algorithms .A faster and lower-

overhead technique is required. Section II explains the related 

work regarding the data compression in Microprocessor 

Cache Memory. Section III explains the proposed work. 

 

2. RELATED WORKS 

2.1 Frequent Pattern Compression 
This compression scheme [4] builds on significance-based 

compression technique. The frequently occurring data patterns 

are studied, and after observation it is compressed to bits with 

a fewer number. For instance, many integers of small values 

can be stored in bits of 4, 8 or 16, but are usually stored in a 

full 32-bit word (or 64-bits for 64-bit architectures). The 

values frequently occurring are enough to merit special 

treatment, and storing them in a more compact form can 

increase the cache capacity. In addition, special consideration 
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is used for patterns like runs of zeros since they are very 

frequent. The main idea behind FPC is that we want to get 

most of the benefits of dictionary-based schemes, while 

keeping the per-line overhead at a minimum. The FPC 

compresses on a cache line basis. Each cache line is divided 

into 32-bit words (e.g., 16 words for a 64-byte line).These 

patterns are: a zero run (one or more all-zero words) and a one 

run(one or more all-one words), 4-bit sign-extended 

(including one-word zero runs), one byte sign-extended, one 

half words sign-extended, one half word padded with a zero 

half word, two byte sign-extended half words, and word 

consisting of repeated bytes (e.g. “0x20202020”, or similar 

patterns that can be used for data initialization). The input 

patterns are selected based on their high frequency in many of 

our integer and commercial benchmarks. A word that doesn’t 

belong to any of these categories is stored in its original 32-bit 

format. 

 

The main idea behind compressing cache lines at L2 level in 

frequent pattern compression technique is to store common 

word patterns in a compressed format. Patterns are identified 

by a 3-bit prefix. The main advantage of this method is the 

decompression overhead, which helps to maintain cache lines 

in predetermined sizes. The drawback of this method is that 

there is no register-transfer-level hardware implementation or 

FPGA implementation of FPC, and therefore its exact 

performance, power consumption, and area overheads are 

unknown. 

 

2.2 Restrictive Compression Technique 
With the CMOS scaling trends and slow scaling of wires as 

compared to the transistors, the cache access latencies will 

increase in the upcoming microprocessor generations. To 

prevent the increasing latencies from affecting the cache 

throughput, the L1 caches are small-sized and their accesses 

are pipelined. Small-sized L1 data caches can result in 

significant performance degradation due to increased miss 

rates. Compression techniques can be used to boost the L1 

data cache capacity. However, these compression techniques 

cannot alter the byte-offset of the memory reference, to avoid 

any increase in the cache access latency. Restrictive cache 

compression techniques [8] does not require updates to the 

byte-offset, and hence result in minimal, if any, cache access 

latency impact is present. The basic technique AWN (all 

words narrow) compresses a cache block only if all the words  

are of minute size. The compressed cache blocks are then 

combined together in a single physical cache block. The 

AWN technique requires minimal additional storage in the 

cache and results in a 20% increase in the cache capacity. 

 

The AWN technique is extended by giving some 

supplementary space for the upper half-word AHS (additional 

half word space) of a few normal-sized words in a cache 

block, with an aim to convert them into narrow blocks. 

Further the AHS technique is extended to AAHS (adaptive 

AHS) so that the number of upper half-words in a cache block 

can adapt depending on the need. AHS and AAHS techniques 

increase the cache capacity by about 50%, while incurring a 

38% increase in the storage space required, compared to a 

conventional cache. On the other hand, these techniques still 

do not impact the cache access latency. To reduce the extra 

tag requirements (which is inevitable with any cache 

compression technique), this method focuses to  reduce  the 

number of additional tag bits provided for the additional cache 

blocks to be placed in a physical cache block, sinking the 

overhead of the AHS techniques to about 30%. 

 

The byte-offset value of every word present in the block is 

greatly depended on the size of the words present before it in 

the cache. This will result in recalculating the byte-offset to 

read a word from the block. Therefore, it is crucial that any 

compression technique that is used in the L1 caches will not 

have the need of updating the byte-offset. Such compression 

techniques can be called as restrictive compression 

techniques. The drawback of this technique is that it cannot 

alter the byte-offset of the memory reference, to avoid any 

increase in the cache access latency.  

 

2.3 Indirect Index Cache with Compression 
Indirect index cache [5] allocates variable amount of storage 

to different blocks, depending on their compressibility. The 

Indirect Index Cache with Compression is based on the IIC. 

The basic IIC consists of a data array containing the cache 

blocks and a tag store which contains the tags for these 

blocks. Every tag of IIC entry holds a pointer to the data block 

with which it is currently associated. This indirection provides 

the ability to implement a fully associative cache. 

 

Replacements in the IIC are managed by a software algorithm 

running on an embedded controller or as a thread on the main 

CPU. The main algorithm, called Generational Replacement 

(GEN), maintains prioritized pools (queues) of blocks; 

updated periodically while referenced blocks are moved to 

higher priority pools and unreferenced blocks are moved to 

lower priority pools.  At first replacements are done by 

choosing the un-referenced blocks from the lowest priority 

pool. Incase of reaching the highest priority pool, a block 

must be referenced regularly over an extended period of time; 

once there. After doing this it must remain unreferenced for a 

similarly long period to return to the lowest priority pool. This 

algorithm thus combines reference regency and frequency 

information with a hysteresis effect, when dealing with block 

reference bits and periodic data structure updates. To ensure 

that adequate replacement candidates are available to deal 

with bursts of misses, the algorithm can identify multiple 

candidates per invocation and maintain a small pool of 

replacement blocks. This small pool of replacement blocks are 

used by hardware to handle incoming responses, while GEN 

algorithm is used in the background to keep this pool at a 

predetermined level. The IIC was originally designed to 

utilize large on-chip caches to achieve better performance 

over traditional LRU caches. The main drawback of this 

technique is that one cannot reliably determine whether the 

architectural schemes are beneficial without, a cache 

compression algorithm and hardware implementation, while 

they are designed and evaluated for effective system-wide 

compression ratio, and other performance issues like hardware 

overheads, and interaction with other portions of the cache 

compression system. 

 

2.4 Selective Compression Technique 
In the Selective compression [6] technique the data block is 

compressed only if its compression ratio is less than a specific 

compression threshold value. The decompressed overhead is 

reduced as the compressed blocks are only decompressed. The 

compression of the well compressed blocks is the major 

advantage which solves the data expansion problem. The 

overall compression ratio of the data blocks is increased if the 

threshold value becomes lower. As a result, the use of 

compression technique does not suit low threshold values. On 

the other hand, variation with the threshold value has an effect 

on the decompression time and compression ratio. This shows 

that by reducing the unnecessary decompression operation, a 
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high performance is achieved by increasing the compression 

over head, with minimum loss in the retrieval of original data.   

 

It is not easy to suggest that this architecture is beneficial 

without a proper compression algorithm or its hardware 

implementation, even though it has improved parameters like 

over all compression ratio and performance metrics like 

compression overhead and speed of responding to other 

modules of the system, which is a the demerit of this 

technique.     

 

2.5 X-Match Compression Algorithm 
X-Match is a dictionary-based compression algorithm that has 

been successfully implemented on the FPGA kit [7]. It  results 

in relates 32-bit words using a content addressable memory 

that results in partial matching with dictionary entries and 

outputs of encoded data with variable size that depends on the 

type of match. To enhance the coding efficiency, it also uses a 

move-to-front coding approach and smaller indexes are 

represented with fewer bits. Even though it is appropriate for 

compressing main memory, such hardware typically has a 

very large block size (1 KB for MXT and up to 32 KB for X-

Match), which is inappropriate for the compression of cache 

lines. It is well known that for X-Match and two other 

algorithms of Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the 

compression ratio for the data in memory deteriorates with 

smaller block size [5].For instance, the increased  

compression ratio for LZ1 and X-Match algorithm is nearly 

11% and 3% with the reduction in block size from 1KBto 256 

B. It is studied that the increase in compression ratio could be 

larger if the block size decreases from 256 B to 64 B. In 

addition, such hardware has to challenge its use in cache 

compression because of performance metrics like area and 

power consumption costs.  For instance, if the MXT hardware 

was scaled to a 65 nm fabrication process and integrated 

within a 1 GHz processor, the decompression latency would 

be 16 processor cycles, almost two times higher than the 

normal L2 cache hit latency. 

 

2.6 C-Pack Compression Algorithm 
C-Pack targets on-chip cache compression. Even when used 

on small cache lines it gives a good compression ratio. The 

performance metrics like area and power consumption 

overheads are low such that it can suit a practical purpose. 

This idea is in contrast with other schemes such as X-match 

where a complicated hardware is needed to achieve an 

equivalent effective system-wide compression ratio. The early 

work in cache compression does not tolerably evaluate the 

overheads resulting from the assumed cache compression 

algorithms. C-Pack is almost two times faster than the best 

existing hardware implementations potentially suitable for 

cache compression. For other methods like FPC, to match this 

performance, it would require at least 8* the area of C-Pack. 

The main drawback of this technique is that Compression is 

not performed in all the cases. When the total number of 

compressed bits exceeds the uncompressed line size, the 

content of the backup buffer is selected. Here the backup 

buffer has the actual 64 bit uncompressed word. Compression 

is made in the ratio of 2:1.Due to its efficiency it cannot be 

expanded. Frequently used instructions are compressed and 

stored in FIFO [3]. When that particular instruction leaves the 

dictionary it re-enters the dictionary in uncompressed form 

and it has to be again compressed. Hence the memory is not 

properly used. 

 

3.  PROPOSED ARCHITECTURES 

3.1 Compression Architecture 2:1 Ratio 
In the proposed 2:1 architecture shown in Figure.2 is having 

two pipeline stages. The compression is mainly done as 

shown in Table1. 

 

Table .1 Pattern encodings for the proposed method 

 

 

 
 

Figure 1 Compression example 

 

3.1.1 Pipeline stage1:  

The first pipeline stage performs pattern and dictionary 

matching on eight uncompressed words in parallel. Each of 

the eight 8 bits will match with the instruction in dictionary 

and produces four 4 bit words. After dictionary matching they 

are concatenated .The output W1, W2, W3 and W4 each has 

32 bit and it is fed to the next pipeline stage. The pattern and 

dictionary matching is done as shown Figure 1. 

 

3.1.2 Pipeline stage2:  

The second pipeline stage performs the selection of word 

from W1, W2, W3, and W4 depending on the priority. The 

first priority is give to all  
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Figure.2. Compression architecture (2:1 compression ratio) 

 

             

Figure.3 Compressor architecture (4:1 compression ratio) 

 
one’s, Second priority will be give to all zero’s, third priority 

will be given to the combination of zero’s and one’s, next 

priority will be given to matched bytes and the least priority 

will be given to unmatched bytes. This is possible only by 

counting the number of zero’s, one’s, matched bytes and 

unmatched bytes. Counter 0, counter 1 and counter W counts 

the number of zero’s, one’s and the matched bytes. The 

counting does not include the number of unmatched bytes. 

Later they are selected based on their priority. This work is 

performed by the comparators. If both the inputs to the 

comparator have same numbers of zeros, ones and matched 

bytes then the first input to the comparator will be the output 

of the comparator. The output of the selection unit will be the 

compressed 32 bit word. Thus a 64 bit word is compressed to 

32 bit word with a compression ratio of 2:1.For example when 

the input pattern is 11001001 and the dictionary patterns are 

11000110, 11010010, 11100000 and 10101010 then the 

output patterns will be 10xx, 10xx, 10xx and 10wx.If the 

input pattern given is 

10100101111000010110000101100001111 

1000101110001011010011100001 the output pattern obtained 

after compression is 

1x0w1100w100w10011w0w1w0w1x01w0x which is 

compressed in the ratio of 2:1. 

 

3.2 Compression Architecture 4:1 Ratio 
The proposed architecture can be enhanced by implementing 

the compression with the compression ratio of 4:1. Figure.3 

illustrates the hardware compression process. The compressor 

is decomposed into two pipeline stages. 

 

 

3.2.1 Pipeline stage1:  

The first pipeline stage performs pattern and dictionary 

matching on four uncompressed words in parallel. Each of the 

four 16 bits will match with the instruction in dictionary and 

produces four 4 bit words. After dictionary matching they are 

concatenated .The output W1, W2, W3 and W4 each has 16 

bit and it is fed to the next pipeline stage. 

 

3.2.2 Pipeline stage 2:  

The second pipeline stage performs the selection of one word 

from W1, W2, W3, and W4 depending on the priority. The 

first priority is give to all one’s, Second priority will be give 

to all zero’s, third priority will be given to the combination of 

zero’s and one’s, next priority will be given to matched bytes 

and the least priority will be given to unmatched bytes. This is 

possible only by counting the number of zero’s, one’s, 

matched bytes and unmatched bytes. Counter 0, counter 1 and 

counter W counts the number of zero’s, one’s and the 

matched bytes. The counting does not include the number of 

unmatched bytes. Later they are selected based on their 

priority. This work is performed by the comparators. If both 

the inputs to the comparator have same numbers of zeros, 

ones and matched bytes then the first input to the comparator 

will be the output of the comparator. The output of the 

selection unit will be the compressed 16 bit word. Thus a 64 

bit word is compressed to 16 bit word with a compression 

ratio of 4:1.For example when the input pattern is 11001001 

and the dictionary patterns are 11000110, 11010010, 

11100000 and 10101010 then the output patterns will be 

10xx, 10xx, 10xx and 10wx.If the input pattern given is 

10100101111000010110000101100001111 

1000101110001011010011100001 the output pattern obtained 
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after compression is  

1x0w1100w100w10011w0w1w0w1x01w0x which is 

compressed in the ratio of 4:1. 

 

3.3 Priority Selection Unit (PSU) 

In this compressor architecture, Priority selection unit plays 

an important role. It selects the maximum matched word from 

the pattern generated by the Pattern matching unit. Three 

different structures are proposed and their corresponding 

timing and area analysis is done using Xilinx Spartan 3E 

FPGA Kit. Four inputs are given to each PSU. Out of these 

four words one is chosen as the output. This output is the one 

that has maximum number of zeros, ones, and most matched 

bytes. 

3.3.1 Priority selection unit 1(PSU 1): 
The first structure of the priority selection unit has three 

counters for counter 0, counter 1, counter w (to count number 

of zeros, ones and matched bytes). Eight two input adders sum 

the outputs of the counters. The greatest value of the sum is 

selected with the help of three comparators. Finally the word 

corresponding to the greatest value of the sum is selected from 

the selector as in Figure.4 

 
Figure.4 Priority selection unit 1 architecture. 

3.3.2 Priority selection unit 2(PSU 2): 

 

Figure.5 Priority selection unit 2 architecture 

The second structure of PSU helps in reducing the adder 

complexity, thereby reducing the counter complexity, as 

shown in Figure.5. Since the number of zeros and ones remain 

the same for all the four input words they are counted only 

once. The eight adders in the above structure, is reduced to 

five adders. The output of counter 0 and counter 1 is summed 

up in the first adder. This sum along with the four outputs of 

the counter w (counter of matched words) contribute as the 

inputs to the next four adders. Due to this, area occupied will 

be less compared to the previous work. 

3.3.3 Priority selection unit 3(PSU 3): 
When analyzing the above three structures we can come to a 

conclusion that the output of counter 0 and counter 1 is the 

same for all the four words. Hence neglecting both the 

counters will not affect the selection of the most matched 

word, as the priority selection mainly depends on the counter 

w. The architecture for this unit is shown in Figure.6 

 
Figure.6 Priority selection unit 3 architecture 

4. RESULTS & DISCUSSIONS 

4.1 Simulation Results 

We simulated our design using Model sim version 10 and 

obtained three simulation results for each priority selection 

unit with four bit input word. Figure.7 has many internal 

signals and shows the output for the architecture of PSU1, 

while Figure.8 is the output for the architecture of PSU2. The 

PSU3 output is shown in Figure.9    

 

 
 

Figure.7 Priority selection unit 1 output 

 

 

Figure.8 Priority selection unit 2 output 
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Figure.9 Priority selection unit 3 output 

4.2 Comparison Tables 

4.2.1 Compression ratio comparison  

We compared our algorithm to several other hardware 

compression designs namely C-pack, FPC, X-match, and 

MXT, that may be considered for cache compression.             

 

Table.2 Compression Ratio comparison 

 
 

The Table.2 indicates the compression ratio which varies from 

algorithm to algorithm. P-Match is being the best and MXT 

being the worst. 

 

4.2.2 Timing analysis 
The advanced HDL synthesis showing the decreasing CPU 

time for the PSU’s is in Table 3. The PSU1 has the largest 

simulation time between 2.57ns and 2.65 ns while the PSU3 

has the least simulation time between 2.33ns and 2.42ns. 

 

4.2.3 Area analysis 
The decreasing simulation time is due to the reduction in 

hardware complexity, which can be understood from Table 4. 

The PSU3 does not have adders and occupies the least area. 

The PSU2 has 15 adders less when compared to the PSU1 

structure. 

 

5. CONCLUSIONS 
This paper has proposed and evaluated an algorithm: P-match 

for cache compression that honors the special constraints this 

application imposes. The algorithm is based on pattern coding 

and partial dictionary coding. Then the priority selection unit 

chooses the most matched word. Four different PSU 

structures have been proposed and they are compared. Though 

the proposed hardware implementation mainly targets online 

cache compression, it can also be used in other high-

performance lossless data compression applications with few 

or no modifications.  

 

Table.3 Timing analysis comparison 

PARAMETER PSU1(ns) PSU2(ns) PSU3(ns) 

CPU Time 2.57/2.65 2.49/2.58 2.33/2.42 

Total real time to MAP completion 2 0 0 

Total REAL time to PLACER 

completion 

2 0 0 

Total REAL time to ROUTER 

completion 

2 1 1 

Total REAL time to PAR (PLACE 

AND ROUTE)completion 

3 1 1 

 

Table.4 Timing analysis comparison 

PARAMETERS PSU1 PSU2 PSU3 

1 bit adder carry out  8 4 - 

2 bit adder 8 4 - 

2 bit adder carry out 8 4 - 

32 bit adder 8 5 - 

TOTAL NO. OF ADDERS 32 17 - 

32 bit comparator(equal) 3 3 3 

32 bit comparator(less) 3 3 3 

TOTAL NO. OF 

COMPARATORS 

6 6 6 

 

6. SCOPE FOR FURTHER RESEARCH            
The decompression of the proposed 2:1 architecture will be a 

lossless method where as the decompression of the proposed 

4:1 architecture is somewhat tedious process. Even though it 

can be made easy, the decompression of the proposed 2:1 and 

4:1 architecture is my future work which is not stated in this 

paper. My only objective now is to design a compressor 

architecture which compresses the input pattern without any  

loss in data. My future work is to design an appropriate 

hardware cache compressor architecture which produces the 

input pattern as such after decompression without or with a 

minimum loss in data. This architecture is mainly designed for 

the compression of data in cache memory and can also be 

extended to the compression of data in main memory and in 

secondary devices also.   
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