
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

20

Parallel Computing for Detecting Processes for

Distorted Signal

Sarkout N. Abdulla, PhD.

Assist. Prof.
Baghdad University

Iraq

Zainab T. Alisa, PhD.
Baghdad University
Iraq, IEEE member

Arwaa Hameed
Karbala University

Iraq

ABSTRACT
Wireless devices such as hand phones and broadband modems

rely heavily on forward error correction techniques for their

proper functioning, thus sending and receiving information

with minimal or no error, while utilizing the available

bandwidth. Major requirements for modern digital wireless

communication systems include high throughput, low power

consumption and physical size. This research focused on the

speed. The design of a four state convolutional encoder and

Viterbi decoder has been studied and implemented. In order

to solve the Viterbi decoding of lower speed problem, a

Viterbi decode method has been parallelized. Message

passing interface (MPI) with dual core personal computer

(PC) and with cluster is selected as the environments to

parallelize VA by distributing the states on the cluster and

then by using block based technique. It is found that parallel

Viterbi code when the states have been distributed on a

number of computers provide poor performance; due to the

communication overhead. So, in order to obtain better

performance; it is suggested that to replace the multicomputer

system (LAN with 100Mbps) with multiprocessor system (its

speed tenth of Gbps). Block based parallelism can reach a

maximum efficiency of 94.25 % and speed-up of 1.88497

when 2 PCs are used on a cluster with message length of 3000

bits. On 3 PCs, maximum efficiency of 95% and speedup of

2.85 have been obtained with message length of 9000 bits.

However; on 4 PCs; the system reaches maximum efficiency

of 58.333, maximum speed-up of 2.33 with message length of

3000 bits.

Keywords Viterbi decoder, parallel computing, parallel

Viterbi decoder, MPI.

1. INTRODUCTION TO CHANNEL

CODING

The purpose of forward error correction (FEC) is to improve

the capacity of a channel by adding some carefully designed

redundant information to the data being transmitted through

the channel. The process of adding this redundant information

is known as channel coding [1]. In such coding the number of

symbols in the source-encoded message is increased in a

controlled manner, which means that redundancy is

introduced. Convolutional codes is one of the most famous

and important method used in Forward Error Correction

Coding (FEC) [2].

2. RELATED WORK

There exist large bodies of research on Viterbi decoder such

as [3, 4… 7]. In [3] the algorithm had been improved to

achieve high speed and parallel Viterbi decoding method,

which was realized easily by FPGA (Field Programmable

Gate Arrays). The authors [4] had derived a closed form

expression for the exact bit error probability for Viterbi

decoding of convolutional codes using a recurrent matrix

equation. The authors in [5] presented the design of an

efficient coding technique with high speed and low power

consumption for wireless communication using FPGA. In [6],

the design of an adaptive Viterbi decoder that uses survivor

path with parameters for wireless communication to reduce

the power and cost and at the same time to increase the speed

had been presented. The author in [7] was concerned with the

implementation of the Viterbi Decoders for FPGA. He

introduced the pipelining to get higher throughput.

3. CONVOLUTIONAL CODES

Complete system using convolutional encoder and decoder in

a communication link is shown in Fig 1. The convolutional

encoder adds redundancy to the input signal S[n], and the

encoded outputs X[n] symbols are transmitted over a noisy

channel. The output of the encoder that is the input for the

Viterbi decoder R[n] is the encoded symbols contaminated by

noise. The decoder tries to extract the original information

from the received sequence and generates an estimate Y[n]

[8].

Conventional

Encoder
Channel Viterbi Decoder

S[n] X[n] R[n] Y[n]

Output

Sequence

Input

Sequence

Fig 1: Encoding / Decoding Convolutional code

3.1. Encoding Process

In general, the shift register consists of K (k-bit) stages and n

linear algebraic function generators. The input data to the

encoder, which is assumed to be binary, is shifted into and

along the shift register k bits at a time [9]. A simple example

of convolutional encoder can be shown in Figure 2.

3.2 Decoding of Convolutional Codes, the

Viterbi Algorithm

The major blocks of Viterbi decoder are (Fig 3):

Branch Metric Unit (BMU), to compute branch metrics,
which are normed distances between every possible symbol in

the code alphabet, and the received symbol. There are hard

decision and soft decision Viterbi decoders. A hard decision

Viterbi decoder receives a simple bitstream on its input, and a

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

21

+

+

Input Encoded

Output

G1

G2

Fig 2: K = 3, k = 1, n = 2 Convolutional Encoder.

Hamming distance is used as a metric. A soft decision Viterbi

decoder receives a bitstream containing information about the

reliability of each received symbol. The squared Euclidean

distance is used as a metric for soft decision decoders.

BMU PMU TBU
Input Output

FILO

Fig 3: Block diagram of Viterbi decoder

A path metric unit (PMU) summarizes branch metrics to get

metrics for 2k-1 paths, where K is the constraint length of the

code, one of which can eventually be chosen as optimal.

Every clock it makes 2k-1 decisions, throwing off wittingly

non-optimal paths. The results of these decisions are written

to the memory of a trace-back unit (TBU). The core elements

of a PMU are ACS (Add-Compare-Select) units. The way in

which they are connected between themselves is defined by a

specific code's trellis diagram (Fig 4). Since branch metrics

are always , there must be an additional circuit preventing

metric counters from overflow (it isn't shown on the image).

An alternate method that eliminates the need to monitor the

path metric growth is to allow the path metrics to "roll over",

to use this method it is necessary to make sure the path metric

accumulators contain enough bits to prevent the "best" and

"worst" values from coming within 2(n-1) of each other. Trace-

back unit (TBU) restores an (almost) maximum-likelihood

path from the decisions made by PMU. Since it does it in

inverse direction, a Viterbi decoder comprises a FILO (first-

in-last-out) buffer to reconstruct a correct order. (A brief

description is presented in this paper; more information can be

seen in [10]). The allowable state transitions are represented

by a trellis diagram. A trellis diagram for a K = 3, 1/3-rate

encoder can be shown in Figure 4.

Fig 4: Trellis diagram for rate 1/3, K = 3 convolutional

code.

In this example, the constraint length is three and the number

of possible states is 2K–1 = 22 = 4 [10].

3.3 Serial VA Implementation
In this work, three types of serial VA programs have been

studied and built, one with MATLAB code and the others

with C++ code.

The VA serial algorithm steps are as follows:

 1. Build the convolutional encoder.

 2. Build the Viterbi decoder.

Through this work, the convolutional encoder (Fig 2) have

been build. The input of the encoder will be entered as one bit

at each time (k=1) which means that there is two probability

of input data stream (0 or 1), (n=2) will gives two output bits

at a time. This process will continue until all bits of the data

stream vector completely finished. The two output bits (G1,

G2) calculated according to the following polynomials (g1 and

g2 are the content of the shift register):

211 1 ggG ………………………… (1)

22 1 gG ……………………………. (2)

 The Viterbi algorithm involves calculating the hamming

distance between the received bits, at time ti, and all the trellis

path segments (bits) entering each state at time ti. The Viterbi

algorithm removes from consideration those trellis paths that

are not possible candidates for the maximum likelihood

choice [11]. The flowchart of this algorithm is shown in Fig 5

and Fig 6 (a, b and c).

 The truncation depth of C++ type 1 have been chosen as the

length of all data received symbols have been finished, While

in the second program (C++ type 2) the truncation depth is

smaller which is equal to (3*K). A computer type DELL

laptop (Inspiron. 1525) Intel Pentium Dual-Core inside have

been used. For the proposed system; the execution time is

evaluated (table 1). As shown in Fig 7; the delay is significant

using MATLAB. Better performance can be achieved when

the truncation depth is equal to 3*K using C++ language (Fig

8). This time is somewhat large for some applications. One

solution to reduce this time is to use a parallel environment

and to implement a suitable parallel program for VA. The

following sections explain how the parallel system have been

implemented in this research.

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Trellis_diagram

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

22

Start

Generate {d}

bits and store

them in a

vector called

data with any

random length

Load all the contents of the

shift register with zero

(reset all contents)

I = 0

Insert the vector element

data[i] to the shift register

Compute the two output

bits using eq.(1)and(2) and

store them in the new

vector called datco

I = I + 1

I>2*d

EndShift each stage to

its right neighbor

YesNo

Fig 5: Flow Chart of convolutional encoder.

Start

Read two

received

symbols from

vector datco

as datco[i] and

datco[i+1]

Calculate the hamming distant between

received bits and the expected output of the

state which is aa, ab, ba or bb (a=0,b=1)

.A=datco[i] xor a

B=datco[i+1] xor b

I = 0

y1=0, y2=0

A=0

B=0

A=1

y1 = y1 +1y2 = y2 +1

I = I + 1

I < 2 * d

Store y1 and y2

End

Yes

Yes

Yes

No

No

No

Fig 6: Flow Chart of Viterbi decoder, (a) BMU Unit.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

23

Start

Prepare two branch metric with

zero value , r1=0 , r2=0

Add the branch metric with

previous cost

Newcost1 = r1+ y1 ,

 newcost2 = r2 + y2

I = 0

Compare the two new cost

min.cost = newcost1- newcost2

Min.cost < 0

min.cost=newcost2

Update the branch metric

r2=min.cost1

min.cost=newcost1

Update the branch metric

r1=newcost2

Record the decoded bit in vector called outputdetect as (0 or 1)

according to state number

I = I + 1

I < 2 * d

End

Yes

Yes

No

No

Fig 6:(b) PMU Unit.

Table 1. Execution time in seconds for various lengths of

input data

Length of

data (bit)

MATLAB C++ type 1 C++ type 2

10 0.005448 0.000032 0.000034

011 0.039038 0.000163 0.000073

011 0.624054 0.002757 0.000214

0111 1.135896 0.012674 0.000406

0111 3.201251 0.104847 0.001148

0111 5.682160 0.296681 0.002008

0111 7.489519 0.562506 0.002683

0111 8.903280 0.754925 0.002725

0111 14.757222 0.936984 0.004870

01111 17.976502 1.237444 0.007100

Start

Read the four

min.cost from

all four state

I = 0

Searching the min

from these four cost

I = I + 1

I > 4

Select the vector with

min. cost as the

transmitted data stream

End

Yes

No

Fig 6: (c) Trace-Back Unit (TBU)

Fig 7: Execution time in seconds for various lengths of

input data

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

24

Fig 8: Execution time in seconds for various lengths of

input data (type 2)

4. PARALLEL COMPUTING

A parallel computer is a set of processors that are able to work

cooperatively to solve a computational problem. This

definition is broad enough to include parallel supercomputers

that have hundreds or thousands of processors, networks of

workstations, multiple-processor workstations, and embedded

systems [12].

Parallel processing is an efficient form of information

processing which emphasizes the exploitation of concurrent

events in the computing process. Parallel events may occur in

multiple resources during the same time interval,

simultaneous events may occur at the same time instant, and

pipelined events may occur in overlapped time span [13].

Parallel computer systems are broadly classified into two

main models based on Flynn’s specifications: single-

instruction multiple-data (SIMD) machines and multiple-

instruction multiple-data (MIMD) machines [14].

The motivations for parallel processing can be summarized as

follows [15]:

1. Higher speed, or solving problems faster. This is important

when applications have "hard" or "soft" deadlines. For

example, there is at most a few hours of computation time to

do 24-hour weather forecasting or to produce timely tornado

warnings.

2. Higher throughput, or solving more instances of given

problems. This is important when many similar tasks must be

performed.

4.1 Parallelism Type Classification
Computer organizations are characterized by the multiplicity

of the hardware provided to service the instruction and data

streams. Listed below are Flynn’s four machine organizations

[16]:

 SISD – Single Instruction stream / Single Data stream.

 SIMD – Single Instruction stream / Multiple Data stream.

 MISD – Multiple Instruction stream / Single Data stream.

 MIMD – Multiple Instruction stream / Multiple Data stream.

4.2 Parallel VA Implementation
The parallel distribution of Viterbi Algorithm tasks are

illustrated using the following methods:

1. Distributing the states of trills diagram between numbers of

computers in a local area network (LAN) as a multi-

computers system.

2. Decomposing the length of received data stream to more

than one computer using the same network (LAN).

4.2.1 Parallel State Viterbi Decoder
The parallel VA algorithm steps are as follows:

 1. Initialization: Defining variables.

 2. Encoder process: Generating the data vector with any

random length, and encoding it using convolutional

process.

 3. MPI Initialization: MPI initialization is done using

MPI_Init function (MPI programing).

 4. Decomposed task: Distributing the computational

amount between number of processors or computers, in

this work each state in the trills diagram have been built

by a processor unit.

 5. MPI Finalize: MPI_Finalize function (MPI programing)

is used to terminate MPI package.

The computations in a state are dependent on the previous

state. So there is data movements between the states, these

movements will add considerable time to the execution time.

The serial Viterbi decoder type 1 have been implemented in

typical PC computer and the results are in Table 2 and can be

shown in Fig 9. The parallel implementation for this algorithm

is tested on a LAN network which has a speed of 100 Mb/s

with four typical PC computers. From Fig 9, it can be

concluded that there is no benefit from the use of this

parallelization method since the delay is very large in

compared with the serial one.

Table 2. Execution time for type 1 Viterbi Decoder

Length of

data (bit)

Execution

time1(sec)

(serial)

Execution

time2(sec)

(parallel)

100 0.000209 0.058849

500 0.004090 0.309505

1000 0.015247 0.785667

3000 0.137441 1.757516

This is due to the data movement (communication time)

between the computers. This parallelism should be exploited

by multiprocessors devices (which can reach to speed of

several Gb/s) instead of multicomputer. Another solution is to

use block based parallelism (described in the following

section) instead of distributing the states between the

computers. This code have been tested on a computer type

DELL laptop (Inspiron. 1525) Intel Pentium Dual-Core inside

(using MPI programing, more than one process can be

created). The flowchart on each computer (which represent a

state in the trills diagram of VA) for this algorithm is shown

in Fig10.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

25

Fig 9: Execution time for type 1 Viterbi Decoder

Start

I = 0

Each computer will receive the same

costs and vectors from specified states

of the previous cycle (ti-1).

I = I + 1

I > 2 * d

Send the final result to

computer 1.

End

Yes

No

Run branch metric and path metric

operations in the current cycle (ti) using

that received symbols.

Select the vector with min. cost as the

transmitted data stream

Fig 10: Flow chart of parallel states VA

4.2.2 Block Based Parallel Viterbi

Better performance can be achieved by decomposing the data

stream into blocks of length N which can be processed

independently in parallel using K Viterbi processors (VP).

Processing K blocks in parallel causes an increase in the

throughput (speedup equal to K). Each processor will take a

part of the data received, and apply the Viterbi Algorithm on

it. In the serial Viterbi decoder program, one processor will

work for thousands cycles (length of received data) to

reconstruct the original data, but in the proposed system, these

cycles have been divided between more than one processor or

computer, so that the execution time of the program decreases

with increasing the number of computers until critical range.

Figure 11 shows the mechanism for this parallelism.

.

Data Stream

Data Blocks

VP1 VP2 VP3 VP4
Fig 11: Generic block based parallel Viterbi.

 The advantages of this method of parallelism is appears when

the receiver have been received the entire frame of the

transmitted data stream before processing them. Different

number of computers can be used. Ideally, if two computers

work in parallel, the execution time will be reduced to half the

time of serial program, then again; in the practical case there

is a small amount of time would be lost for input and or

output data between the computers. For huge data, this time

may be neglected compared with the computation time. This

parallel program also implemented in one computer as multi-

processes. In this part of the work, serial Viterbi decoder type

2 (which has execution time less than Viterbi decoder type 1)

will be considered in the result of serial and parallel programs.

The serial Viterbi decoder type 2 was implemented on PC

computer type LGA with Celeron®, CPU and RAM of 1GB

and the results can be shown in Table 3. The speedup and

efficiency could be computed using equation 3 and 4

respectively.

p

s

T

T
Speedup ………………………………. (3)

where Ts : Time to perform a task by a single computer.

 Tp : Time to perform a task by multicomputer.

n

Speedup
Efficiency ……. (4)

Table 3. The execution time, speedup and efficiency of the

Viterbi decoder type 2 (two computers)

Length

of data

(bit)

Execution

time(sec)

(serial) ,

 Ts

Execution

time (sec)
(two

computers),

Tp

Speed-
up factor

Ts / Tp

Efficiency

100 0.000086 0.000063 1.365 68.25

1000 0.000485 0.000268 1.8097 90.485

3000 0.001393 0.000739 1.88497 94.25

6000 0.002737 0.001695 1.6147 80.74

10000 0.004505 0.002413 1.867 93.35

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

26

From figure 11 one can conclude that in the case of using two

computers execution time will be reduced approximately by

half and not exactly to half due to communication overhead.

0

0.001

0.002

0.003

0.004

0.005

10
0

10
00

30
00

60
00

80
00

10
00

0

Length of data (bit)

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Serial VA Parallel VA

Figure 11: The execution time of the Viterbi decoder type

2 (two computers)

The delay have been evaluated when the proposed algorithm

is tested on a 3 PC and 4 PC (table 4 and 5). Figure 12 and 13

shows the result when the number of computers is three and

four respectively. The execution time relative to the

communication time have become greater with four

computers.

 The results show that the speedup factor and efficiency differ

from system to another. In addition, it changes with changing

the message length. Ideal speedup is equal to the number of

computers. The proposed system have an overhead due to the

communications. Figure 14 and 15 shows the comparisons

between these systems in terms of a speedup and efficiency

respectively.

Table 4. The execution time, speedup and efficiency of the

Viterbi decoder type 2 (three computers)

Length

of data

(bit)

Execution

time (sec)

serial

Execution

time (sec)

parallel

Speed

up

factor

Efficiency

99 0.000086 0.000056 1.533 51.1

999 0.000485 0.000191 2.53 84.33

9000 0.003655 0.001278 2.85 95

0

0.001

0.002

0.003

0.004

0.005

99
999

3000
6000

99999

Length of data (bit)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Serial VA Parallel VA

Fig 12: The execution time of the Viterbi decoder type 2

(three computers)

Table 5. The execution time, speedup and efficiency of the

Viterbi decoder type 2 (four computers)

Length

of data

(bit)

Execution

time (sec)

serial

Execution

time (sec)

parallel

Speed

up

factor

Efficiency

100 0.000086 0.000044 1.954 48.86

1000 0.000485 0.000214 2.266 56.65

3000 0.001393 0.000597 2.333 58.333

6000 0.002737 0.001711 1.6 40

8000 0.003655 0.001578 2.316 57.91

10000 0.004505 0.001949 2.311 57.79

0

0.001

0.002

0.003

0.004

0.005

10
0

10
00

30
00

60
00

80
00

10
00

0

Length of data (bit)
E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Serial VA Parallel VA

Fig 13: The execution time of the Viterbi decoder type 2

(four computers)

0

0.5

1

1.5

2

2.5

3

2 3 4

Number of computers

S
p

e
e

d
u

p
 f

a
c

to
r

Fig 14: Speedup for the proposed system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4

Number of comuters

E
ff

ic
ie

n
c
y

Fig 15: Efficiency for the proposed system.

4: CONCLUSIONS
The demand for high speed, low power and low cost for

Viterbi decoding especially in wireless communication are

always required. Thus the paper presented the design for the

Viterbi encoder and decoder. There are various VA (Viterbi

Algorithm) implementations, both hardware and software.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.17, March 2013

27

There are VA implementations on microprocessors, CMOS

technology, etc. The design of a four state convolutional

encoder and Viterbi decoder has been studied and

implemented using MATLAB code and C++ code with the

long truncation depth and with small truncation depth

(recursive method). It is found that the MATLAB code delay

is greater than the C++ code delay. In addition, the delay with

long truncation depth is greater than with small truncation

depth. For trills diagram of Viterbi decoder, a greatly

computations has been required in the decoding process.

Searching the maximum likelihood sequence path is a time

consuming effort. This time is grown exponentially with

increasing the complexity of the Viterbi trills diagram. So, it

is proposed to parallelize the Viterbi algorithm to reduce this

time. There are many available choices for parallelization. In

this paper, message passing interface (MPI) with dual core

personal computer (PC) and then with cluster is selected as

the environments to parallelize VA. The Viterbi algorithm is

parallelized by distributing the states on the cluster and by

using block based technique. Performances of these parallel

VA codes are tested on different number of computers. It is

found that the parallel Viterbi code when the states have been

distributed on a number of computers provide poor

performance; due to the communication overhead. So; it will

be suggested that to replace the multicomputer system (LAN

with 100Mbps) with multiprocessor system (its speed tenth of

Gbps). Better performance have been obtained with block

based parallelism technique. Block based parallelism can

reach a maximum efficiency of 94.25 % and speed-up of

1.88497 when 2 PCs are used on a cluster with message

length of 3000 bits. On 3 PCs, maximum efficiency of 95%

and speedup of 2.85 have been obtained with message length

of 9000 bits. However; on 4 PCs; the system reaches

maximum efficiency of 58.333, maximum speed-up of 2.33

with message length of 3000 bits.

The results show that the speedup factor and efficiency differ

from system to another. In addition, it changes with changing

the message length. It is concluded that the parallelization of

Viterbi algorithm is successful. On the other hand the

efficiency of the proposed systems is different.

5. REFERENCES
[1] Derwood, 2002. A Tutorial on Convolutional Coding

with Viterbi Decoding.

 [2] T. Oberg, 2001. Modulation, Detection and Coding.

 [3] Yanyan1, X. and Dianren1 “The Design of Efficient

Viterbi Decoder and Realization by FPGA” Modern

Applied Science; Vol. 6, No. 11; 2012.

[4] Bocharova, H., Student Member, IEEE, Johannesson,

Life Fellow, IEEE, and Kudryashov “A Closed Form

Expression for the Exact Bit Error Probability for Viterbi

Decoding of Convolutional Codes”. Copyright © 2012

IEEE.

[5] Suresh, R., Bala. “Performance Analysis of

Convolutional Encoder and Viterbi Decoder Using

FPGA”. International Journal of Engineering and

Innovative Technology (IJEIT) Volume 2, Issue 6,

December 2012.

[6] Laddha, V. “Implementation of Adaptive Viterbi

Decoder through FPGA”. IJESAT | Nov-Dec 2012

[7] Nayel Al-Zubi Pipelined Viterbi Decoder Using FPGA

Research Journal of Applied Sciences, Engineering and

Technologies, 2013 (Vol. 5, Issue: 04).

 [8] J. Tuominen and J. Plosila, "Asynchronous Viterbi

Decoder in Action Systems ", TUCS Technical Report,

No 710, 2005.

[9] John Proakis, 1989. Digital Communications.

[10] H. Hendrix, "Viterbi Decoding Techniques for the

TMS320C54x DSP Generation ", TEXAS Application

Report, SPRA071A - January 2002.

[11] Y. E. MAJEED, " Detection Methods for GSM/EDGE

Mobile Communication System ", Ph.D. Thesis,

University of Baghdad, 2007.

 [12] I. Foster, 1995. Argonne National Laboratory, Designing

and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering.

 [13] K. Hwang and B., 1988. Computer Architecture and

Parallel Processing.

[14] A. Y. Zomaya, 2006. Parallel Computing for

Bioinformatics and Computational Biology.

 [15] B. Parhami, 2002. Introduction to Parallel Processing

Algorithms and Architectures.

 [16] R.S. Morrison, 2003. Cluster Computing Architectures,

Operating Systems, Parallel Processing & Programming

Languages.

