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ABSTRACT 

In the present article an attempt is made to understand the 

Infected-Susceptible phase plane trajectories, describing the 

growth of virus in the model of Susceptible, Infected, and 

Removed (SIR) extended to immigration studies. The growth 

of virus is described by second order differential equation, in 

terms of small deviations from the steady state solution of 

infection. Further the situation for discriminator = 0, obtained 

in solving the second order differential equation, is described. 

In this analysis the free parameter, defined in terms of 

immigrant rate, birth and death rates of virus, is shown to play 

an important role in the shape of the trajectories in I_S Phase 

plane. For same values of immigration rate, birth and death 

rates of virus, all the trajectories approach asymptotically the 

stable equilibrium point (ratio of death to birth rate of virus, 

ratio of constant immigration rate to death rate of virus), 

which is termed as a nodal sink. The effect of different 

parameters such as size of system of computers, death and 

birth rates of virus and threshold value of the epidemic on the 

growth of virus is presented. 
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1. INTRODUCTION 
The concept of immigrants, inflow of population, in 

demographic studies plays an important role in understanding 

the social-economic-environmental implications. Similarly in 

the field of epidemics, continuous transmission of biological 

virus leads to diseases. In the field of computers also the 

inflow of computer virus into an existing system of healthy 

computers plays an important role in the growth and spread of 

virus. A strong and close analogy exists between computer 

virus and biological virus as can be seen in Wikipedia-the free 

encyclopedia [1]. Well established mathematical models to 

describe the growth and spread of virus exist in literature to 

understand the discipline of epidemiology. A brief survey, 

relevant to the present investigation is given below. The 

subject involves modeling the dynamics of an infectious 

disease in a population in which it occurs. The size of the 

population is considered to be constant. It is also assumed that 

the population is homogeneous. All members of the 

population interact with one another to the same degree. At 

each time the population/computers will consist of three 

categories; the susceptible class, those who may catch the 

disease but currently are not infected, the infected class, those 

who are infected with the disease and are currently contagious 

and the removed class, those who cannot get the disease, 

because they either have recovered permanently, are naturally 

immune, or have died.  As time advances the system will 

attain a steady state which is of interest for understanding the 

growth and spread of virus. Important parameters are 

birth/infection rate, death/cure rate, threshold/effective 

removal value, reproduction number, delay and vigilance 

times etc. The popular models are Susceptible-Infected (SI), 

Susceptible-Infected-Susceptible (SIS), SIR, extended SIR 

namely Susceptible-Antidote-Infected-Removed (SAIR), 

Susceptible-Exposed-Infected-removed(SEIR), susceptible-

exposed-antidote-infected-Removed (SEAIR) etc. The details 

of these models can be seen in literature [2, 3]. Particularly 

the model SIR concerning disease dynamics with and without 

demographics is described in [4]. In SEIR the susceptible and 

infected category are divided into compartments. The size and 

severity of the epidemic and controlling the disease by 

quarantine and vaccination are discussed in [5]. In a pure SIR 

model intensity of the epidemic and conditions under which 

an epidemic builds up and fades out are studied in terms of 

effective removal rate and the popular K-M theorem [6]. 

Further another interesting piece of information is found in 

lecture notes on “Mathematical Biology” [7] where SIR 

model, conditions for eradicating the disease by vaccination 

and for a disease to become endemic, are described. The 

SEAIR model described Influenza-asymptomatic infection 

with pre-seasonal and antiviral treatment, age-structure, and 

delayed vaccination [8]. Similarly Malaria, a devastating 

disease leading to severe deaths in tropical regions of the 

world, and its eradication by applying direct control measures 

rather than vaccination is found in [9]. In almost all these 

studies the stability of disease-free and endemic equilibrium 

states of the disease are described with reference to the basic 

reproduction number, R0. 

Immigrants play a critical role in disease dynamics. The 

influence of immigration, (i) in removing the stresses in low 

fertility in demographic and welfare systems,(ii) the way the 

profiles, in the receiving population, are altered, (iii) how it 

features the reproduction and force of infection and finally 

how such studies helped in controlling a disease Rubella in 

Italy are described in [10]. Another interesting study is 

epidemic models with infective immigrants and vaccination 

[11, 12]. HIV transmission leading to AIDS is discussed in 

[13] where a constant immigration number is considered in 

the standard non-linear differential equations of SIR model. 

The equations are made linear by Jacobian transformation. 

The corresponding matrix is diagonal zed and the Eigen 

values are determined. A parametric condition for the stability 

of the state at equilibrium is obtained.  

Similarly a simple and elegant method is used in solving the 

non linear equations of the SIR model with a constant number 
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for immigration of susceptibles in the differential equation 

for
dt

dS
. The values of S and I are expressed in terms of small 

deviations in the steady state values of S and I. With simple 

mathematics a second order differential equation (II O.D.E) 

for the virus growth is obtained. On solving this one comes 

across an expression for the discriminator, which may be +ve, 

zero, -ve. This will result in (i) real and distinct (ii) real and 

equal (iii) complex and unequal roots for the solutions. Out of 

these (i) and (iii) are discussed already [14, 15].  

The remaining solution where the roots are real and equal is 

presented in this publication. The subject matter is arranged as 

follows. In section 2 the methodology is described. In section 

3 the results and discussions are presented where as in section 

4, the conclusions are high lighted. Finally, references are 

given in section 5. 

2. METHODOLOGY 

The basic SIR model involves three classes of computer 

systems namely, Susceptibles(S), Infectives (I) and 

Removed(R). By introducing some susceptibles (immigrants) 

at a constant rate (k) into the system, the effect of immigrants 

on the spread and growth of virus is described by the 

following three non-linear differential equations.                                                                        

SIk
dt

dS
 ;                                                 (1) 

ISI
dt

dI
  ;                       (2) 

I
dt

dR
                                                   (3) 

With the initial condition,  

ktNktISRIS  00
                                          (4) 

Where, k, β and γ stand for constant immigrant rate, birth rate 

and death rate respectively. S0, I0 are initial values of S and I. 

N stands for population size. 

All the three derivatives in (1), (2) and (3) namely  
dt

dI

dt

dS
,  

and 
dt

dR cannot vanish simultaneously. As the interest in this 

article is confined to I_S phase plane it is sufficient to deal 

with (1) and (2). The equilibrium (steady state) solutions for 

SE, IE can be obtained by setting left hand side of (1) and (2) 

equal to zero and are given by   

          


 k
IS

EE
 ,                                  (5) 

The variation of S and I is described by introducing small 

deviations,  and υ, from equilibrium values SE and IE 

respectively. Thus 

)1(
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Squares, higher powers and product terms of   and υ are 

neglected. On substituting (5) and (6) in (1) and (2) and 

simplifying one gets   
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Eliminating ε one gets the II O.D.E in υ as 

0)(')/(''   kk                  (8) 

This can be solved by standard method. In doing so one 

comes across a discriminator 

))(*41 2  kk                 (9) 

The value of ω (9) may be +ve, zero,-ve according to the term 

4,,)/( 2 k  respectively. Accordingly the roots are 

(i) real and distinct, (ii) real and equal, (iii) complex and 

unequal. In this paper we are confined to roots which are real 

and equal. The details are given below. The roots are equal 

when ω=0 i.e.,  

 /*)2/1(
21

 mm  

Where, m1 and m2 are the two roots of (8). The solution is 

given by 
)/)2/1(()(  keBAt  where; A, B are 

arbitrary constants, which can be determined from the initial 

values of υ and 
'  at t = 0. For this, the expressions

dt

dI
, IE, I 

from (2), (5) and (6) respectively are used. Thus υ is 

determined and hence ‘I’ as a function of time is obtained. 

Further from the relations for ε and υ from (7) and expressions 

for SE and S from (5), (6), the value of S can be obtained as a 

function of time. Thus one can plot I vs S, S vs t, and I vs t for 

several combinations of k, β and γ. One must remember to 

keep kβ/γ2 = 4 so that ω is equal to zero. With a given initial 

number of infected nodes (I0) for different population sizes, 

I_S phase-plane trajectories can be drawn. It may be noted 

that the initial values of I and S should not be taken as IE and 

SE which are points of singularity. 

3. RESULTS AND DISCUSSIONS 
In the present investigation the main interest is focused on the 

SI _  phase plane analysis. Thus out of the three coupled 

differential equations used, the first two are sufficient for 

discussion. Unlike SIR model, the 
dt

dS  equation is not a 

continuously decreasing function. It has no lower bound limit. 

On the contrary it has i) a term, SI  representing the 

number of susceptibles getting converted into infectives and 

ii) a term, k , representing an inflow of immigrants at a 

constant rate. So depending on the values of S , I ,   and  

k  , there will be a competition between the said two terms. 

As a result 
dt

dS  will be increasing / decreasing. In the second 

equation, 
dt

dI
 will be +ve, 0, -ve according to  /,, S . 

The value of γ/β is termed as threshold value or effective 
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removal rate (  ). Thus increase/decrease of I  with time 

depends on whether S  or S . It may be noted 

that at equilibrium point the two differential equations, 

dt

dS
and 

dt

dI
 will be zero. The relevant mathematical 

background is described in Sec 2. Different values of 

parameters, N, γ, β, K and I0 of the virus are chosen so that the 

conditions given in Sec 2 are satisfied. Table-1 displays data 

for two typical sets (A and B) i) for high γ(0.02),β(0.04)values  

and low ρ(5)  and ii) low γ(0.05),β(0.0025)and high ρ(20), out 

of several sets tried exhaustively.  

TABLE 1. Dataset Descriptions 

Set Phase Population Size 

(N) 

γ β k I0 

A I 

II 

III 

51,81,91 

101,151,301 

501,751,1001 

0.2 

0.2 

0.2 

0.04 

0.04 

0.04 

4 

4 

4 

1 

1 

1 

B I 

II 

III 

101,501,1001,1501 

2001,3001,4001 

5001,7501,10,001 

0.05 

0.05 

0.05 

0.0025 

0.0025 

0.0025 

4 

4 

4 

1 

1 

1 

 

For population size, N is varied from 51 to 10,001. The 

analysis is made concerning variation of I vs S; S vs t and I vs 

t through numerical simulations. By critically going through 

the computed results, time taken to reach the equilibrium 

values SE and IE are noted. While studying, I vs S trajectories, 

some distinct features are noted irrespective of γ and β values. 

Accordingly, they are classified into three different phases. 

Phase I: In this phase the values of S increase from S0 up 

to a maximum value. The trajectory takes a reversal i.e. S 

decreases and finally reaches the value SE asymptotically. The 

value of S is > SE. Thus I will be increasing from I0 to IE 

asymptotically. 

Phase II: In this case S will be decreasing right from the 

beginning i.e. S0 and asymptotically attains the value SE .Here 

again the value of S is > SE. Thus I will be increasing from I0 

to IE asymptotically. 

Phase III: In this phase also S will be decreasing from S0, 

passes through SE and enters –ve region for a while and then 

with a reversal enters +ve region and finally attains SE and 

continues to remain there for all the times. It may be noted 

that the value of S, till it passes the ordinate at SE, will be > SE 

and later on the value will be < SE till it sinks to the value SE. 

For this region S will be < ρ. Thus I will increase to a 

maximum value and then will decrease exponentially and 

asymptotically attains the equilibrium value IE. This feature is 

in accordance with the differential equation (2). 

For clarity in resolution, the I vs S trajectories are shown 

separately for the three phases I, II and III as explained above 

in Fig. 1 series for set A. The variations of S vs t, for one 

value from each of the phases I and II and for two values of N 

from phase III, are shown in Fig. 2 series. Variation of I vs t is 

shown in Fig. 3 representing some typical values of N from 

Phases I, II and III. The features exhibited in all the said 

figures are in accordance with the prescription of the model. 

From the numerical values obtained for variation of I and S 

with time, it is noted that the time taken to reach the 

equilibrium values IE and SE is close to 26 and 32 unit time 

steps respectively. Further the infectives reach the equilibrium 

value earlier compared to that of susceptibles. 

In order to study the effect of low γ and β with higher ρ the 

data as shown for set B is chosen. The value of ρ is enhanced 

by a factor of 4 which can be easily verified from the data in 

Table-I. The corresponding I-S trajectories for set B are 

shown in Fig.4 series. The variation of S vs t is shown in Fig. 

5 series and the variation of I vs t is shown in Fig. 6. All the 

features as seen in Fig. 1, 2 and 3 are also seen in Fig. 4, 5 and 

6. However it may be noted that the corresponding population 

sizes at the transition of phases are increased e.g for set A, the 

population size is  91 for phase I; for the phase II the range 

of N is from 101 to 301. Where as, for the phase III, the value 

of N is ≥ 501. Similarly for set B the corresponding values for 

N are < 1501 in phase 1 and for phase II the range of N is 

from 2001 to 4001 and for Phase III, N is ≥ 5001.  Further it is 

also noted that the time taken to reach the equilibrium values 

IE and SE (116 and 155 unit time steps) are increased by a 

factor   4 and I approaches IE faster than S approaches SE, as 

is the case of set A. The results clearly show that when ρ is 

increased by a factor of 4 the corresponding saturation time 

for infectives and susceptibles increase by almost the same 

factor. This means higher the value of ρ, slower is the rate of 

growth of virus. 

All the above observations made in this investigation are with 

discriminator ω=0, in solving equation (8), i.e the roots of the 

quadratic equation are real and equal. This is a particular case 

of ω when it is a +ve quantity. The mathematical expressions 

for the solutions in both the cases are different but in principle 

mathematically they belong to same category i.e the behavior 

of solutions for roots “real and distinct” are identical to roots 

“real and equal”. This consistency is easily seen in this 

investigation when compared with that of [15]. Thus all 

predictions of the model are well described in Figs.1-6 for the 

two sets of data (A and B), i) for higher γ, β and lower ρ and 

ii) lower γ, β and higher ρ. 
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Fig 1(a): Susceptible vs Infected Nodes 
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Fig 1(b): Susceptible vs Infected Nodes 
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Fig 1(c): Susceptible vs Infected Nodes 
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Fig 2(a): Susceptible Nodes vs Time 
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Fig 2(b): Susceptible Nodes vs Time 
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Fig 3: Infected Nodes vs Time 
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Fig 4(a): Susceptible vs Infected Nodes 
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Fig 4(b): Susceptible vs Infected Nodes 
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Fig 4(c): Susceptible vs Infected Nodes 
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Fig 5(a) : Susceptible Nodes vs Time 

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200

Time ( t )

S
u

sc
e
p

ti
b

le
 (

 S
 )

Series1

Series2

K=4, γ= 0.05 ,  β =0.0025, I0=1

N=5001,7501

 

Fig 5(b) : Susceptible Nodes vs Time 
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Fig 6: Infected Nodes vs Time 

4. CONCULSIONS 

In this investigation it is observed that the term 
2/k   

plays an important role in describing the nature of infection 

growth. Unlike SIR model there is no lower bound on S  but it 

attains a stable equilibrium vale, SE=ρ which is the threshold. 

The increasing /decreasing trend of S is noted to depend on 

the relative strengths of the terms, SI  and k . The value 

of I is not approaching zero but attaining a stable equilibrium 

value /kI E  . Variation of I is found to depend on 

whether S>ρ or S<ρ. For same values of k, γ and β, all 

trajectories in I_S phase plane are noted to reach the stable 

equilibrium point at ( EE IS , ) which is termed as nodal sink. It 

is observed that as the threshold value is increased, the time 

taken to reach equilibrium point (SE, IE) also increases 

indicating there by a slow rate for growth of virus. The 

general trend in the  behavior of I-S phase plane trajectories is 

consistent in both the situations when the roots are i) real and 

distinct and ii) real and equal. 
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