
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.21, March 2013

Dynamic Load Balancing With Central Monitoring of
Distributed Job Processing System

P. Srinivasa Rao
Computer Science

YPR College of Engineering
&Technology, A.P, India

V.P.C Rao, PhD.
Computer Science

St. Peter's Engineering
College, A.P, India

A.Govardhan, PhD.

Computer Science
JNT University Hyderabad

A.P, India

ABSTRACT

This paper presents a Dynamic load balancing with a

centralized monitoring capability. The purpose of using a

centralized monitoring feature was based on the idea that the

computation in a environment may be distributed, but the

status of each task or job must be available at a central

location for monitoring and better scheduling. This also

allows better management of the jobs. The framework also

addresses the inherent need for uniform load distribution by

allowing the dispatcher to check against the status of the

processors before a job is dispatched for processing. This

eliminates the need for processors to be burdened with the

task of re-routing the job when they discover that they cannot

process the received job. The basic requirement of assigning a

priority and processing as per priority is built into the

framework. As a proof of concept, we simulate the framework

with a Java and JMS compliant OpenMQ based monitor,

dispatchers, processors and a centralized database. The

framework will have the capability to scale horizontally as

well as vertically.

General Terms

Distributed Job Processing, Load Balancing,Parallel

Processing.

Keywords

Keywords - Distributed, Job Processing, Priority,Load

Balancing , Monitoring, Recovery.

1. INTRODUCTION

Many of the Job processing systems available today are

commercial systems that use proprietary technology

(hardware / software) for performing the tasks. Quite

prevalent are those with Mainframe systems. Such systems do

have complex monitoring and control software. But these are

less flexible, tightly coupled with other associated software

and/or hardware, thus limiting the scalability to the extent the

platform supports. Added to this is the cost overhead of

upgrading the system when more computational power is

needed.

Major limitations of such systems being:

1. Mainframes are proprietary systems.

2. Applications are not portable across multiple

platforms.

3. Interfacing with heterogeneous systems is always a

cumbersome work.

4. Difficult to upgrade or introduce new and / or better

technologies.

5. Cost associated with technology upgrades.

With the easy availability of network access and the computer

hardware price falling every quarter with increasing

processing power, it should be possible to utilize the unused

computing power of a vast majority of personal computers

and servers for distributed computation. This will greatly

improve overall response to Job processing requests;

effectively utilize the unused computing power. The proposed

framework addresses exactly these points.

Some of the benefits of this framework are:

1. A central monitoring component that provides a global

view of all the Jobs under processing.

2. Dispatchers can get a global view of the availability of

processors.

3. Dispatchers can choose alternate Processors if the target

processor is loaded.

4. Processors can only process jobs and need not worry

about re-scheduling.

5. Processors can be easily added and/or removed

dynamically.

2. APPROACH

In this article, we will discuss about the approach and feasible

implementations of a centralized monitoring system for Job

scheduling and processing network. In such a system, there

can be:

a. One or more monitors.

b. One or more processors.

c. One or mode Dispatchers.

The components (i.e. Dispatcher, Processor and Monitor)

communicate over persistent message queues. Using a

persistent message queue solves the problem of sequencing of

messages and avoids problems of messages being lost when

the network fails of systems crash. The status of a job is

maintained in the persistence layer, a database. For simulation

purposes, we are going to use MySQL Community Edition

Server as the database.

To start with, let us consider the basic requirement of

monitoring of a job scheduling system. The capabilities

should include the following:

1. Processors should be able to report their availability.

2. Processors should be able to report their current load.

3. Every component (Dispatcher, Processor etc.) that handles

a Job should be able to report the status of the Job.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.21, March 2013

44

4. The status should be updated and be available at a central

location.

3. DESIGN

Let us consider feasibility of implementation of such a

monitoring system. The following are various components

within the system.

3.1 Job Dispatcher

This is the component that accepts the job requests (manual or

otherwise), validates them and places the jobs in the Job

Queue for processing. The dispatcher also records all the

requests in the Database.

3.2 Job Processor

The processor is the component that picks up a job request

from the queue, processes it. As shown in the diagram, the

processor also reports the progress and status of job

processing to the monitor. If a job is a long running job,

progress information is sent at periodic intervals to the

monitor. The Job processor also needs to report its health

status back to the monitor. This is achieved through an

independent thread in the job processor. Irrespective of

whether a job processing is being done or not, the Heartbeat

thread sends out the information about the availability and

readiness of the processor. This helps monitor and dispatcher

take intelligence actions on various aspects (describer later).

3.3 Job Monitor

This component is responsible for monitoring the status

messages and updates the database. The component watches

the progress messages and Heartbeat messages from various

processors and saves the status in the database. This

information also acts as feedback to the Job Dispatchers to

take some decision at the time of dispatching the job to a

target processor.

3.4 Dispatch Queue

This is the message queue that stores the job requests

dispatched until a processor picks them up for processing.

Note that, for reliable job processing system, this Queue

should have persistence capability, so that, in case of system

failures, the requests lying in the queue are not lost.

3.5 Progress / Status Queue

These are the message queues that store the job status sent by

either dispatcher or processor. The monitor continuously

monitors this queue for Job Status as well as Processor status

messages. The information should include the current load,

job status etc. This information is gathered by the Monitor and

made available to the Job Dispatcher. The Job Dispatcher can

then take intelligent decision based on this information to

decide if a new job is to be dispatched to a target Job

Processor or al alternate processor.

3.6 Database / Persistence

This is the most critical component in the entire system. All

the information about the Job, the Processors, the state of

processing and the availability of processors are maintained at

a central database. This helps the job dispatching tasks little

intelligent (as described later) and helps near real-time

reporting of the progress of the job processing as well as

health of the entire system.

The proposed system also takes into account important design

aspects that greatly enhance the Job processing. They are:

a. Processor Affinity

b. Priority Thread Pool

3.7 Processor Affinity

The proposed system provides for defining a target processor

for a given job. While it does not restrict any processor from

picking up a job from queue for processing, the provision to

specify a target processor helps design special purpose

processors for specialized jobs. The dispatcher can read the

Job definition to check if it can be dispatched to any processor

of its choice or any specific processor(s). The job designer, of

course, should be aware of the special purpose processors

available and their capabilities. Once identified, the Jobs can

be defined as such. The dispatched can then choose the

appropriate processor while dispatching the job.

3.8 Thread Pool

We introduce here another important component in our

design. The processor is designed to

As can be observed, we have not considered the traditional

Sender/Receiver paradigm of design. The advantages of our

Dispatcher / Processor design over the Sender / Receiver

model is explained below. But, before that, let us understand

the inefficiencies present in Sender / Receiver model.

In the traditional Sender / Receiver model (we will call each

such component as a node), there is only one node that acts as

either a Sender or a Receiver. Based on the current load level

crossing the threshold values, either Sender changes itself to a

Receiver or Receiver changes itself to a Sender. In order that

such a system works correctly, all these nodes need to have

the knowledge of all other nodes. This model has the

following disadvantages:

a. The node is loaded with the responsibility of processing as

well as job dispatching.

b. When a node receives a job and is 100% loaded, it needs

to query the status of other nodes to find out if any other

node is less loaded and can process this.

c. There is no clear distinction between types of different

processors and each node is treated same. This means,

there can be no processor affinity. Processor affinity, in a

complex distributed network of processors, may be a

desirable factor for specialized jobs.

d. When every node requests the status of other nodes

periodically, the network overhead increases many fold.

e. In a complex network, having multiple sub-networks,

configuring each node for locating other nodes is a

complex task.

f. Assuming, the nodes use broadcast to announce their

status, this also causes enormous load on the network.

g. Quite a good amount of time is wasted at each node to

query other nodes. This time could have been utilized for

processing the job.

How does our new model address these concerns? Here are

the advantages.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.21, March 2013

45

a. There is a clear distinction between Sender (Dispatcher)

and Receiver (Processor). Processors only do processing

of the Jobs dispatched to them and report the status. When

a job is about to be dispatched, the Dispatcher analyses

the status of all the processors and takes the intelligent

decision about the best processor available.

b. Processors report status to a central monitor at a

configurable interval and there is only one way

communication. Dispatcher need to query the central

persistence (database) to check the status. This avoids

nodes sending a request for status and other nodes

responding with the status. This is a huge saving on the

network usage.

c. Any number of processors can be added and/or removed

dynamically to the system without the need for

configuration anywhere. Thus, the system has the ability

to easily scale horizontally.

d. Each processor maintains it’s internal Thread Pool based

on the priority. The pool size is configurable. Thus, on a

high end server, the same processor can be configured to

handle more loads. This allows the system to easily scale

vertically.

e. Each Processor can be assigned an ID and thus, Processor

affinity of a Job can be defined.

f. Using a standard Message Queue with persistence, helps

the system retain the messages during a crash and

subsequent recovery.

g. Processors utilize the time only for processing and need

not have to be burdened with the decision of re-

distributing the job when they are loaded. This situation

will not arise because the dispatcher would have

considered the load situation and distributed the job to the

best processor which can immediately pick up the job for

processing (assuming not all processors are 100% loaded).

The job is dispatched only once. This minimizes wait of

the jobs as well as network delays.

Figure 1. High Level Architecture

The Figure 1 represents a Job Processing network with

monitoring capability. The dispatcher reads the Job definition,

identifies its target processor. The target processor can be any

processor or a specific processor. Having identified, it checks

if the target processor is available and its current load. If the

Job can be handled by multiple processors, the dispatcher

finds the processor that is least loaded. This information is

available in the database at a central location. After the

potential processor is identified, the dispatcher sends the

request to the target processor through the Dispatch Queue.

Any number of dispatchers can be invoked from any location

without having any conflicts. When a job is submitted, a

unique identifier is assigned to it and the information is

logged into the database.

The Job Processor monitors the Dispatch queue for new jobs.

The processor also has two thread pools for processing jobs.

The two pools are Low Priority pool and High Priority pool.

The design is flexible enough to have any number of pools for

any number of priority levels. Once a Job is available, the

processor checks its priority and puts the job into the

corresponding internal processing pool. The threads pool

manager then takes the job and starts processing.

The Processor also has a Heartbeat thread that sends out

heartbeat message to the Monitor at regular intervals. The

heartbeat message includes the target processor id, the current

load for respective priority pools and heartbeat interval. At the

end of processing, the status of the job is also communicated

to Monitor. Both Heartbeat messages and Job status messages

are sent through the Status queue.

The Monitor regularly checks for messages from status queue.

If a Job status message is received, it updates the status of the

job in the database. If a heartbeat message is received, it

updates the processor status in the database. The Processor

status is thus kept current through the heartbeat message.

Therefore, when a dispatcher is about to dispatch a job, it can

easily check if the target processor is available and its current

load and take appropriate decision to choose the right

processor for the job.

The most important aspect of this design is the plug and play

nature of the components (i.e. Dispatcher, Processor,

Monitor). Such a system can be implemented over a vast wide

area network having many smaller sub-networks. Any number

of processors can be added independent of each other.

Similarly any number of Dispatchers and Monitors can be

added. While a single monitor is sufficient to handle load for

hundreds of Processors, for handling failures, multiple

monitors may be started.

Another important component in the entire system is the

Database. The database is the central persistence that

maintains the information about the Processors, their

availability, Job definition, Job Execution status etc. It is

recommended that a relational database like Oracle or SQL

Server or MySQL be used for large Job processing systems.

For simulation purposes, we used a MySQL database.

Since the Database is the central component that holds such

critical data, it is also a probable single point of failure. This

means, if the database system is down, the entire Job

Processing system comes to a grinding halt. However,

Clustering and Failover Recovery technologies available

today can be used quite effectively to address such failovers

scenarios.

All other components, using industry standard message

queues can be easily replicated to address failover

requirement without the need for any additional technology

implementation.

4. SIMULATION and ANALYSIS

For simulating our design, we implemented a Java based job

processing system with multiple processors, monitors and

dispatchers. As part of this experiment, we defined a Job that

compute 400000 prime numbers. Thus, the Job processing

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.21, March 2013

46

time was allowed to take whatever time it takes to compute.

The wait time, process time and Total time of the jobs were

monitored.

Table 1: Results

Priority
Wait
Time

Processing
Time

Total Time

Sender 231217 112141 343358

Proposed
Algorithm 193129 109345 302474

Figure 2. Results.

The architecture can be easily implemented in a network of

processors. The processors need not necessarily be of

identical capability in nature. The health and load of the entire

processor network is available to any component in the

network. The dispatchers can utilize this information for

efficient routing.

The algorithm used to determine the least loaded processor for

dispatching a Job request is given below.

TargetNode = RequestNode

READ Alternate Targets From DATABASE

FOR EACH Alternate Target

 IF Target IS NOT AVAILABLE Continue

 IF Target Load Is Minimum

 TargetNode = Target

 BREAK

 END IF

END FOR

IF NO Target IS RUNNING

 ABORT JOB

ENDIF

MARK TARGET FOR JOB AS TargetNode

DISPATCH To TargetNode

5. COMPARISON

The results were compared with the data collected through an

implementation of Sender initiated algorithm. The network

overhead in the Sender Initiated Algorithm was quite

enormous and it increased the waiting time of the jobs in case

of sender initiated algorithm. The results show that at-least

11% improvement in the total processing time in our proposed

approach.

So far, in most of the systems implemented, the mechanism

and protocol of communication between senders and receivers

are not explained in detailed manner. This may lead to

ambiguity in defining the overhead associated with the Sender

initiated algorithms and/or Receiver initiated algorithms. The

approach described here eliminates that ambiguity and also

eliminates the overhead of processors participating in routing

of jobs. This also keeps the architecture and implementation

of such a system simple, dynamically scalable and flexible.

This is an important aspect of requirement of a large array of

networked Job processing systems.

6. CONCLUSION

The architecture presented here is a quite flexible and adaptive

Job Processing network with a Central Monitor. This avoids

every processor (or sender/receiver) having to be concerned

about identifying the load of other processors and routing the

job requests. This minimizes the processing overhead on the

processors and communication/network overhead on the

network.

The architecture can further be enhanced to include recovery

of Jobs under processing at the time of a processor crash. This

implementation will make the architecture a completely safe

and reliable Job Processing network.

7. GLOSSARY

Word Meaning

MQ Message Queue

JMS Java Messaging Specification

Active MQ Industry standard, free Messaging System

8. REFERENCES

[1] Ambika Prasad Mohanty (Senior Consultant, Infotech

Enterprises Ltd.), P Srinivasa Rao (Professor in CSC,

Principal, YPR College of Engineering & Technology),

Dr A Govardhan (Professor in CSC, Principal, JNTUH

College of Engineering), Dr P C Rao (Professor in CSC,

Principal, Holy Mary Institute of Technology &

Science), Framework for a Scalable Distributed Job

Processing System.

[2] Ambika Prasad Mohanty (Senior Consultant, Infotech

Enterprises Ltd.), P Srinivasa Rao (Professor in CSC,

Principal, YPR College of Engineering & Technology),

Dr A Govardhan (Professor in CSC, Principal, JNTUH

College of Engineering), Dr P C Rao (Professor in CSC,

Principal, Holy Mary Institute of Technology &

Science), A Distributed Monitoring System for Jobs

Processing.

[3] J. H. Abawajy, S. P. Dandamudi, "Parallel Job

Scheduling on Multi-cluster Computing Systems,"

Cluster Computing, IEEE International Conference on,

0

50000

100000

150000

200000

250000

300000

350000

400000

Wait Time Processing
Time

Total Time

Sender Proposed Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.21, March 2013

47

pp. 11, Fifth IEEE International Conference on Cluster

Computing (CLUSTER'03), 2003.

[4] Dahan, S.; Philippe, L.; Nicod, J.-M., The Distributed

Spanning Tree Structure, Parallel and Distributed

Systems, IEEE Transactions on Volume 20, Issue 12,

Dec. 2009 Page(s):1738 – 1751

[5] David P. Bunde1, and Vitus J. Leung, Scheduling restart

able jobs with short test runs, Ojaswirajanya Thebe1,

14th Workshop on Job Scheduling Strategies for Parallel

Processing held in conjunction with IPDPS 2009, Rome,

Italy, May 29, 2009

[6] Norman Bobroff, Richard Coppinger, Liana Fong,

Seetharami Seelam, and Jing Xu, Scalability analysis of

job scheduling using virtual nodes, 14th Workshop on

Job Scheduling Strategies for Parallel Processing held in

conjunction with IPDPS 2009, Rome, Italy, May 29,

2009

[7] Y-T.Wang and R.J.T.Morris. Load Sharing in

Distributed Systems. IEEE Trans. Computers, Vol. C-34,

No. 3, 1985, pp. 204-215

[8] Pravanjan Choudhury, P. P. Chakrabarti, Rajeev Kumar

Sr., "Online Scheduling of Dynamic Task Graphs with

Communication and Contention for Multiprocessors,"

IEEE Transactions on Parallel and Distributed Systems,

17 Mar. 2011. IEEE computer Society Digital Library.

IEEE Computer Society

[9] Sunita Bansal, and Chittaranjan Hota, Priority - based

Job Scheduling in Distributed Systems, in Third

International Conference (ICISTM 2009), Ghaziabad,

INDIA, Sartaj Sahani et al. (Eds.), Information Systems

and Technology Management, Communications in

Computer and Information Science Series, Vol 31, pp.

110-118, Springer-Verlag Berlin Heidelberg, March

2009.

[10] Y-T.Wang and R.J.T.Morris. Load Sharing in

Distributed Systems. IEEE Trans. Computers, Vol. C-34,

No. 3, 1985, pp. 204-215.

[11] Nazleeni Samiha Haron , Anang Hudaya , Muhamad

Amin , Mohd Hilmi Hasan , Izzatdin Abdul Aziz ,

Wirdhayu Mohd Wahid, “Time Comparative Simulator

for Distributed Process Scheduling Algorithms”

[12] Java Message Service (JMS):

http://java.sun.com/products/jms/

