
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

1

Hook_Test: An Aid to the Hook-Driven Test-First

Development of Framework based Application

Noopur Goel

Department of Computer Science,
Banaras Hindu University

Varanasi, Uttar Pradesh 221005,
India

A. K. Tripathi
Department of Computer Science

and Engineering, Indian Institute of
Technology,

Banaras Hindu University
Varanasi, Uttar Pradesh 221005,

India

Manjari Gupta

Department of Computer Science,
Banaras Hindu University

Varanasi, Uttar Pradesh 221005,
India

ABSTRACT
Enhanced quality with reduced cost and reduced time-to-

market is the primary goal of any software industry.

Researchers and practitioners are trying to aspire it with many

techniques. Object-oriented framework is the promising

technology to promote reuse, thus realizing desired goal.

Inherently complex design and large size of a framework

make it difficult to understand the framework, thus inhibit the

purpose of reuse of framework. Conventionally, test is

performed after the implementation phase of the waterfall

model and any fault detection at this stage is a very costly

affair. In this paper, we are introducing Hook_Test document

to assist in test-first development approach of instantiation of

framework known as Hook-Driven Test-First Development

(HDTFD) of framework based application. Hook_Test guides

the user of the framework to generate hook method

specification based test cases for different types of hooks.

These test cases can be further customized during the

framework instantiation according to the user specific

instantiation of the framework. Besides many advantages, the

proposed approach for instantiation process of the framework

is very simple and easy to understand. Hook_Test description

and HDTFD approach are our contributions in this paper.

General Terms

Reuse-based Software Development

Keywords:
Framework instantiation, test-first development, Framework

Interface Class (FIC), test cases, hook method specification.

1. INTRODUCTION
Quality assurance is highly demanded in any software

industry, and is enhanced by performing software testing, if it

detects faults in the early life cycle of the project

development. Software testing is performed with the intent of

finding faults and is a vital and indispensible part of the

software development process which itself is a highly time

consuming and costly affair. The basic aim of testing is that a

prevented bug is better than a detected and corrected bug [1].

Beizer [1] advocates that “first test, then code.” The question

to be pondered over is “What technique should be used to

enhance the quality of the software while keeping the reduced

cost and reduced time-to-market?” This question is of

common interest for all researchers and practitioners in the

field of software engineering aspire to achieve the goal. For a

fast and efficient testing, testing process must be reuse-

oriented and must be performed from the early stage of the

lifecycle. In this respect, we are proposing an approach

‘Hook-Driven Test-First Development (HDTFD)’ for

development of application based on framework. Assets

reused in the HDTFD approach are framework and test cases

developed from framework itself. Tests are introduced early

in the requirement specifications phase in the form of test

cases.

Frameworks are one of the promising reuse technologies. A

framework is the reusable design (the context) of a system or

a subsystem stated by means of a set of abstract classes and

the ways the objects of (subclasses of) those classes

collaborates [2]. Being a reusable pre-implemented

architecture, a framework is designed ‘abstract’ and

‘incomplete’ and is designed with predefined points of

variability, known as hotspots, to be customized later at the

time of framework reuse [3]. A hotspot contains default and

empty interfaces, known as hook methods, to be implemented

during customization. While preserving the original design,

parts of the framework are extended or customized to build

applications using frameworks. A hook is a point in the

framework that is meant to be adapted in some way such as by

filling in parameters or by creating subclasses [4].

During the instantiation phase, the application developer

adapts the framework according to the application specific

needs to create applications [5]. Understanding the “design”

and “how to use” a framework needs a lot of learning time;

framework instantiation is not very easy and inhibits the

purpose of framework i.e. reuse.Proper documentation

alleviates the steep learning curve fostering the practice of

reuse.

Hook description [4] is used for many possible

implementations of the FrameworkInterface Classes (FIC),

shown in fig-1, for developing applications in the application

development stage [6].

Reusable test cases can be built during the framework

development stage to be used “as-is” or “customized” at

application development stage to implement the FICs. Means

for documenting and communicating test cases for each hook

between framework builder, application developer, and tester

is crucial.

Fig 1: Framework Interface Classes (FIC) [6]

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

2

As per our knowledge, no work has been done till date on test

description for the development of applications based on

frameworks. We are proposing a novel technique- Hook_Test

for documenting the test with respect to each hook.

Hook_Testcan be used to generate the implementations

according to the application specific needs. Hook method

specifications are converted in the form of test cases, which

are further reused, customized and adapted according to user

specific needs during the framework instantiation. In our

approach Hook_Test document would also be deployed along

with the framework to the user of the framework.

Test-first development approach [7] is extended in the context

of framework based application development to perform the

test from the very beginning of the life-cycle. The basic idea

behind test-first development (TFD) is write the test first, and

then write the code to pass the test. HDTFD approach for the

framework based applications aids in enhancing the quality of

the application.

Hook_Test description assists to realize the instantiation of

framework using the Hook-Driven Test-First Development

approach.

The approach proposed in this paper contributes in the

following ways:

 Techniques to specify test cases at the hooks of the

framework.

 An approach to specify the instantiation process for

different levels of hooks, which hold the constraints

during the instantiation process of the framework, thus

maintaining the consistency.

 Comparative study of various test cases for customization

at different level of support.

 A case study in the domain of Drawing Editor is

performed which describes the approach proposed and is

implemented in Java using JUnit.

The proposed approach has the following advantages:

 Hook_Test description reduces the steep learning curve

of the framework, thus reducing the time to market.

 Reduces the cost of the software by reusing the

framework and reusing the test cases generated from the

hook method specifications.

 Enhances the software quality by using contracts as test

cases and applying the test-first development (TFD)

process.

 Covers all the functionalities required for the specific

application.

This paper is organized as follows. Section 2 provides an

overview of related work on framework based application

development. In section 3, the most common hook description

is briefly discussed. The motivation behind the proposed work

is discusses in Section 4. Section 5 describes theproposed

approach Hook-Driven Test-First Development for

instantiating the frameworks. Format of test description for

each hook, Hook_Test,is proposed in section 6. Case study of

the proposed approach is shown in section 7. Finally, section

8 concludes the paper.

2. RELATED WORK
Framework instantiation, the process of adapting the

framework according to the application specific needs, is a

complex task. Comprehending the detailed design and

implementation of the framework under consideration is

required before its instantiation. If documentation is not

doneproperly, it takes a lot of learning time to understand the

framework’s design and how to adapt it, inhibiting the

practice of reuse. Several methods of framework instantiation

have been proposed by many researchers based on

documentation of the framework- cookbook, pattern language,

hook, examples of the applications derived from the

framework and framework class hierarchy- providing the

information to accomplish the required task. Cookbook is a

type of guide, which assists the reuser of the framework to

develop the needed application from the given framework

through a set of related recipes. Framework instantiation

performed by Krasner et al. [8] using the cookbook was much

unstructured and much textual, leading to partially automate

the instantiation process.Preeet al. and Sommerladet al.

[9][10], proposed the solution to the problem of

interdependencies among the recipes by writing the recipes in

hypertext and the active cookbook user interacts with the

hypertext recipes through hyper-links. This approach

automates the application development by stating certain

features of framework adaption.

Contrasting Krasner et al. [8] method, Johnson [11] proposed

another cookbook based instantiation method in which a set of

patterns are structured as a directed graph and edges represent

the references from one pattern to another. The first pattern

describes the purpose of the framework and references to

other patterns, and is the entry point to the directed graph.

This approach does not provide solution to the problems

occurring from the interrelation among the sub problems. This

approach shows that patterns can also guide how to use the

framework and fulfills the purpose of documentation [11]

[12]. Braga et al. [13] have shown that pattern languages

assist in instantiating the framework, sufficing the criteria that

framework should be constructed on the same pattern

language as described in [14]. Framework instantiation using

the pattern languages comprise of four steps- system analysis,

mapping between analysis model and framework,

implementation of specific classes, and test of the resulting

system.

Fontoura [5] and Lucenaet al. [15] proposed an approach

based on design patterns to document and instantiate the

object-oriented framework, extending the standard UML.

They improved standard UML to describe some features of

design patterns by adding some annotations to highlight the

hotspots and how to instantiate the frameworks. The

drawback of this approach is that it does not elucidate what

should be adapted in a framework to make user specific

applications.

Ortigosaet al. [16] proposed a tool HiFi (Helping in

Framework Instantiation) using the high level instantiation

technique based on the functionalities provided by the given

framework. The Intelligent Agent technology assists the

framework user to select the required functionality for their

application from the functionalities provided by the

framework. Again, in assistance with the agent, a sequence of

programming activities is carried out in order to implement it.

Besides, the agent helps to execute the programming activities

according to the design of the framework as documented in

the rule based documentation approach proposed by the

SmartBook[17]methods. The drawback of this approach is that

it is very document dependent. If any functionality is not

documented, the agent is not able to provide any assistance.

The environment does not provide information about the type

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

3

of functionalities-mandatory, optional or alternative- and

although the dependencies are represented through

instantiation rules but is not explicitly presented to the

framework user.

Olivieraet al.[18] proposed the declarative approach of

framework instantiation based on software processes. First,

the framework extension points, where the framework should

be adapted, are represented in a systematic way in UML-FI

(UML profile for framework instantiation) [19]. Next, for the

framework instantiation representation, the sequence of tasks

required to build the specific application using the

frameworkis defined using RDL [20]. At last, the framework

instantiation analysis is performed to validate the consistency

of the framework instantiation task with the help of a set of

constraints tool.

The high-level framework instantiation approach based on

Feature Model proposed in [21] provides the simplified

version of the framework’s functional and technological

characteristics Framework instantiation tool kit is provided to

the user of the framework. First, the set of models is produced

from which the application developer will opt for the features

they want to include in their application. These models must

be developed during the framework development. UML class

model, which provides the framework’s static view and the

features model [22],which is produced during the domain

analysis phase [23] at the start of the framework development

process are the inputs to the process. Both the models are

related through a trace mechanism-a UML dependency

relationship. <<Trace>> relates the framework’s

characteristics represented by the features model with the

framework’s design elements which implements the

extension points, thus establishes relationship between the

functional and technological characteristics of the framework.

Generative approach based on domain specific languages for

framework instantiation [24] [25][26] is also proposed.

Cechtickyet al. [27] proposed the generative approach to

instantiate component based framework with OBS (on Board

Software) Instantiation Environment. The designers configure

and assemble the framework and then configuration actions

are used to automatically generate the instantiation code.

Froehlich et al. [28] proposed the structured textual language

to document the framework- purpose of the framework and

how to instantiate framework. Each hook provides solution to

a particular problem. Thus, the large problems are solved

using many hooks. Our approach modifies the hook

description proposed by Froehlich et al. to generate test cases

from hook specifications and deploy the test cases to

application developer using the framework. The application

developer customizes and extends test cases to instantiate the

framework.

3. BACKGROUND
Hooks define the purpose of the framework and how it is

intended to be used. Hooks define the way to extend or

customize incomplete or abstract parts of the framework to

build the specific application [4] [29]. Froehlich [29] provides

a special purpose language and grammar in which the hook

description can be written. The hook description includes the

implementation steps and the constraints (i.e., pre-conditions

and post-conditions) to be followed to build the application

and therefore FIC methods follow these constraints.

Each hook description is written in a specific format made up

of several sections.

Name: a unique name, within the context of the framework

that identifies the hook.Requirement: a textual description of

the problem the hook is intended to help solve. The

framework builder anticipates the requirements that an

application will have and describes hooks for those

requirements. Type: an ordered pair consisting of the method

of adaption used and the amount of support provided for the

problem within the framework. Area: the parts of the

framework that are affected by the hook. Uses: the other

hooks required to use this hook. The use of a single hook may

not be enough to completely fulfill a requirement that has

several aspects to it, so this section states the other hooks that

are needed to help fulfill the requirement.Participants: the

components that participate in the hook. These are both

existing and new components. Changes: the main section of

the hook that outlines the changes to the interfaces,

associations, and control flow amongst the components given

in the participants section. Constraints: limits imposed on the

hook, or on the use of the hook. Comments: any additional

description needed.

The hook is categorized along two axes:

 method of adaption viz. enable, disable, augment, modify

and add, and

 level of support viz. option, supported pattern, open and

evolutionary.

Option Hook: The implementation of option hook is

provided with the framework. According to the application

specificneeds, the required implementation is chosen.

Framework acts like the black-box one [4].

Supported PatternHook: In supported pattern hook, feature

is enabled, augmented, removed or replaced by keeping the

same specifications as defined by the framework hooks.

Introduction about creating new sub classes, method

overriding or specialization, or filling in the parameters is

written in the changes section of the supported pattern hook.

A parameter may be a simple variable, method, or component

defined as an option hook or, the method or class

implementation depends on the framework user. The unique

conditions imposed on parameters or methods and the

consequences of using the supported pattern on rest of the

frameworkis described in theconstraint part [4].

Open Hook:Feature can be added, replaced, removed or

augmented for open hooksometimes in an unexpected way.

The requirement of the hook method may also be changed by

creating new classes which are not subclasses, defining new

operation on the classes, and code replacement or removal

happens along with those performed in supported pattern

hook. No support is provided for the changes section of the

hook description. The constraint partdescribes the

consequences of using the open hook, has on rest of the

framework [4].

Evolutionary Hook: Framework reuser can break the design

of the framework while instantiating the framework at the

evolutionary hook [4].

4. MOTIVATION
Frameworks are designed to be reused to produce the needed

applications with enhanced quality keeping the low cost and

reduced time-to-market. Keeping this aim in mind, we were

motivated for approach proposed in the paper. The purpose of

choosing the elements in the approach is described below in

following subsections 4.1 and 4.2.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

4

4.1 Why Hook-Driven Development?
Hooks provide the means to extend or complete the

framework, or what choices need to be made about parts of

the framework in order to develop an application using the

framework. Constraints are imposed on the changes or

extensions performed in the framework to instantiate it. Thus,

hooks help to ensure that the changes made are compatible

with the design and implementation of the framework. The

specifications (i.e. pre-conditions and post-conditions) of

hook methods and invariants of the framework interface

classes, i.e. contracts [30] form the basis of generating test

cases for the implementation of hook methods.

4.2 Why Test-First Coding?
Test cases are the unambiguous representation of the

requirements, which a program must satisfy. Writing the

testcases initiates the process of converting the requirements

to design and to implementing code [31]. “Test-first code is

not a testing technique.” Test-first code is an analysis

technique which decides that what is within the scope or out

of scope of the implementation, encouraging for explicit

description of what conditions one anticipates before writing

the code. Test-first code is a design technique. As the system

grows, the design is simplified as well as one becomes

assured about the correct functioning of the system [7].

Although the primary motto of TFD is design, the tests are

also important. Automation of test suits is also possible in

Test-first development approach [32]. To make testing easier,

most test–first programmers use a good number of interfaces

and abstract classes. This ultimately enhances the flexibility

and reusability of software [32]. Frameworks are also the

reusable skeletal architecture providing flexibility and

reusability through interfaces and abstract classes.

Thus, besides many of the advantages of using the TFD [33]

[34], the three reasons suffice for the development of

framework based applications through HDTFD Approach.

 Hook specifications form the basis for the development

of reusable test cases,

 All the functionalities and requirements needed by the

application are fulfilled, and

 Test effort for applications may be reduced.

5. HOOK DRIVEN TEST-FIRST

DEVELOPMENT- A NEW

APPROACH
When application developers use the FICs to implement their

applications, they deal with the specifications of FICs

described by the hooks in three ways [6]:

 By using them as defined.

 By ignoring the specifications for the behaviors that are

not needed in implementing application requirements.

 By adding new specifications for the added behaviors to

meet application requirements.

Similarly, test cases generated using the hook method

specifications are reused for developing the corresponding

hook implementation in the following ways [6]:

 By reusing them as-is.

 By ignoring or modifying some of the reusable test cases.

 By adding some more test cases or building new test

cases from the scratch.

The HDTFD approach for option, supported pattern, and open

hooksare proposed here. Evolutionary hook can change the

structure of the framework itself, so it is not taken into

consideration.

5.1 Proposed HDTFD Approach for Option

Hook Implementation
In general, it does not require any effort in the implementation

and testing of option hook. It is mentioned in section 4,

implementation of option hook is provided within the

framework. The method of adaption for the implemented

hook is provided with the hook description, so HDTFD

approach is required just for adapting FICs containing the

option hooks as depicted in fig-2. The test cases TM,

representing the specifications of the option hook method, are

deployed to the users of the framework. The application

developer reuses the test cases TM as deployed by framework

developer. The reuser of the framework carries out no

customization of TM.

5.2 Proposed HDTFD Approach for

Supported Pattern Hook

Implementation
The application specific code for supported pattern hook

using HDTFD is implemented as depicted in fig-3.The test

cases TM, representing the specifications of the supported

pattern hook method, are deployed to the users of the

framework. In case of supported pattern hook method, input

is according to the test scenario- Boundary value test,

Equivalence partitioning test etc. The execution condition of

the test case TM is represented by pre-conditions and FIC

invariants while the expected result is represented by post-

conditions and FIC invariants. The application developers

customize the test cases TM as per the method of adaption

into TMA. The pre-conditions or post-conditions of the test

cases can be customized, but the FIC invariants should not

be modified.

5.3 Proposed HDTFD Approach for Open

Hook Implementation
The application specific code for open hook using HDTFD is

performed as depicted in fig-4. The test cases TF, TC and TM,

representing the requirement specifications of the framework,

the FIC invariants and the specifications of open hook method

respectively, are deployed to the users of the framework. In

case of open hook method, input is according to the test

scenario- Boundary value test, Equivalence partitioning test

etc. The application developer customizes the test cases TC

and/or TM as per the method of adaption into TCA and/or TMA.

User of the framework is not able to modify TF. TFmust be

followed before and after the implementation of the open

hook method.

Note: Verification of program at class invariant and

framework constraint level is beyond the scope of this paper

5.4 Comparative Study for Customization

of Different Test Cases at Different

Level of Support
Comparative table of customization of various test cases, TM,

TC and TF, for different levels of hooks is shown in table 1. It

also shows that flexibility to customize basic test cases,

developed and deployed with the framework, by the

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

5

application developer increases from option hook to supported

pattern hook to open hook.

Test cases TF generated for framework constraints, TC

generated for FIC invariants &Test cases TM for

specifications provided by the Open hook

Use as-is or customize TC and/or TM to generate new

test cases TCA and/or TMArespectively as per method

of adaption

 Add new code to implement the hook as per the TFA,

TCAand/or TMA

 Execute the code to pass TFA,TCAand/orTMA

If error?

Does code

covers all

testcases?

Exit

Fig 4: Proposed Open hook implementation using HDTFD

approach

Fix error

Yes No

Yes

No

Test cases TC andTM for Specifications provided by the

Supported Pattern hook

Use as-is or customize TMto test cases TA as per

method of adaptionfor the needed application

Write new code to implement the hook as per

the test cases TC and TA

Execute the code to pass the test cases TCand TA

If error? Fix

No

No

Yes

Exit
Does code

covers all

testcases?
Yes

Fig3: Proposed Supported Pattern hook implementation using

HDTFD approach

Test cases TM given for how to use i.e. enable or

replace a functionality provided by option hook

the option hook constraints

No
Exit

Write code to enable or replace

functionality as per TM

Fix the error

Execute test cases TM

If error?

Yes

Yes

No

Does code

covers all

testcases?

Fig 2: Proposed Option hook implementation using HDTFD

approach

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

6

Table 1: Comparative study of customization of test cases

TM, TC, TF for hooks having different level of support.
Level of

support

Method of

Adaption

Option
hook

Supported
Pattern

hook

Open hook

TM

Mandatory Optional Optional

Used as-is,

i.e. TMA=TM

May be

customized
as TMA

May be customized or

generated from scratch
as TMA

TC

Not

required

Optional Optional

NA

Used as-is,
i.e. TCA=TC

May be customized or
generated from scratch

i.e. TCA

TF

Not

required

Not

required

Mandatory

NA

NA

Used as-is, i.e.

TFA=TF

Flexibility, to customize test cases, increases

Test cases deployed with the framework are as follows:

TM : Test cases generated from hook method specifications.

TC: Test cases generated from framework interface class

invariants.

TF : Test cases generated from framework constraints.

TM, TC, TF are customized and adapted as test cases TMA, TCA,

TFA respectively during framework instantiation.

6. HOOK_TEST: TEST DESCRIPTION

WITH RESPECT TO EACH HOOK
The test cases generated with the help of the hook method

specifications, known as basic test cases, support framework

instantiation using HDTFD approach. To make the framework

instantiation straightforward, need is felt to provide a new

hook description- Hook_Testwhich modifies the previous one

proposed by Froehlichet al.[4].

The Hook_Test description is complete in itself, such that the

application developer can comprehend the

requirements/functionalities supported by the hook in the

form of test cases and support provided by the hook to

customize basic test cases. Elements that form the test cases

are input, execution condition and expected result. Each

Hook_Test description consists of the following parts. Few of

the sections that present basic information regarding hooks is

same as proposed by Froehlich’s hook description. Rests of

the newly proposed subsections are explained in detail:

 Name: Unique name of the test description for each

hook, corresponding to the name of hook in the hook

description.

 Task: Requirements provided at hook, which it is

intended to solve.

 Type: The ordered pair consisting of method of adaption

used and level of support provided for test cases for the

problem within the framework.Level of support may be

option, pattern or open test description corresponding to

the hook to be tested. It signifies that the basic test cases

are tailored in line with the specifications of hook

provided by the framework builder to be used as-is,

extended or modified by the application developer.

Method of adaption represents how the basic test cases,

corresponding to functionalities provided by the hook,

will be used: as-is, augmenting to the basic test cases,

creating new test cases from the scratch, ignoring some

of the basic test cases or replacing the basic test cases.

Depending on the method of adaption and level of

support provided by the framework builder, the

application developer can customize the test cases aiding

to automate the test script and generating the application

specific code.

 Area: The parts of the framework that are affected by the

hook.

 Uses: The other hooks required to use this hook. The use

of a single hook may not be enough to completely fulfill

a requirement that has several aspects to it, so this

section states the other hooks that are needed to help

fulfill the requirement.

 Participants: Components that participate in the hook.

These are both existing and new components.

 Changes: The main section of the hook,which outlines

the changes to the interfaces, associations, and control

flow amongst the components given in the Participants

section.

 Test_id :Identification of test case used to identify the

test cases as per the combination with Test_Scenario and

TF, or TC or TM. Test_idis expressed as Test_01, Test_02,

and so on.

 Test_Scenario: Input criteria used to generate basic test

cases- functionality test, boundary value test, equivalence

partitioning test, happy path test, negative test etc.

 Test_cases: Test cases TM TC and TF, are generated from

hook method specifications, FIC invariants and

framework constraints respectively. For example, test

case TM is either pre-conditions of hook method or post-

conditions of hook method or both. Test case TC is FIC

invariant and TF is framework constraints.

Before the execution of the hook method, the

preconditions of the test case TM must be satisfied for a

given input. After the execution of the hook method, the

post-conditions of the test case TM must be satisfied. If

TCis provided with the framework, it must be satisfied

before and after the execution of hook method. Similar is

the case with TF. Input depends on the Test_Scenario.

 In case of option hooks, none of the test cases except for

how to adapt the hook is necessary, in case of supported

pattern hooks, pre-conditions, post-conditions are

optional while class invariants are mandatory and

framework constraints are not needed. In case of open

hooks, pre-conditions, post-conditions and framework

interface class invariants are optional and framework

constraints are mandatory.

 Comments: Any additional description, if needed.

All sections of the Hook_Test are not required for all hooks.

All test cases TF, TC and TM are also not required for all

hooks. Those sections or test cases which are not required are

simply left out.

7. CASE STUDY
In this section we are using Drawing Editor domain to

describe our approach. We used Java for its implementation

and test cases are generated using JUnit 3.0. Netbeansis

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

7

usedas an editor. The Drawing framework has an abstract

class Item consisting ofa supported pattern hookmethod Draw.

Fig-5 is the hook description of the Draw hook (as per the

concept proposed by Froehlich et al. [4]) belonging to FIC

item.

Fig-6 shows the Draw_Test corresponding to Draw hook in

proposed Hook_Test format.

The Hook-Test description Draw_Testis deployed with the

Drawing framework to the application developer.

Further, application developer uses the Draw_Test description

to generate test case method testDraw().Using the Draw_Test

description test cases are written in testDraw()method as

shown in fig-7.

The Changes section of the Draw_Test description and the

test case method testDraw aids in implementing Draw hook.

Implementation of Draw hook is shown in fig-8.

8. CONCLUSION
The proposed work introduces a new approach to instantiate

the object-oriented framework as per the functionalities

needed by the user. Today’s needs of the industries- enhanced

quality with reduced time-to-market and reduced cost- urges

for the practice of reuse. Object-oriented framework is the

promising reuse technology catering the needs of the software

industry. Understanding the “how to use” a framework

improves the practice of reuse of the framework.

Conventionally, test is performed after the implementation

phase of the waterfall model and any fault detection at this

stage is a very costly affair. In this paper, we have introduced

a hook based test description, Hook_Test, to assist in the test-

first development of software based on object-oriented

framework. The hook based test description Hook_Testis

delivered along with the framework to the user for

instantiating framework as per the specific needs. Reuser of

the framework can very easily know how to instantiate the

framework under the guidance of test cases and changes

subsection provided by the Hook_Test description. Besides

many subsections, the Hook_Test description consists of the

method specifications, framework interface class invariants

and framework constraints which are used to generate test

cases. These test cases further form the basis for Hook-Driven

Test-First Development of specific framework instantiation.

We described our proposed approach in this paper by an

example in the domain of Drawing Editor. In our future work,

Fig 8: Implementation of Draw hook method

corresponding to test case testDraw.

public class Circle extends Items{

 @Override
public void draw(BasePanelbp, int x1, int y1, int x2, int y2) {

 Graphics g=bp.getGraphics();

int l=Math.min(x2-x1,y2-y1);

g.drawOval(x1, y1, l, l);

 }

}

public void testDraw() {

System.out.println("draw");
BasePanelbp = null;

int x1 = 0;

int y1 = 0;
int x2 = 0;

int y2 = 0;

assertTrue(x2>=x1 && y2>=y1);
bp=new BasePanel();

BaseFrame f=new BaseFrame();

f.add(bp);
f.setVisible(true);

assertTrue(bp!=null);

 Dimension d=bp.getSize();
assertTrue(x1>=0 && y1>=0 && x2<=d.width&&

y2<=d.height);

 Circle instance = new Circle();

instance.draw(bp, x1, y1, x2, y2);

 }

}

Name :Draw_Test

Requirement : A new type of figure can be added to the drawing

framework.
Type : Supported Pattern.

Area : Tools

Participants :Basepanel (Framework class)
Uses : None

 Changes: 1. Obtain a reference to the graphics context of the

container (BasePanel) using the getGraphics() method
of the JPanel class in java.

2. The subclass must extend the Items class and must

not be abstract.
3. Draw the required figure using the appropriate

drawing methods supplied by the draw method.

Test_cases, TM :

 Pre-condition:
BasePanel != null.

x1=0, x2=0, y1=0, y2=0.
 (x2>=x1 && y2>=y1).

(x2<=d.width&& y2<=d.height);

Fig 6: Hook _Test description for Draw hook, Draw_Test.

Name: Draw hook
Requirement: A new type of figure can be added to the drawing

framework.

Type: Supported Pattern.
Area: Tools

Participants: BasePanel (Framework class)

Uses: None
Changes: 1. Obtain a reference to the graphics context of the

container (BasePanel) using the getGraphics() method

of the JPanel class in java.
2. The subclass must extend the Items class and must

not be abstract.

3. Draw the required figure using the appropriate
drawing methods supplied by the draw method.

Pre-condition: 1. Drawing surface cannot be null i.e. BasePanel

!= null.
 2. (x1, y1, x2, y2) are within the range of the

drawing surface BasePanel.

 3. (x1, y1) >= (0,0) and (x2, y2) >= (x1, y1)).

.

Fig 5: Hook description for Draw hook.

Fig 7: Test case testDraw for draw hook

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

8

we are studying the testability of the framework based

application developed using HDTFD approach.

9. REFERENCES
[1] B. Beizer, “Software testing techniques”,2nd edition,

Dreamtech press.

[2] K. Beck and R. Johnson, “Patterns Generate

Architecture”, in Proceedings of 8th European

Conference on Object Oriented Programming, Bologna,

Italy, 1994, pp. 139-149.

[3] T. Jeon, S. Lee and H. Seung, “Increasing the Testability

of Object-oriented Frameworks with Built-in Test”,

Lecture Notes in Computer Science, Vol. 2402, 2002, pp.

873-881.

[4] G. Froehlich, H. J. Hoover, L. Liu and P. Sorenson,

"Hooking into Object-Oriented Application

Frameworks", in Proc. of the 19th International

Conference on Software Engineering, Boston, May,

1997, pp. 491-501.

[5] M. F. M. C. Fontoura, “A Systematic Approach to

Framework Development”, Ph.D. Thesis, Computer

Science Department, Pontifical Catholic University of

Rio de Janeiro, Rio de Janeiro, Brazil. 1999. Available

from:

http://www.teccomm.les.inf.pucrio.br/publicacoes.htm

[Accessed 5 May 2012].

[6] J. A. Dallal, “Class-based Testing of Object-oriented

Framework Interface Classes”, Ph.D. Thesis, Department

of Computing Science, University of Alberta, City,

Country, 2003. Received through email:

{j.aldallal@ku.edu.kw} date: 21/05/2012.

[7] K. Beck, “Aim, Fire [test-first coding]”,IEEE

SOFTWARE, Vol. 18, No. 5, September / October,

2001, pp. 87-89.

[8] G. E. Krasner and S. T. Pope, “A Cookbook For Using

The Mode-View-Controller User Interface Paradigm in

the Smalltalk-80”, Journal of Object-Oriented

Programming, Vol. 1, No. 3, 1988, pp. 26–49.

[9] W. Pree, G. Pomberger, A. Schappert and P. Sommerlad,

“Active Guidance of Framework Development”,

“Software-Concepts and Tools”, Vol. 16, No. 3, 1995,

pp. 136–145.

[10] P. Sommerlad, A. Schappert and W. Pree, “Automated

Support for Development with Frameworks”, in

Proceedings of the 17th International Conference on

Software Engineering on Symposium on Software

Reusability, ACM Press, New York, 1995, Vol. 20, pp.

123–127.

[11] R. E. Johnson, “Documenting Frameworks using

Patterns”, in ACM OOPSLA, 1992, Vol. x, pp. 63-76.

[12] D. Brugali and G. Menga, “Frameworks and Pattern

Languages: An Intriguing Relationship”, “ACM

Computing Surveys”, Vol. 32, No. 1, 1999, pp. 2–7.

[13] R. T. V. Braga andP. C. Masiero, “The Role of Pattern

Languages in theInstantiation of Object-Oriented

Frameworks”, in OOIS 2002 Workshops, LNCS 2426,

_Springer-Verlag Berlin Heidelberg 2002, pp. 122–131.

[14] R. T. V. Braga and P. C. Masiero, “A process for

framework construction based on a pattern language”, in

Proceedings of the 26th Annual International Computer

Software and Applications Conference, IEEE computer

Society, Oxford-England, 2002, pp. 615-620.

[15] M.F.M.C. Fontoura and C.J.P. Lucena, “Extending UML

to improve the representation of design patterns”, Journal

of Object-Oriented Programming, Vol. 13, No. 11, 2001,

pp.12–19.

[16] A. Ortigosa, M. Campo and R. Moriyon, “Towards

agent-oriented assistance for framework instantiation”, in

OOPSLA '00 Proceedings of the 15th ACM SIGPLAN

conference, ACM Press, New York, 2000, Vol. 35, pp.

253–263.

[17] A. Ortigosa and M. Campo, “SmartBooks: A Step

Beyond Active-Cookbooks to aid in Framework

Instantiation”, “Technology of Object-Oriented

Languages and Systems” 25, IEEE Press, 1999, pp. 131-

140.

[18] T. C. Oliveira, S. Paulo, C. Alencar, I. M. Filho, Carlos

J.P. de Lucena, and D. D. Cowan, “Software Process

Representation and Analysis for Framework

Instantiation”, IEEE Transactions On Software

Engineering, Vol. 30, No. 3, March 2004,Pp. 145-159

[19] T. C. Oliveira, P. S.,C. Alencar, and D. D. Cowan,

“Towards a Declarative Approach to Framework

Instantiation”, In Proceeding of First Workshop

Declarative Meta-Programming (DMP), 2002, pp. 5-9.

[20] C. T. Oliveira, P. S. C.Alencar, C. J.P. de Lucena and D.

D. Cowan, “RDL: A Language for Framework

Instantiation Representation”, The Journal of Systems

and Software, Vol. 80, No. 11, 2007, pp. 1902–1929.

[21] I. M. Filho, T. C. Oliveira and C. J. P. de Lucena, “A

Framework Instantiation Approach Based on the

Features Model”, The Journal of Systems and Software,

Vol. 73, No. 2, 2004, pp. 333–349.

[22] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and

A. S. Peterson, “Feature-Oriented Domain Analysis

(FODA) Feasibility Study”, Technical Report CMU/SEI-

90-TR-21, Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, Pennsylvania. 1993.

[23] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh,

“FORM: A Feature-Oriented Reuse Method with

Domain-Specific Reference Architecture”, Annals of

Software Engineering, Kluwer Academic Publishers,

Dordrecht, Holland, Vol. 5. No. 1, 1998, pp. 143–168.

[24] K. Czarnecki, T. Bednasch,, P. Unger, and U.

Eisenecker, “Generative Programming for Embedded

Software: An Industrial Experience Report”, in

Proceedings of the 23rd Conference on Generative

Programming and Component Engineering, LNCS

Springer-Verlag 2002, Vol. 2487, pp. 156-172.

[25] K. Czarnecki and U. Eisenecker, “Components and

Generative Programming”, in Proceedings of the Joint 7th

European Software Engineering Conference and ACM

SIGSOFT International Symposium on the Foundations

of Software Engineering, France, 1999, Vol. 24, No. 6

pp. 2-19.

[26] G. Butler, “Generative Techniques for Product Lines”,

Software Engineering Notes, Vol. 26, No. 6, 2001, pp.

74-76.

mailto:j.aldallal@ku.edu.kw%7d%20%20date

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.16, March 2013

9

[27] A. Pasetti, W. Schaufelberger, F. Pfenning and Y.

Smaragdakis, “A Generative Approach to Framework

Instantiation”, Vaclav Cechticky1, Philippe Chevalley2,

(Eds.): GPCE 2003, LNCS 2830,.© Springer-Verlag

Berlin Heidelberg 2003, pp. 267–286.

[28] G. Froehlich, H.J. Hoover, L. Liu, P. Sorenson,

“Hooking into object-oriented application frameworks”,

in Proceedings of the 19th International Congress on

Software Engineering, ACM Press, New York, 1997,

pp. 491–501.

[29] G. Froehlich, “Hooks: an aid to the reuse of object-

oriented frameworks”, Ph.D. Thesis, Department

ofComputing Science, University of Alberta, 2002.

[30] Meyer, “Applying Design by Contract”, IEEE Computer,

Volume 25, No. 10, 1992, pp. x.

[31] S. Fraser, D. Astels, K. Beck, B. Boehm, J. McGregor, J.

Newkirk and C Poole, Panel, “Discipline and Practices of

TDD:(Test Driven Development)”, in Proceeding

OOPSLA '03 Companion of the 18th annual ACM

SIGPLAN, 2003, pp. 268-270.

[32] D. S. Janzen and H. Saiedian, “Does Test-Driven

Development ReallyImprove SoftwareDesign Quality?”,

IEEE Software, Vol. 25, No. 2, March/April 2008, pp.

77-84.

[33] T. Bhat and N. Nagappan, “Evaluating the Efficacy of

Test-Driven Development: Industrial Case Studies”, in

ISESE'06 Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software

engineering, 2006, pp. 21–22

[34] D. S. Janzen,“On the Influence of Test-Driven

Development on Software Design”, in Proceedings of the

19th Conference on Software Engineering Education &

Training, IEEE, 2006, pp. 141-148.

