
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

25

Self-Organizing Genetic Algorithm: A Survey

Amouda Nizam
Centre for Bioinformatics,
School of Life Sciences,
Pondicherry University

Puducherry, INDIA

Buvaneswari Shanmugham
Centre for Bioinformatics,
School of Life Sciences,
Pondicherry University

Puducherry, INDIA

ABSTRACT
Self-organization systems are an increasingly attractive

dynamic processes without a central control, emerge global

order from local interactions in a bottom up approach. The

advantage of blending the concept of self-organization

enhances the working efficiency of other techniques to find a

solution of huge search problem. Genetic Algorithms (GA) is

such a technique, inspired by the natural evolution process,

used to solve difficult optimization problem of large space

solution, for an example, multiple sequence alignment (MSA)

problem in a bioinformatics research. Self-organization

technique automates the selection of appropriate parameter

values of GA during execution without the user’s

intervention. An attempt towards applying Self-organizing

Genetic Algorithm (SOGA) on MSA requires a complete

knowledge of the various parameters of SO and its

relationships. This lead us to make a complete survey on

inherent properties of SO and the method of blending GA in

order to develop a self-organizing genetic algorithm (SOGA)

for MSA. The aim of the research is to make use of the

efficiency of GA without getting any input from the non-

trained users to tune the parameters in order to achieve the

expected result.

General Terms
Genetic Algorithm, Multiple Sequence Alignment, Self-

organization

Keywords
Crossover, Mutation, Selection, Self-organizing genetic

algorithm

1. INTRODUCTION
Self-organizing system are a physical, chemical or biological

system that takes a form that is not imposed by an external

directing influence i.e., without a central control. Self-

organizing systems are designed as sets of similar lower-level

components, interacting conceptually and physically in order

to obtain the pattern at global level of a system. The principal

challenge is to understand how the lower-level components

interact to produce a common pattern. These components may

interact directly or indirectly, depending on the influence of

behavior of one component affecting the behavior of the other

components [1-3].

GA is used to solve difficult search/ optimization problems

and machine-learning problems that have previously resisted

automated solutions quickly and reliably. These algorithms

are easy to interface with existing simulations and models,

and they are easy to hybridize [4]. The GA solutions, for a

particular problem, are not algebraically calculated, rather

found by a population of solution alternatives which is altered

(using operators like crossover and mutation) in each iterative

step of the algorithm in order to increase the probability of

having better solutions. In optimization, the solutions to a

particular problem will be selected accordingly how well they

solve the problem, is denoted by its fitness value. GA explores

the multi-parameter space of solution alternatives for a

particular problem. In each iterative step, chromosomes are

altered, leading the population to even more promising

regions of the search space [5]. To blend self-organization and
GA, it is essential to understand its various aspects clearly.

For Genetic Algorithm (GA), several operators and encoding

methods are proposed in the literature [6-13]. Different

operators are selected depending on the problem and also the

method of encoding the chromosomes. Complete knowledge

about the problem is required to select the appropriate

encoding method, operators and parameter values. For non-

trained users, the selection of appropriate parameters is

difficult. These difficulties can be solved by self-organizing

the GA for a particular problem by which the processing

system is converted into a self-organizing system, which
solves the problem without getting any input from the users.

The remainder of the paper is organized as follows. The next

section describes about the self-organizing systems. Section 3

explains the components of GA and different ways to self-

organize GA. Section 4 explains mapping of self-

organization and GA. Section 5 presents a brief comparison

between the existing Multiple Sequence Alignment (MSA)

methods and GA. Section 6 explains Self-organizing Genetic

Algorithm (SOGA) for MSA. Section 7 briefly discusses

SOGA variants available and their parameter settings.
Shortcomings of SOGA are stated in section 8.

2. SELF-ORGANIZING SYSTEMS
Many natural systems become structured by their own internal

processes. Pattern at the global level of a system emerges

solely from numerous interactions among the lower-level

components of the system i.e., interactions internal to the

system, without intervention by external direct influences.

Components achieve a simple task individually, but a

complex collective behavior emerges from their mutual

interactions. Such a system modifies its structure and

functions to adapt changes based on previous experience [1].

Self-organization is an algorithmic approach adopted by the

system that has the ability to adjust its own structure by local

interactions without external interventions that emerges global

behavior i.e., self-control system, not environment dependent

works in a bottom-up approach. Whereas self-adaptive

systems are architecture oriented, centralized system adopts

the mechanism, to reconfigure its global behavior and looks

for other possibilities when it is not achieving the desired

result. i.e., decentralized control system, environment

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

26

dependent works in a top-down approach. The most current

techniques used for designing self-organizing applications are

direct translations of natural self-organizing mechanisms like

magnetism, crystallization, pigmentation patterns on shells
etc.

The two basic modes of interaction [1] among the components
of self-organizing systems are:

Positive feedback: A process in which synthesis of a

substance over a thresh-old level produces response

stimulating its synthesis. As an example, the hormone

oxytocin stimulates muscular contractions of the uterus, which
in turn stimulates the release of more oxytocin [14].

STIMULATES

STIMULATES

Fig 1: Example for positive feedback

Negative feedback: A process in which synthesis of a

substance over a thresh-old level produces response inhibiting

the synthesis of the substance. As an example, a rise in blood

sugar leads to the production of insulin. As insulin level rises,
glucose is removed from the blood [14].

INCREASES

DECREASES

Fig 2: Example for negative feedback

3. SELF-ORGANIZING GENETIC

ALGORITHM
The aim of self-organizing genetic algorithm is to create an

automated computer program that solves the problem with

little or no information from the user. Hence the number of

external parameters is reduced.

3.1 Parameters of Genetic Algorithm
Setting the parameters of GAs is a non-trivial task. GA is self-

organized by adapting values for parameters like population

size, number of generations, modes of selection, crossover

and mutation or the selection rate, crossover probability and

mutation probability during the execution process. In SOGA,

most of the GA parameters change according to the fitness of

chromosomes.

3.1.1 Encoding a Chromosome
A chromosome contains information which represents the

solution. Each gene in the chromosome can represent some

characteristics of the solution or the whole string can

represent a number. Selection of encoding methods depends

mainly on the problem. Various encoding methods are binary,

permutation, tree and value encoding [15].

3.1.2 Population Size
Population size indicates the number of chromosomes in a

population for a single generation. By increasing the

population size, GA can get better chromosomes which

reduce the error in decision-making. By decreasing the size of

population, the GA can converge faster. The population size is

a critical parameter in a GA. Best population size depends on

the problem, length of the chromosome and encoding method.

If there are too few chromosomes, GA has a few possibilities

to perform crossover and only a small part of search space is

explored and the GA will converge to sub-optimal solutions.

If there are too many chromosomes, GA slows down. It was

shown [15] that increasing population size after some limit

does not improve the performance of GA.

3.1.3 Number of Generations
In each generation, GA involves generation of chromosomes

of required population. The fitness of each chromosome is

evaluated. From the current population, chromosomes are

stochastically selected and modified (cross over and mutation)

to get a new population.

3.1.4 Operators of Genetic Algorithm
The commonly used operators of GA are:

3.1.4.1 Selection Operator
This operator performs the equivalent role to natural selection.

Use of a selection operator is to choose the fit chromosomes

from the population of the current generation to the next

generation. Selection rate should not be very low or very high.

At very low selection pressures i.e., rate, GA is not able to

discriminate between the fit and the unfit chromosomes. At

very high selection pressures, GA only pays attention to the

best chromosomes, resulting in an immediate loss of diversity

and little recombination to be done. Different selection

methods reported in literature are best, elitist, fitness-

proportionate, generational, hierarchical, random, rank,

Roulette-wheel, scaling, top-percent, tournament and

truncation selection [16, 17].

3.1.4.2 Crossover Operator
Crossover is a genetic operator that combines two

chromosomes in order to produce a new chromosome

possessing some characteristics of each parent. The key idea

of crossover is that the child may be better than both of the

parents if it takes the best characteristics from each of the

parents. Crossover methods available are single point, double

point, uniform, arithmetic [15] and heuristic crossover [16].

3.1.4.3 Mutation Operator
Mutation operator alters one or more gene values in a

chromosome from its initial state resulting in entirely new

chromosomes, helps in arriving at a better solution. Mutation

is considered to be important as it helps to prevent the

population from stagnating at any local optimum. Mutation

occurs according to a certain mutation probability. The

probability should generally be set to a low value. If it is too

high, the search will turn into a primitive random search. The

Release of

Oxytocin

Muscular

contraction

Blood sugar

Level

Production

of insulin

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

27

mutation operator enhances the ability of the GA to find a

near optimal solution to a given problem by maintaining a

sufficient level of genetic variety in the population, which is

needed to make sure that the entire solution space is used in

the search for the best solution [18]. Mutation methods

available are flip bit, boundary, non-uniform, uniform and

Gaussian mutation [16].

3.2 Methods to Self-organize GA
3.2. 1 Self-organizing Encoding
In GA, the chromosomes in the population are usually

encoded as fixed-length strings. In SOGA, the length of the

chromosome can be made to change adaptively based on the

problem [6].

3.2.2 Self-organizing Population Size
Population size can be made to change adaptively based on

the problem.

 Population size can be self-organized by generating

both small and large populations. Fitness of each of the

chromosome is calculated. If the average fitness of the larger

population is higher than the smaller population then the

program continues with the larger population, if not with the

smaller population.

 Each time at convergence, the population size is

doubled till it reaches an upper limit [19].

3.2.3 Self-organizing number of Generations
In GA, the algorithm terminates when a condition of a

specified number of generations or a satisfactory fitness level

has been reached or convergence (no further increase in

fitness score). If the termination of the algorithm is due to a

maximum number of generations, an optimum solution may

not have been reached. Hence it is necessary to self-organize

the number of generations based on the problem.

3.2.4 Self-organizing Selection Operator
In GA, the choice of selection operator is usually one or

combination of more than one operator. In SOGA, certain

conditions are defined to choose the appropriate selection

operator for a particular problem for example based on the

average fitness of the generated chromosome.

3.2.5 Self-organizing Crossover/ Mutation

Operator
 The choice of the operator/ rate can be self-

organized by defining conditions based on which appropriate

operator/ rate is chosen.

 Crossover/ Mutation operation is performed with a

specified number of methods and based on the average fitness

of the resulting chromosome; an appropriate method is chosen

[7].

 The algorithm can be executed initially with a

minimum optimal crossover/ mutation rate. At each point of

convergence, the rate can be increased cyclically, till it

reaches the optimal upper limit [8, 11].

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

28

Self-organizing Genetic Algorithm

 Population No. of Generations Operators
 (based on the betterment of fitness score)

Initialization Size

*Chromosome length

(based on the input)

 At Convergence During Generation

 *Doubled *Generate large and small population

 (based on average fitness)

 With rate Without rate

 *Operation by more than 1operator

 (based on average fitness)

 *Generate chromosome corresponding to At Convergence *Select appropriate rate

low, high and current rate *Alter the rate from (based on conditions)

(based on average fitness) i) Low to high optimal rate

 ii) High to low optimal rate

Fig 3: Self-organizing Genetic Algorithm

 The crossover/ mutation rates adapted from an

initial very high rate to a minimum optimal rate [9].

 Chromosomes corresponding to the larger and

smaller crossover/ mutation rate are generated. In addition

generate a chromosome corresponding to the current value

obtained by increase or decrease in the rate. The chromosome

with higher fitness is chosen [10]. GA can also be self-

organized by implementing a conditional increase in the rate

of both crossover and mutation until its corresponding optimal
upper limit is reached.

Apart from the three basic operators discussed above, there

are some low-level operators like dominance, inversion,

recording, deletion, segregation, diploidy, translocation,

duplication, sexual differentiation and higher-level operators
like niche and speciation [20].

4. PROPERTIES OF SELF-

ORGANIZATION MAPPED TO

GENETIC ALGORITHM

The correlation or coherence between separate components

produced by self-organization defines an ordered

configuration. Organization can be defined as the

characteristic of being ordered or structured so as to fulfill a

particular function. The individual properties of self-

organization are discussed below:

Systemness and complexity

Self-organization takes place in a system, in a coherent whole

that has parts, interactions, structural relationships, behavior,

state, and a border that delimits it from its environment. Self-

organization systems are complex systems and its complexity

depends on the number of elements and connections among

them, the system’s structure. SOGA applied to a particular

problem is a complex system generating optimal solution by

various operations.

Control Parameters

Self-organizing system consist of a set of parameters

influencing the state and behavior of the system. Control

parameters of SOGA are chromosome length, fitness value,

crossover/mutation rate and its range, population size and

betterment of the results.

Information Production

Self-organizing systems are information-producing systems.

During execution of SOGA various information like

chromosomes, its fitness value, and optimal crossover/

mutation rate are produced by various interactions of these
components.

Dynamic and Global Order from Local Interactions

Self-organizing systems are characterized by multiplicity of

interactions. This emphasizes that the SO systems are

dynamic and require continual interactions among the lower -

level components for the emergence of global organization. In

the self-organized state all segments of the system are

strongly correlated. In SOGA value of a particular parameter

is decided by a dynamic interaction among various other

parameters, for an example self-organizing selection of

suitable crossover point depends on the chromosome length,

initial rate and number of in-put sequences. The process

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

29

continues for a number of generations until the termination

condition is satisfied.

Decentralized Control

Decentralized control refers to a particular “architecture of

information flow” in the absence of external control.

Individuals in self-organized social groups do not rely on

instructions from well informed individuals. In SO systems,

control of the organization is typically distributed over the

whole system. All parts contribute evenly to the resulting

arrangement. When SOGA is applied to a problem, almost all

or most of the parameters values are assigned in a self-

organizing manner without a centralized control.

Critical Values, Fluctuation and Intensification

In SO systems, if certain critical values of the control

parameters are reached, structural change takes place and the

system enters a phase of instability and criticality. Even small

disturbances from inside the system intensify themselves and

initiate the formation of order. For e.g. in SOGA crossover/

mutation rate can be made to increase cyclically when there is

no betterment of the fitness value. On reaching the upper limit

of the rate the process terminates. These are critical values

deciding the number of generation and hence termination of
GA.

Robustness and Resilience

Self-organizing systems are relatively insensitive to

perturbations or errors, and have a strong capacity to restore

by themselves. One reason for the fault-tolerance is redundant

and distributed organization: the non-damaged regions can

usually make up the damaged ones. Outside a critical phase,

the structure of the system is relatively stable concerning local

disturbances and a change of boundary conditions. Another

reason for the intrinsic robustness is that self-organization

thrives on randomness, fluctuations or “noise”. SOGA

randomly generates a population of solutions which are

modified by various operators. From this initial and

population modified in various generations, the best or top

scoring chromosomes will be selected. Saving best solution

after each process ensures that the solution at the end is best

of all generation.

Stigmergy and Dense Heterarchy

It refers to the mechanism by which members of the group

coordinate their activity based on previous behavior. The

stimulation of the members by the very performances they

have achieved is a significant one, inducing accurate and

adaptable responses. Self-organizing system shows a

stigmergic information flow. In addition to stigmergic

information flow, direct communication between individuals

or between groups and individuals is also important. Dense

heterarchy indicates the communication of each individual

with any other. In SOGA with self-organizing mutation, rate

will be increased cyclically when fitness value converge. In

this process, increase in fitness rate depends on the

convergence of fitness value in previous generation.

Openness

Self-organization can only take place if the system imports

entropy that is transformed; as a result, energy is exported or

dissipated. SOGA is an open system that accepts the changes

in previous steps which modifies accordingly and carries it to

next steps.

Non-linearity and Feedback and Circular Casualty

In SO systems, the relation between cause and effect is much

less straightforward: small causes can have large effects, and

large causes can also result in small effects. In a critical phase,

causes and effects cannot be mapped linearly; similar causes

can have different effects and different result in the same

effect. Feedback loops (Fig.1 and 2) occur within a self-

organization system; circular casualty [1] involves a number

of processes like for e.g.

the fitness value is critical in assigning the crossover/

mutation rates between generations. Even a small increase in

fitness value can help in retaining the same rate. In GA

chromosomes from initial population undergo crossover,

resulting population undergo mutation and the cycle continues

till termination.

Bifurcation and Selection

Bifurcation means a phase transition from stability to

instability or a sudden transition from one pattern to another

following even a small change in the parameter of the system.

Small adjustments in such parameters can induce large

changes in the state of the system. Once a fluctuation

intensifies itself, the system enters a critical phase where its

development is relatively open, certain possible paths of

development emerge, and the system has to make a choice.

This means dialectic of necessity and chance. In a critical

phase that can also be called the point of bifurcation, a

selection is made between one of several alternative paths of

development. In SOGA with a self-organizing population

size, fitness value convergence act as the point of bifurcation.

At convergence, population size is increased.

Inner Conditionality

Self-organizing systems are influenced by their inner

conditions and boundary conditions from their environment.

The parameters of SOGA are assigned based on various

conditions and interactions of the components.

Relative Chance

In SO systems there is dialectic of chance and necessity;

certain aspects are determined whereas, others are relatively

open and subject to chance. In some cases SOGA parameters

like initial population size, selection/ crossover/ mutation rate

are determined whereas, chromosome length, optimal rates

and number of generations are assigned in a self-organizing

manner during execution.

Symmetry Breaking, Organizational Closure and

Emergence

SO system initially treats all configurations equally and then it

expresses a preference for one possibility. However, there are

no objective criteria for preferring one stable configuration

over another. The system makes an arbitrary decision to

change the range of possibilities. Organizational closure turns

a collection of interacting elements into an individual,

coherent whole. The whole has properties that arise out of its

organization, and that cannot be reduced to the properties of

its elements. Such properties are called emergent. Emergence

refers to a process by which a system of interacting subunits

acquire qualitatively new properties that cannot be fully

predicted and cannot be found in the qualities of the

components. SO parameter values may change in any

generation based on the in-put and significant improvements

in results. This unpredictability creates the real novelty.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

30

These system level properties arise unexpectedly from non-

linear interactions among a system’s components. In the

terminology of a dynamic system this emergent pattern or

property is called an attractor of the system. Under a

particular set of initial conditions and parameter values, an

attractor is the state toward which the system converges over

time [1, 2, 21, 22].

5. EXISTING MSA METHODS
The rapid accumulation of DNA sequences during last decade

made sequence analysis vital in research. MSA, aligning three

or more nucleotide or amino acid sequences simultaneously is

one of the important tasks in bioinformatics. Important

application of MSA is their incorporation in many structure

and function prediction methods.

The computation of an optimal alignment mathematically is

too complex. Various algorithms available for MSA are

classified into three main categories: Exact, Progressive and
Iterative based on their properties.

Exact algorithms are of high quality heuristic in nature,

produce very close to optimal alignment. It can handle the

only restricted number of sequences and are limited to sums-
of-pairs as an objective function.

Progressive alignment uses dynamic programming and

depends on a progressive assembly of the multiple

alignments, heuristic in nature but does not guarantee any
level of optimization.

Iterative alignment methods produce alignment and refine it

through a series of cycles (iterations) until no further

significant improvements can be made. It is deterministic or

stochastic depending on the strategy used to improve the

alignment. It allows for a good conceptual separation between

optimization processes and objective function as its main
advantages [23].

The widely used MSA tools implementing different

algorithms are ClustalW [24], MultAlin [25], DIALIGN [26],

MUSCLE [27], T-Coffee [28], DCA [29]. In addition GA

based MSA softwares SAGA [30], MSA-GA [31] and
literatures [6, 32] are also available.

Advantages of GA

 Its flexibility in assigning fitness function, a

mathematical function is used to evaluate the fitness of

chromosomes.

 GA is efficient in solving NP-hard (non-deterministic

polynomial) problems [27]. The complexity of MSA increases

exponentially, hence NP-hard.

 It is not restricted to depend on a particular algorithm

to solve the problems. Needs only fitness function to evaluate
the chromosomes [32].

6. SOGA FOR MULTIPLE SEQUENCE

ALIGNMENT
The chromosomes for the multiple sequence alignment

process consist of gap positions which are altered to produce

better alignments [33]. The chromosome length can be self-

organized based on the length of input sequences [6]. The

crossover and mutation operator can be made to perform a

self-organized selection of crossover/ mutation point and the

corresponding rate from the initial crossover/ mutation point.

The crossover and mutation operation can be made to undergo

a conditional increase in the rates [34]. Thus the process

continues for a range of rates cyclically until an optimal upper

limit is reached. The number of generations and population

size can also be self-organized based on the betterment of the

fitness value obtained in the previous generation [35].

Table 1. Comparison of parameters of existing self-organizing genetic algorithms

7. COMPARATIVE STUDY ON

EXISTING SOGA VARIANTS
Several variants of SOGA proposed to improve the

performance, mostly in the form of designing the new

operators or hybrid algorithms combined with conventional

GA. Modified algorithms bring about improvement by

addressing premature convergence or diversity in the

population. Variants of GA aimed at promoting diversity in

the process were studied and the observations were discussed.

SOFNNGAPSO is a self-organizing fuzzy neural network

based on GA and PSO in which the parameters of the

Algorithm
Population

Size
Generation

Selection

Operator

Crossover

Operator

Crossover

Rate

Mutation

Operator

Mutation

Rate

SOFNNGAPSO

[36]
50 5000

Roulette

with Elitism
Two point 0.5 Random 0.02

SOGA-MSA

[34]
100 SO Elitism

SO-one

point

Varies from

initial 0.7
Cyclic 1-80

C-SOMGA [37] 20

occurrence

of success

run or

150000

function

evaluations

Tournament
Single

point
0.85 Bitwise 0.005

SOGA [8] 50 100
Dominant

and Elitism
One-point 0.7 Cyclic

Periodical

ly varies

SORIGA [38] 12 100

New

replacement

and selection

scheme

Two point 0.6 Bitwise 0.01

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

31

consequent parts were obtained using the error function and

the parameters of the premise parts in an iterative process. GA

and PSO were applied to conduct fine tuning for the

parameter set of the premise parts and consequent parts in

fuzzy

model [36]. The self-organizing genetic algorithm applied to

solve multiple sequence alignment (SOGA-MSA) undergoes a

self-organizing crossover operation by selecting an

appropriate rate or a point and a self-organizing cyclic

mutation for the required number of generations. Reducing

run time and avoiding premature convergence were observed

as the main advantage of the algorithm [34]. C-SOMGA, self-

organizing migrating genetic algorithm for constrained

optimization is based on the features of genetic algorithm

(GA) and self-organizing migrating algorithm (SOMA) [37].

This algorithm is inexpensive in terms of functional

evaluation as it involves less population size. Self-organizing

genetic algorithm (SOGA) implements a new dominant

selection operator that enhances the action of the dominant

individuals and a cyclical mutation operator which modify the

mutation probability periodically in accordance with evolution

generation. SOGA possess good global search property with a

high convergence speed [8]. SORIGA propose a new

selection scheme and replacement of individuals with the

lowest fitness of the current population new randomly

generated individuals. Various parameter settings such as,

population size, generation, selection operator and crossover/

mutation rate are modified depending on the problem.

Implementation of self-organizing behavior in GAs was found

to be beneficial for their performance under dynamic

environments [38]. In self-organizing genetic algorithm

(SOGA) as a multimodal optimizer, various GA parameters

such as, population size, crossover/ mutation rate were

adaptively assigned during execution which in turn reduce the

execution time significantly [39].

8. SHORTCOMINGS OF SOGA
Though there are no major shortcomings that are specifically

attributed to the SOGA, there are a few minor issues such as

requirement of adequate planning and organization for

mapping SO properties to GA. Complete knowledge about the

problem to be solved and choosing suitable operators are

necessary.

9. CONCLUSIONS
The genetic algorithm with self-organizing coding, operators

and parameter values is efficient and simple to use. An

attempt towards self-organizing genetic algorithm requires a

complete understanding about the relationship among various

parameters and their impact on the performance. In

conventional GAs, optimal parameter value for a particular

problem can be found, by executing the algorithm with all

possible values and all possible combinations with other

parameter values. This process of optimization requires more

time. This time requirement is eliminated in SOGA. SOGA

can also be made to undergo learning process, so that time

required to solve similar type of problems in future can be

further reduced.

The default parameter values assumed to be optimal is fixed

in the condition, when user fails to select appropriate values.

Even this default optimal value may lead to bad results for

some problems. In self-organized GA, almost all or most of

the parameters are self-organized based on the problem

instead of obtaining from the user. For conventional GAs,

user with complete knowledge about the problem can decide

which coding method and operators to be used and set the

most appropriate values for the parameters. This contradicts to

Holland’s goal that GA is a robust and easy to use method. In

SOGA without a complete knowledge about the problem, the

user can obtain the optimal solution. As the search progresses

the SOGA adapt the suitable/ appropriate parameter values.

Self-organization made GA easy to use, which is the ultimate

goal of Holland. This survey is carried on, for developing a

SOGA for multiple sequence alignment. With the strategies of

GA shown in this paper one can develop self-organizing

genetic algorithm for any problem.

10. ACKNOWLEDGMENTS
We acknowledge the support of the Department of

Information Technology (DIT) [Ref. No:

DIT/R&D/BIO/15(8)/2011], Government of India, New

Delhi.

11. REFERENCES
[1] Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd,

J., Theraulaz, J. G., Bonabeau, E. 2001. Self-

Organization in Biological Systems. Princeton University

Press: New Jersey.

[2] Heylighen, F. 2002. The Science of Self-organization

and Adaptivity. In: Knowledge Management,

Organizational Intelligence and Learning, and

Complexity; L. D. Kie, Eds. In: The Encyclopedia of

Life Support Systems (EOLSS). Eolss Publishers:

Oxford.

[3] Seeley, T. D. 2002. When Is Self-Organization Used in

Biological Systems?. Biol. Bull. 202(3), 314–18.

[4] Jain, L. C., Karr, C. L. 2000. Introduction to evolutionary

computing technique. In: Proceedings of the Electronic

Technology Directions to the Year 2000. 1995 May 23-

25. Adelaide. SA, 122-27.

[5] Marczyk, A. 2004. Genetic Algorithms and Evolutionary

Computation. The TalkOrigins Archive. 23 Apr. 2004.

http://www.talkorigins.org/faqs/genalg/genalg.html

[6] Wu, S., Lee, M., Gatton, T. M. Multiple Sequence

Alignment using GA and NN. International Journal of

Signal Processing, Image Processing and Pattern

Recognition: 21-30.

[7] Hong, T., Wang, H., Lin, W., Lee, W. 2002. Evolution of

Appropriate Crossover and Mutation Operators in a

Genetic Process. Applied Intelligence. 16, 7-17.

[8] Zhang, J., Zhuang, J., Du, H., Wang S. 2009. Self-

organizing genetic algorithm based tuning of PID

controllers. Information Sciences. 179 (7), 1007-18.

[9] Breukelaar, R., Bäck, T. 2008. Self-Adaptive Mutation

Rates in Genetic Algorithm for Inverse Design of

Cellular Automata (July 2008), 12-6.

[10] Thierens, D. 2002. Adaptive mutation rate control

schemes in genetic algorithms. Institute of Information

and Computing Sciences. Utrecht Univerisity. The

Netherlands.

[11] Bao-Juan, H., Jian, Z., De-Hong, Y. 2008. A Novel and

Accelerated Genetic algorithm. WSEAS Transactions on

Systems and Control. 3(4), 269-78.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.18, March 2013

32

[12] Kubota, N., Fukuda, T., Shimojima, K. 1996. Virus-

evolutionary genetic algorithm for a self-organizing

manufacturing system. Computers and Industrial

Engineering. 30(4), 1015-26.

[13] Ray, S. S., Bandyopadhyay, S., Pal, S. K. 2005. New

Genetic Operators for Solving TSP: Application to

Microarray Gene Ordering. Springer-Verlag Berlin

Heidelberg, 605–610.

[14] Soper, R., Taylor, D. J., Green, N. P. O., Stout, G. W.

1997. Biological Science. 3rd ed. Cambridge University

Press: United Kingdom.

[15] Introduction to genetic algorithm.

www.obitko.com/tutorials/genetic-algorithms

[16] Genetic Server/ Library product: Neuro Dimension inc.

www.nd.com/products/genetic

[17] Evolutionary Algorithm.

http://www.geatbx.com/docu/algindex-02.html

[18] Rocha, L. M. Modeling evolution: evolutionary

computation. Lecture notes, Biologically Inspired

Computing. School of Informatics. Indiana University.

http://informatics.indiana.edu/rocha/i-bic/

[19] Harik, G. R., Lobo, F. G. 1999. A Parameter-Less

Genetic Algorithm. IEEE Transactions on Evolutionary

Computation, 523-8.

[20] Sivanandam, S. N., Deepa, S. N. 2008. Introduction to

Genetic Algorithms. Springer: New York.

[21] Kelso, J. A. S. 1995. Dynamic patterns: the self-

organization of brain and behavior. MIT Press: USA.

[22] Fuchs, C. 2008. Internet and society: social theory in the

information age. Routledge. New York.

[23] Notredame, C. 2002. Recent progresses in multiple

sequence alignment: a survey. Pharmacogenomics. 3(1),

131-144.

[24] Thompson, J. D., Higgins, D. G., Gibson, T. J. 1994.

CLUSTAL W: Improving the sensitivity of progressive

multiple sequence alignment through sequence weighting

position specific gap penalties and weight matrix choice.

Nucleic Acids Res. 22, 4673-80.

http://www.ebi.ac.uk/Tools/clustalw/

[25] Corpet, F. 1988. Multiple sequence alignment with

hierarchical clustering. Nucleic Acids Res. 16, 10881-90.

http://bioinfo.genotoul.fr/multalin/multalin.html

[26] Morgenstern, B., Dress, A., Wener, T. 1996. Multiple

DNA and protein sequence based on segment-to-segment

comparison. Proc. Natl. Acad. Sci. 93, 12098-103.

http://bibiserv.techfak.uni-bielefeld.de/dialign/

[27] Edgar, R. C. 2004. MUSCLE: multiple sequence

alignment with high accuracy and high throughput.

Nucleic Acids Res. 32, 1792-7.

http://www.ebi.ac.uk/Tools/muscle/

[28] Notredame, C., Higgins, D. G., Heringa, J. 2000. T-

Coffee: A novel method for fast and accurate multiple

sequence alignment. J Mol Biol. 302, 205-17.

http://www.ebi.ac.uk/Tools/t-coffee/

[29] Stoye, J., Moulton, V., Dress, A. W. 1997. DCA: an

efficient implementation of the divide-and conquer

approach to simultaneous multiple sequence alignment.

Comput. Appl. Biosci. 13(6), 625-6.

http://bibiserv.techfak.uni-bielefeld.de/dca/

[30] Notredame, C., Higgins, D. G. 1996. SAGA: sequence

alignment by Genetic algorithm. Nucleic Acids Res.

24(8), 1515-24.

[31] Gondro, C., Kinghorn, B.P. 2007. A simple Genetic

Algorithm for multiple sequence alignment. Genet. Mol.

Res. 6 (4), 964-82.

[32] Karadimitriou, K., Kraft, D. H. 1996. Genetic Algorithms

and the Multiple Sequence Alignment Problem in

Biology. In Proc. 2nd Annual Molecular Biology and

Biotechnology Conference, Baton Rouge, LA.

[33] Amouda, V., Selvaraj, V., Kuppuswami, S.,

Buvaneswari, S. 2010. iMAGA: Intron Multiple

Alignment Using Genetic Algorithm. International

Journal of Engineering Science and Technology. 2(11),

6361-6370.

[34] Amouda, N., Buvaneswari, S., Kuppuswami, S. 2011.

Self-Organizing Genetic Algorithm for Multiple

Sequence Alignment. Global Journal of Computer

Science and Technology. 11(7), 7-14.

[35] Amouda, V., Buvaneswari, S., Kuppuswami, S. 2011.

Self organizing algorithm for multiple sequence

alignment. Online Journal of Bioinformatics. 12(1), 74-

84.

[36] Khayat, O., Ebadzadeh, M. M., Shahdoosti, H. R., Rajaei

R., Khajehnasiri, I. 2009. A novel hybrid algorithm for

creating self-organizing fuzzy neural networks.

Neurocomputing. 73, 517-524.

[37] Deep, K., Dipti. 2008. A self-organizing migrating

genetic algorithm for constrained optimization. Applied

Mathematics and Computation. 198, 237-250.

[38] Tinos, R., Yang, S. 2007. A self-Organizing Random

Immigrants Genetic Algorithm for Dynamic

Optimization Problems. Genetic Programming and

Evolvable Machines. 8(3), 255-286.

[39] Jeong, I. K., Lee J. J. 1998. A self-organizing genetic

algorithm for multimodal function optimization. Artif.

Life Robotics. 2, 48-52.

