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ABSTRACT 

This work investigates the application of the Ensemble 

Empirical Mode Decomposition (EEMD) and the time-

frequency techniques for treatment of the electromyography 

(EMG) signal. The EMG signals are usually corrupted by 

artifacts that hide useful information then the extraction of 

high-resolution EMG signals from recordings contaminated 

with back ground noise becomes an important problem. The 

Ensemble Empirical Mode Decomposition (EEMD) is used 

for overcoming the noise problem. Due to the non-stationary 

of EMG signals, the analysis of this signal with the time-

frequency techniques is inevitable. These time-frequency 

techniques are capable to reveal and extract the 

multicomponents of the EMG signal. The different time-

frequency techniques used in this work are parametric 

techniques such as Periodogram, Capon and Lagunas and 

non-parametric such as Smoothed Pseudo Wigner-Ville and 

Hilbert Spectrum.  These time-frequency techniques were 

applied to a normal and abnormal EMG signals, these signals 

were taken from patients with neuropathy and myopathy 

pathologies respectively. The results show that The 

Periodogram technique presents a powerful tool for analyzing 

the EMG signals. This study shows that the combination of 

the EEMD and the Periodogram techniques are a good issue 

in the biomedical field. 

Keywords: EEMD, Time-frequency, Periodogram, 

Capon, Lagunas, SPWV, Hilbert spectrum, EMG. 

 

1. INTRODUCTION 
Electromyography (EMG) is an experimental technique 

concerned with the development, recording and analysis of 

myoelectric signals.  Myoelectric signals are formed by 

physiological variations in the state of muscle fiber 

membranes. The measurements of the electrical activity of 

muscles are recorded with the placement of small metal discs, 

called electrodes applied to the skin’s surface. The objective 

of our study is to detect muscle fatigue from the 

electromyogram EMG signal analysis [1]. In clinical EMG is 

consist of the waveforms called the Motor Unit Action 

Potentials (MUAPs) which are recorded by using a needle 

electrode at slight voluntary contraction [2-6]. The shape, size 

and frequency of the MUAPs are the factors of classifying the 

normal and abnormal of EMG signals. The detection of 

MUAPs reflects the electrical activity of a single anatomical 

Motor Unit. It represents the compound action potential of 

those muscle fibers within the recording range of the 

electrode. The own EMG signal is a condition for an 

appropriate interpretation. Due to the multiplicity of recording 

electrodes and their contact zone tiny electrode-skin, 

contamination of noise appears as a problem even more 

difficult.  This noise perturbs the good visualization of 

information. For overcome this problem various methods have 

been used to denoising the biomedical signals such as 

Wavelet Transform (WT) and Empirical mode decomposition 

(EMD). These techniques have some drawbacks at level the 

reconstruction of the original signal. The drawbacks of WT 

are their non-adaptive basis due to the selection process of the 

basis function that is controlled by the signal components that 

are relatively large in a frequency band [7-9]. The EMD is a 

recently developed method used for analyzing the nonlinear 

and non-stationary signal. This technique represents signals as 

sums of simpler components with amplitude and frequency 

modulated parameters, the major problem of the original 

EMD is the appearance of mode-mixing [10-12]. To 

overcome these problems the noise- assisted data analysis 

method, called the Ensemble Empirical Mode Decomposition 

(EEMD) is proposed by Wu and Huang [12].  

The EMG signal is non-stationary and non-linear; to extract 

information from signals and reveal the underlying dynamics 

that corresponds to the signals, proper signal processing 

technique is needed. Historically, this signal cannot be 

analyzed using traditional techniques such as temporal 

analysis and Fourier transform which have been widely used 

in biomedical signals.  In the first technique, the useful 

information which is the frequency component was hid within 

the time domain and also in the second domain, does not 

reveal how the signal’s frequency contents vary with time. To 

exceed this problem, the time-frequency techniques are used 

as feature extraction techniques with a high accuracy, these 

techniques have been widely used in the signal processing 

[13-28]. The time-frequency techniques used are successfully 

applied in several studies; these techniques can allow the 

detection of the frequency component biomedical signal over 

time. The following parametric time-frequency techniques, 
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Periodogram (PE), Capon (CA) and Lagunas (LAG) and non 

parametric time-frequency techniques, Smoothed Pseudo 

Wigner-Ville (SPWV) and Hilbert Spectrum (HS) are applied 

to analyze EMG signals.  These time-frequency methods are 

applied over modulated signals for giving the robust technique 

that eliminates the cross-terms and presents high resolution on 

the time-frequency plan. The EMG signals used are normal 

and abnormal, collected from the patients with neuropathy 

and myopathy [29].  The parametric and non-parametric time–

frequency techniques were used to evaluate exercise-induced 

changes in the biological EMG signal and also to study the 

type of MUAPs recruited in specific phases of the movement. 

In the following study, the theoretical of Ensemble Empirical 

Mode Decomposition (EEMD) and the parametric and non-

parametric time-frequency techniques are presented in section 

2.   In the section 3, we will give the used signals and we will 

present the main results the section 4 and 5. The conclusion 

for this work is given in Section 6. 

 

2. TEORETICAL TECHNIQUES 

2.1 EEMD 
The EMD was recently proposed by Huang et al. as a tool to 

adaptively decompose a signal into a collection of AM–FM 

components. The EMD method has no mathematical 

foundations and analytical expressions for the theoretical 

study. The various works has successfully used the EMD to 

real data in several fields such as biomedical, study of 

phenomena climate, seismology or acoustics [10-12]. These 

studies show satisfaction and matching condition used in non-

stationary signal processing. EMD decomposes adaptively 

non-stationary signal into a sum of functions oscillatory band-

limited d(t) called Intrinsic Mode Functions IMFJ(t). By 

definition these functions IMFJ(t) oscillate around zero and 

can express the signal x(t) by the expression: 

                     ( ) ( ) ( )
1

k
x t d t r tj

j
 


                              (1) 

   Where r(t) is the residue of low frequency. 

By definition, each IMFJ(t) must satisfy two conditions: 

a) The number of zero crossings and the number of extreme 

signal must be equal throughout the analyzed signal, 

b) At any point, the average of the envelopes defined by local 

extreme of the signal must be 0. 

   The higher order IMFJ(t)  correspond to low oscillation 

components, while lower-order IMFJ(t)  represents fast 

oscillations. For different decomposed signals the number of 

IMFJ(t) is variable. It also depends on the spectral content of 

the signal. The Rilling study presents the technical aspects of 

the EMD implementation and makes the five-step algorithm 

given by the following:  

a) Extract the extreme of the signal x(t), 

b) Deduce an upper envelope emax (t) (resp. lower emin (t)) by 

interpolation of the maxima (resp minima), 

c) Define a local average m(t) as the sum of the half-

envelopes: 

             ( ) ( ( ) ( )) / 2max minm t e t e t                        (2) 

d) Deduce a local detail;  dJ(t)=IMFJ(t) by the expression: 

                  ( ) ( ) ( )d t x t m tj                                      (3) 

e) The iteration is given by the expression (1).             

 The first IMF contains the terms of higher frequencies and 

contains the following terms of decreasing frequency up to 

forward only a residue of low frequency.  The ensemble EMD 

method has been offered for overcome mode mixing problem 

existing in EMD technique. The EEMD technique allows 

giving all solution that gives the true IMF by repeating the 

decomposition processes. The procedure of the EEMD 

method is given as follow [12]: 

Step 1: Add white noise with predefined noise amplitude to 

the signal to be analyzed.  

Step 2: Use the EMD method to decompose the newly 

generated signal.  

Step 3: Repeat the above signal decomposition with different 

white noise, in which the amplitude of the added white noise 

is fixed. 

Step 4: Calculate the ensemble means of the decomposition 

results as final results. 

The signal x(k), is decomposed into a finite number of 

intrinsic mode functions (IMFs) and a residue. 

                               ( )
1

i

n
x k c r

i

 
 


                               (4) 

Where n represents the number of the IMFs, 
i

c


 is the ith 

IMF that is the ensemble mean of the corresponding IMF 

obtained from all of decomposition processes and r


 is the 

mean of the residues from all of decomposition processes. 

2.2  TIME-FREQUENCY ANALYSIS 
The time-frequency technique is a tool to treatment non-

stationary signal, which used time and frequency 

simultaneously to represent the non-stationary signal. 

2.2.1 Parametric techniques 
The parametric time-frequency techniques used in this work 

are the Capon, Lagunas and the Periodogram.  

2.2.1.1 Capon distribution 
The estimator of minimum variance called Capon estimator 

(CA) does not impose a model on the signal. At each 

frequency f, this method seeks a matched filter whose 

response is 1 for the frequency f and 0 everywhere else [14-

15]. 

          
( , ) ( , ) ( , )

1
1. .

HCA n f a n f R a n fx

HZ R n Zxf f
  






                      (5) 
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Where: 

 -  ,CA n f is the output power of the filter Capon, excited 

by the discrete signal x(n) sampled at the period te, 

 -    , ,...,0a n f a ap  is the impulse response of the 

filter at frequency n, 

-  T
R n E x n x nx

     
        is the autocorrelation matrix of 

crossed x(n) of dimension    1 * 1p p  , 

 -     ,...,x n x n p x n 
    is the signal at time n, 

-  2 21, ,...,
H i ft i ft pe eZ e ef

  is the steering vector,   

- (p+1) is the number of filter coefficient and the exponent H 

for conjugate transpose and the superscript T for transpose. 

2.2.1.2  Periodogram technique 
The Periodogram (PE) is the derivate of the Capon (CA) 

technique. The spectral estimator of this method is defined by 

the following equation [10]: 

 

                      2( , ) . . / ((p+1) )HPE n f Z R Zxf f                    (6)       

  

The two previous techniques defined by the equations 5 and 6 

can be applied sliding windows. There is no theoretical 

criterion for choosing the filter order and duration of the 

window [17]. The parametric techniques depend on the signal 

so that the frequency response has a different shape and then 

different properties according to the signal characteristics. The 

choice of the window is more crucial to the time-frequency 

resolution. CA and PE estimator usually has a better 

frequency resolution. Both techniques are well suited to 

signals containing some strong spectral components such as 

ECG and EMG biomedical signals. 

 

2.2.1.3 Lagunas technique: 

    ( )CA f  is homogeneous to power but not to a spectral 

density function since the area under the estimated function 

does not represent the total power of the analyzed signal.  

Lagunas [16, 17] proposed a method to derive the spectral 

density from the minimum variance power.  The time–

frequency distribution LAG (t, f), of x(t) can be obtained as: 

                    
1

( , )
2

H
Z R Zxf f

LAG t f te H
Z R Zxf f






                        (7) 

The x(t) be a discrete and non stationary signal 

sampled at frequency fe = 1/te. 

2.2.2 Non-parametric time frequency techniques 

2.2.2.1 Smoothed Pseudo Wigner-Ville (SPWV) 
The majority of the non parametric time-frequency 

representations are represented by the cohen class [20-28]. 

This class includes inter alias the Smoothed Pseudo Wigner-

Ville [20-24]. Among the large number of existing non 

parametric time-frequency representations some authors have 

proposed using the SPWV. To avoid the covering of 

frequential components in the time-frequency representation 

of Wigner-ville, in this study we use in the place of the real 

signal ( )x t  the analytical signal ( )x ta
. This signal is defined 

by the expression: 

     

                      ( ) ( ) { ( )}x t x t iH x ta                        (8)                                 

            
  Where i2 =-1, ( )x t is the signal with real values and { ( )}H x t

it’s the Hilbert transform. The spectrum ( )F ka
 of the 

analytical signal ( )x ta is given by: 

              

2 ( ) 0 / 2

( ) (0) 0, / 2

0 / 2

X k if k N

F k X if k Na

if N k N

 


 
  

                     (9) 

 
Where X(k) is the Fourier transform of the original signal 

x(t) and N is the number of points. 

The distribution of Wigner-Ville associated to a signal ( )x t

, of finished energy, is the function Wxa
 depending of the 

temporal (t) and frequential (f) parameters. This distribution is 

given by the following expression [20-24]: 

 

         2*( , ) .
2 2

i f
W t f x t x t e dx a aa

   


     
      

   

          (10) 

Where 
*
a

x  indicates the complex conjugate of ( )x ta . 

The transform called the Smoothed Pseudo Wigner-Ville is 

implanted in this study to attenuate the interference terms 

presented between the inner components figured in Wigner-

Ville image. These terms decrease the visibility of the time-

frequency image [20-24]. The SPWV use two smoothing 

windows h(t) and g(t). These smoothing windows are 

introduced into the Wigner-Ville distribution definition in 

order to allow a separate control of interference either in time 

(g) or in frequency (h). The expression of this representation 

is defined by [20-24]: 

 
2

2*( , )  
2 2 2a

i f
SPWV t f h g t u x u x u e d dux a a

    


       
         

      
 (11) 

 The great disadvantage of the SPWV technique is the 

presence of cross-terms. These cross-terms can hide the 

information of signal and also analyze the time–frequency 

image becomes difficult. 

2.2.2.2  Hilbert transform 
The Hilbert transform (HT) allows expressing the non-

stationary of EMG signal on the time–frequency energy 

Hilbert Spectrum (HS) [13]. Hilbert Huang Transform 

consists of two parts: EEMD and HT. The instantaneous 

frequency of a given arbitrary signal x(t) could be easily 

extracted by HT. As the result of HT of the signal x(t), y(t) is 

defined as follows [12]: 
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                        ( )
( )

P x
y t d

t




 


 

 

                    (12) 

 
Where P is the Cauchy principal value, 

The Hilbert transform is capable of identifying the local 

properties of the signal x(t). The analytic signal z(t) of x(t) can 

be obtained by coupling the signal x(t) and its Hilbert 

transform y(t): 

                  
( )

( ) ( ) ( ) ( )
i t

z t x t iy t a t e


                  (13) 

 
Where: 

- 2 2
( ) ( ) ( )a t x t y t   is the instantaneous amplitude of

( )x t , 

- ( )
( ) arctan

( )

y t
t

x t
   is the instantaneous phase of ( )x t . 

The controversial instantaneous frequency ω(t) is defined as 

the time derivative of the instantaneous phase ( )t as 

follows: 

                              
( )

( )
d t

t
dt


                                (14)   

The equation (13) gives both the amplitude and the frequency 

of each component as functions of time. It also enables us to 

represent the amplitude and the instantaneous frequency as 

functions of time in a three-dimensional plot, in which the 
amplitude can be contoured on the frequency-time plan.  

3. Analysis of EMG signals using the 

EEMD 
The electromyogram (EMG) signal  is a common clinical test 

used to assess function of muscles and the nerves that control 

them. The EMG studies are used to help in the diagnosis and 

management of disorders such as the muscular dystrophies 

and neuropathies. Nerve conduction studies that measure how 

well and how fast the nerves conduct impulses are often 

performed in conjunction with EMG studies [3-5]. The figures 

1(a), 2 (a)   and 3 (a) show three examples of EMG signals:  

for the first signal 1 (a): a 44 year old man without history of 

neuromuscular disease; for the second   signal 2 (a):  a 57 year 

old man with myopathy due to longstanding history of 

polymyositis, treated effectively with steroids and low-dose 

methotrexate and for the third signal: a 62 year old man with 

chronic low back pain and neuropathy due to a right L5 

radiculopathy; and The data were recorded at 50 KHz and 

then down sampled to 4 KHz. The EMG signals are often 

interfered by noises. These artifacts strongly influence the 

utility of recorded EMG signals.  The EEMD technique 

allows us to remove the artifact existing in the analyzed signal  

by eliminating the first IMFs. The figure 1 presents the results 

obtained by using EEMD on normal EMG signal the noise 

added is 11 db.  

 

 Fig 1: Normal EMG signal (a), noised signal (b) and the 

reconstruction without noise (c)    

The figure 2 presents the results obtained by using EEMD on 

signal of the patient with myopathy, we also add noise of 11 

db.   

 

Fig 2: Abnormal (myopathy) EMG signal  (a), noised 

signal (b) and the reconstruction without noise (c)  

    The figure 3 presents the results obtained by using EEMD 

on signal of the patient with neuropathy. We also add noise of 

11 db.   

 

Fig 3: Abnormal (neuropathy) EMG signal (a), noised 

signal (b) and the reconstruction without noise (c) 

 

The noises are the cause of misinterpretation of the 

physiological phenomena especially on EMG signals. The 

results obtained after using the denoising technique allow the 

noise problem solved by the technique of the EEMD.  The 

http://en.wikipedia.org/wiki/Instantaneous_frequency
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reconstruction signals of the normal EMG and abnormal such 

as myopathy and neuropathy have largely restored the original 

shape and clearly eliminates noises of these signals. The 

EEMD is a powerful technique that eliminates the noises 

without losing the useful information aid giving the good 

diagnostic. 

4. PERFORMANCE THE TIME-

FREQUENCY TECHNIQUES 
The aim of this study is the choice of the time-frequency 

technique suitable for assessing localized muscle fatigue 

during dynamic contractions.  The time-frequency techniques 

are applied in this section on modulated signals for comparing 

between images; the obtained result allows giving the 

technique appropriate. The variance factor is also more 

important tool for choice the technique robust. 

4.1 Time-frequency images 
The figure 4 compares the results obtained from four distinct 

parametric and non parametric time–frequency techniques PE, 

CA, LAG and SPWV.  The figure fig.4a present the 

modulated signal used. The Fourier transform spectrum 

presented in figure 4b show the evolution of frequency 

content from 50 to 165; the Fourier transform cannot give 

information about number of the components frequency and 

his change on time. The figure 4c  presented by PE technique 

gives a good localization of the two high frequency 

components that are separated clearly,  this result is more 

clearly  than the results obtained by CA, LAG and SPWV 

techniques in   figure    4d, 4e and 4f respectively. The figure 

4f shows the   presence of strong cross-terms and the 

resolution decrease such that the two high frequency 

components cannot be discriminated. 

 

 

 

Fig 4: Modulated signal (a), Fourier spectrum (b), Periodogram (c), Capon (d), Lagunas (e), SPWV (f) 

 

4.2 Variance factor 
The time-frequency techniques used in this study are applied 

to a monocomponent signal to find the most performance 

technique.  The monocomponent signal used is given by the 

following equation: 

                       ( )
( )

j t
x t ae


                       (14)                        

 
The instantaneous frequency (IF) is given by the following 

equation:  

                  
0

1
/

2
f d dt f t 


                     (15) 

Where a=1, fo=0.05fs,  = 0.4fs, ( )t  is the analytic signal 

phase and fs = 1/T is the sampling frequency. 
 

The bias (B) and the variance (V) of the estimate present the 

most important factors that decide the quality of estimation. 

These two notions can be defined by the following 

expressions: 
 

                
( ) ( )B f t f tii 

 
   

   
    

 

                       (16) 

             
2

( ) ( ( ))V f t f ti i

 
   

   
    

 

                    (17) 

Were: 

( )f ti



 = ( )f ti - ( )f ti



 

Where ( )f ti  and  ( )f ti



  are the instantaneous frequency 

and instantaneous frequency estimate respectively.  The signal 

length used in the time-frequency techniques is N=256 

samples and the total signal duration is 1 s. The sampling 

frequency was fs=2 NHz. Using different Signal-to-Noise 

Ratio (SNR), gaussian white noise samples are added to the 

signal. The figure 8 shows the performance of the PE, CA, LA 

and SPWV time-frequency techniques applied to a linear FM 

a

d

b

c

f
e
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signal with 256 points.  According to the results obtained, the 

Periodogram time-frequency technique has a minimal 

variance for all SNR's. The low minimum variance can 

indicate the performance of the time-frequency techniques.

 

Fig 5: Performance of Variance of various techniques PE, 

CA, LAG and SPWV of a linear FM signal with length 

 N = 256 samples 

The results obtained by the time-frequency images and the 

variance factors show the effectiveness the PE time-frequency 

technique.  

5. RESULTS 
The aim of this work is to conclude which is the best time-

frequency technique among the different techniques chosen in 

this paper. This conclusion will be made from the results 

obtained by the application of the different time-frequency 

techniques over the EMG signals. The quality of the technique 

will be deduced according to the cross-terms level and the 

resolution.      

In this section, the time-frequency techniques PE, SPWV and 

HS are applied to the normal and abnormal EMG signals 

(figures 1 (a), 2 (a) and 3 (a) respectively). The Figure 6 

shows the corresponding time-frequency images obtained by 

PE and SPWV and the figure 7 displays the time–frequency 

spectrum obtained by executing Hilbert transform to the IMFs 

obtained by EEMD. 

 

 

Fig 6: Time-frequency images of normal and abnormal EMG signals: PE (a, b and c) and SPWV (a’, b’ and c’) 

 

Time  (Samples)
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Fig 7: Time–frequency spectrum based on EEMD. a)  Healthy, b) Myopathy and c) Neuropathy 

 

In EMG signals, the detection of MUAPs is important because 

it allows providing the good information about the 

neuromuscular system. This information is obtained through 

the morphology and firing time of MUAPs. The time-

frequency techniques allow revealing the MUAPs frequency 

components of the normal and abnormal EMG signals. The 

time-frequency images of the PE technique (fig.6 (a, b and c)) 

of the normal, myopathy and neuropathy EMG signals 

respectively (figures 1a, 2a and 3a) give a good localization of 

the EMG MUAPs in the time-frequency plan. The time-

frequency images of the SPWV technique (fig. 6 (a’, b’, and 

c’)) give a localization of the MUAPs terms with the presence 

cross-terms. These cross-terms make the visualization of the 

MUAPs activity extremely difficult. The images obtained by 

Hilbert spectral technique (fig.7 (a, b and c)) contain all the 

significant energy components with interference-terms. We 

can note that the parametric time-frequency images show to 

be more efficient in identifying the MUAPs terms of the 

normal and abnormal EMG signal than the non parametric 

ones. We can deduce some important features of the normal 

and abnormal EMG signals by the interpretation of the images 

obtained by PE technique: for the normal subject the MUAPs 

are well localized appearing both in time and frequency very 

clearly with high amplitude. The frequency range selected 

was between 0 and 82 Hz in time (25 to 180 and 450 to 475). 

For the myopathy; the MUAPs appear both in time and 

frequency very clearly with low amplitude. The frequency 

range selected was between 0 and 65 Hz in time (25 to 200 

and 450 to 500). On the other hand, for the neuropathy the 

energy appearing very clearly with high amplitude. The 

frequency range selected was between 0 and 60 Hz in time 

(180 to 400). The PE technique can reveal information about 

the MUAPs components that can be useful for the 

identification of the presence of the EMG signal. The high  

 

resolution given by PE is very clearly figured in the time-

frequency plan compared to the others time-frequency 

techniques, SPWV and Hilbert spectrum. 

6. CONCLUSION 

In this paper, the EEMD and some interesting time-frequency 

techniques (PE, SPWV and HS) were applied to analyze a 

normal and abnormal (myopathy and neuropathy) EMG 

signals. As a first step of the work, the EEMD results obtained 

show the high effectiveness of this technique for the 

elimination of the EMG signal artifacts which are due to 

different noises. In the second step, the time-frequency 

analysis results show that the PE technique can provide a clear 

visualization of MUAP activity. The results obtained by 

SPWV and HS are more difficult to interpret because they 

were affected by the cross terms, these cross terms make the 

identification of the MUAPs extremely difficult in the time-

frequency plan. We conclude that the PE technique present a 

high resolution of detecting of the MUAPs activity as 

compared to the others time-frequency techniques used in this 

paper. The combination of the EEMD and PE techniques can 

be a good issue in analyzing the EMG signals. 
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