
International Journal of Computer Applications (0975 - 8887)
Volume 65 - No. 15, March 2013

Existence, Uniqueness and Stability of Neutral
Stochastic Functional Integro-differential Evolution

Equations with Infinite Delay

C. Parthasarathy
Department of Mathematics,

Karunya University,
Karunya Nagar,

Coimbatore- 641 114, Tamil Nadu, India.

A. Vinodkumar
Department of Mathematics,
PSG College of Technology,

Coimbatore- 641 004,
Tamil Nadu, India.

M. Mallika Arjunan
Department of Mathematics,

C. B. M. College,
Kovaipudur,

Coimbatore- 641 042, Tamil Nadu, India.

ABSTRACT
This article presents the results on existence, uniqueness and sta-
bility of mild solutions to neutral stochastic functional evolu-
tion integro-differential equations with non-Lipschitz condition and
Lipschitz condition. The existence of mild solutions for the equa-
tions are discussed by means of semigroup theory and theory of re-
solvent operator. Under some sufficient conditions, the results are
obtained by using the method of successive approximation and Bi-
hari’s inequality. Moreover, an example is given to illustrate our
results.
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1. INTRODUCTION
Neutral stochastic differential equation occurs in many areas of
science and engineering have attain much attention in the past
decades. The partial integro-differential equations has wide ap-
plications in the field of mechanical, electrical and so on., and
refer [12]. For abstract model of partial integro-differential equa-
tions with resolvent operators, see for instance [6, 8, 11]. The de-
terministic model often fluctuate due to noise. Under this circum-
stance, we move the deterministic model problems to stochastic
model problems, for more details reader may refer [3, 7, 10, 18].
The existence and uniqueness of the neutral stochastic differen-
tial equations with infinite delay have been studied by many au-
thors [5, 16]. Recently, the authors have established the prob-
lem with Lipschitz and non-Lipschitz condition, we suggest
[2, 17, 20, 22] and reference therein.
On other hand, stochastic differential equations are well known
problem in many areas of engineering and science. There are
only few works on existence, uniqueness and stability of stochas-
tic differential systems have been established [1, 16, 17, 22]. The
stochastic systems with resolvent operators has occur in differ-
ent applications such as heat equation, viscoelasticity and many
other physical phenomena, see for instance [15]. The study of
existence, uniqueness and stability of stochastic functional dif-
ferential with resolvent operator is an unprocessed issue and it is
also the motivation of this paper.
In [1] Anguraj et al. studied the impulsive stochastic neutral
functional differential equations under non-Lipschitz condition
and Lipschitz condition, whereas A. Lin et al. [17] have estab-
lished on neutral impulsive stochastic integro-differential equa-

tions with infinite delay via fractional operators and H. Bin Chen
[5] have proved the existence and uniqueness for the solution
of neutral stochastic functional differential equations with infi-
nite delay, then A. Vinodkumar [22] have examine the existence,
uniqueness and stability results of impulsive stochastic semilin-
ear functional differential equations with infinite delay. Recently,
Y. Ren [21] have described the existence, uniqueness and sta-
bility of mild solutions for time-dependent stochastic evolution
equations with poisson jumps and infinite delay. Moreover, the
study was conducted on stability through the continuous depen-
dence on the initial values by means of Bihari’s inequality. For
more details reader may refer [2, 10, 19].
Inspired by the above mentioned works [5, 8, 22], the purpose of
this paper is to study the existence, uniqueness and stability for
neutral stochastic functional integro-differential equations of the
form

d[x(t) + g(t, xt)] = A(t)
[
x(t) + g(t, xt)

]
dt

+

[∫ t

0

f(t, s)
[
x(s) + g(s, xs)

]
ds+ h(t, xt)

]
dt

+ σ(t, xt)dw(t), t ∈ J := [0, T ], (1)
x0 = ϕ ∈ B. (2)

Here, the state x(·) takes the values in a real separable Hilbert
space H with inner product (·, ·) and the norm ‖ · ‖, A(t)
is the linear operators generates a linear evolution systems
{R(t, s), t ≥ 0} on H , and f(t, s), t ∈ J is a bounded lin-
ear operator. The history xt : (−∞, 0]→ H , xt(θ) = x(t+ θ),
for t ≥ 0, belongs to the phase space B, which will be described
axiomatically in Preliminaries. Suppose {w(t); t ≥ 0} is a given
K-valued Brownian motion with a finite trace nuclear covari-
ance operator Q ≥ 0 defined on a complete probability space
(Ω,F , P ) equipped with a normal filtration {Ft}t≥0, which is
generated by Wiener process w. we are also employing the same
notation ‖ · ‖ for the norm L(K,H), where L(K,H) denotes
the space of all bounded linear operator fromK intoH . Assume
that h : R+ × B → H and σ : R+ × B → LQ(K,H), where
R+ = [0,∞) are Borel measurable and g : R+ × B → H is
continuous. Here, LQ(K,H) denotes the space of allQ-Hilbert-
Schmidt operator from K into H , which will be defined in Sec-
tion 2.
The substance of the paper is organized as follows. Section 2,
recapitulates some basic definitions, lemmas, notations, and the-
orems which will be used to develop our results. Section 3 and 4,
give several sufficient conditions to prove the existence, unique-
ness and stability for the problem (1)-(2) respectively. Section
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5 is reserved for an example is to illustrate the efficiency of the
obtained results.

2. PRELIMINARIES
Let (K, ‖ · ‖K) and (H, ‖ · ‖H) be the two real separable Hilbert
space with inner product 〈·, ·〉K and 〈·, ·〉H , respectively. We de-
note L(K,H) be the set of all linear bounded operator from K
intoH , equipped with the usual operator norm ‖·‖. In this article,
we use the symbol ‖ · ‖ to denote norms of operator regardless
of the space involved when no confusion possibly arises.
Let (Ω,F , P ;H) be the complete probability space furnished
with a complete family of right continuous increasing σ- algebra
{Ft, t ∈ J} satisfying Ft ⊂ F . An H- valued random vari-
able is an F- measurable function x(t) : Ω→ H and a collec-
tion of random variables S = {x(t, ω) : Ω → H \ t ∈ J}
is called stochastic process. Usually we write x(t) instead of
x(t, ω) and x(t) : J → H in the space of S. Let {ei}∞i=1

be a complete orthonormal basis of K. Suppose that {w(t) :
t ≥ 0} is a cylindrical K-valued wiener process with a finite
trace nuclear covariance operator Q ≥ 0, denote Tr(Q) =∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei. So, actu-

ally, ω(t) =
∑∞
i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually

independent one-dimensional standard Wiener processes. We as-
sume that Ft = σ{ω(s) : 0 ≤ s ≤ t} is the σ-algebra generated
by ω and Ft = F . Let Ψ ∈ L(K,H) and define

‖Ψ‖2Q = Tr(ΨQΨ∗) =

∞∑
n=1

‖
√
λnΨen‖2.

If ‖Ψ‖Q < ∞, then Ψ is called a Q-Hilbert-Schmidt operator.
Let LQ(K,H) denote the space of all Q-Hilbert-Schmidt op-
erators Ψ : K → H . The completion LQ(K,H) of L(K,H)
with respect to the topology induced by the norm ‖ · ‖Q where
‖Ψ‖2Q = 〈Ψ,Ψ〉 is a Hilbert space with the above norm topol-
ogy.
In this work, the axiomatic definition of the phase space B is
introduced by Hale et al. [13]. To establish the axioms of the
phase space B, we use the following terminology used in Hinto
et al. [14]. The axioms of the space B are established for F0-
measurable functions from (−∞, 0] into H , endowed with a
seminorm ‖ · ‖B which satisfies the following axioms:

(A1) If x : (−∞, T ] → H, T > 0 is such that x0 ∈ B then for
every t ∈ [0, T ], the following conditions hold:

(i) xt ∈ B;
(ii) ‖x(t)‖ ≤ L‖xt‖B;
(iii) ‖xt‖B ≤ M(t) sup

0≤s≤t
‖x(s)‖ + N(t)‖x0‖B , where L > 0

is a constant; M(·), N(·) : [0,+∞) → [1,+∞), is contin-
uous N(·) is locally bounded, and L,M(·), N(·) are inde-
pendent of x(·).

(A2) For the function x(·) in (A1), xt is a B-valued continuous
function on [0, b].

(A3) The space B is complete.

The B- valued stochastic process xt : Ω → B, t ≥ 0, is de-
fined by xt(s) = {x(t + s)(ω) : s ∈ (−∞, 0]} The collec-
tion of all strongly measurable, square integrable, H-valued ran-
dom variables, denoted by L2(Ω,F , P ;H) ≡ L2(Ω;H), is a
Banach space equipped with norm ‖x(·)‖2L2

= E‖x(·, w)‖2H ,
where E denotes expectation defined by E(h) =

∫
Ω
h(w)dP .

Let C(J,L2(Ω;H)) be the Banach space of all continuous map
from J into L2(Ω;H) satisfying the condition sup

t∈J
E‖x(t)‖2 <

∞. An important subspace is given by L0
2(Ω,H) = {f ∈

L2(Ω,H) : f isF0 − is measurable}.
Let Z be the closed subspace of all continuously differentiable
process x that belongs to the space C(J,L2(Ω;H)) consisting

ofFt- adapted measurable process such that theF0-adapted pro-
cess ϕ ∈ L0

2(Ω,B). Let ‖ · ‖Z be a seminorm in Z defined by

‖x‖Z =

(
sup
t∈J
‖xt‖2B

) 1
2

,

where

‖xt‖B ≤ NTE‖ϕ‖B +MT sup{E‖x(s)‖ : 0 ≤ s ≤ T},

MT = supt∈J{M(t)}, NT = supt∈J{N(t)}. It is easy to ver-
ify that Z furnished with the norm topology as defined above, is
a Banach space.
The resolvent operator plays an important role in the study of the
existence of solutions and to give a variation of constant formula
for linear systems. However, need to know when the linear sys-
tem (3) has a resolvent operator. For more details on resolvent
operator, reader may refer [11].
The following assumptions are:

(H1) A(t) generates a strongly continuous semigroup of evolu-
tion operators..

(H2) Suppose Y is a Banach space formed from D(A) with the
graph norm. A(t) and f(t, s) are closed operators it fol-
lows that A(t) and f(t, s) are in the set of bounded lin-
ear operators from Y to H , f(Y,H), for 0 ≤ t ≤ T and
0 ≤ s ≤ t ≤ T , respectively. A(t) and f(t, s) are continu-
ous on 0 ≤ t ≤ T and 0 ≤ s ≤ t ≤ T , respectively, into
B(Y,H).

To obtain the results, consider the integro-differential abstract
Cauchy problem

dx(t) =

[
A(t)x(t) +

∫ t

0

f(t, s)x(s)ds

]
dt,

0 ≤ s ≤ t ≤ T, (3)
x(0) = x0 ∈ H.

DEFINITION 1. [11]A family of bounded linear operator
R(t, s) ∈ P(H), 0 ≤ s ≤ t ≤ T is called a resolvent operator
for

dx

dt
= A(t)

[
x(t) +

∫ t

0

f(t, s)x(s)ds

]
,

if

(i) R(t, s) is strongly continuous in s and t. R(t, t) = I , the
identity operator on H . ‖R(t, s)‖ ≤Meβ(t−s) t, s ∈ J and
M,β are constants;

(ii) R(t, s)Y ⊂ Y , R(t, s) is strongly continuous in s and t on
Y ;

(iii) For y ∈ Y , R(t, s)y is continuously differentiable in s and
t, and for 0 ≤ s ≤ t ≤ T ,

∂

∂t
R(t, s)y = A(t)R(t, s)y +

∫ t

s

f(t, r)R(r, s)ydr,

∂

∂s
R(t, s)y = −R(t, s)A(s)y −

∫ t

s

R(t, r)f(r, s)ydr,

with ∂
∂t
R(t, s)y and ∂

∂s
R(t, s)y are strongly continuous on 0 ≤

s ≤ t ≤ T . Here R(t, s) can be extracted from the evolution
operator of the generator A(t).

For the family {A(t) : 0 ≤ t ≤ T} of linear operators, the
following restrictions are imposed:

(B1) The domain D(A) of {A(t) : 0 ≤ t ≤ T} is dense in X
and independent of t, A(t) is closed linear operator;

(B2) For each t ∈ [0, T ], the resolvent R(λ,A(t)) exists for
all λ with Reλ ≤ 0 and there exists K > 0 so that
‖R(λ,A(t))‖ ≤ K/(|λ|+ 1);
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(B3) There exists 0 < δ ≤ 1 and K > 0 such that ‖(A(t) −
A(s))A−1(τ)‖ ≤ K|t− s|δ for all t, s, τ ∈ [0, T ];

(B4) For each t ∈ [0, T ] and some λ ∈ ρ(A(t)), the resolvent
set of A(t), the resolvent R(λ,A(t)), is a compact operator.

Under these assumptions, the family {A(t) : 0 ≤ t ≤ T} gener-
ates a unique linear evolution system, or called linear evolution
operator.

DEFINITION 2. [19]A two parameter family of bounded lin-
ear operators R(t, s), 0 ≤ s ≤ t ≤ T , on H is called an evolu-
tion system if the following two conditions hold

(i) R(s, s) = I , R(t, r)R(r, s) = R(t, s), for 0 ≤ s ≤ r ≤
t ≤ T .

(ii) (t, s)→ R(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

LEMMA 1. [19]Assume that (B1)-(B3) hold. Then, there
exist a unique evolution system U(t, s), 0 ≤ s ≤ t ≤ T and a
constant K > 0 such that

(i) R(t, s) ≤ K for 0 ≤ s ≤ t ≤ T ;

(ii) for 0 ≤ s ≤ t ≤ T , R(t, s) : H → Y and t → R(t, s)
is strongly differentiable in H .The derivative ∂

∂t
R(t, s) be-

longs to L(H) and it is strongly continuous on 0 ≤ s ≤ t ≤
T . Moreover, for all 0 ≤ s ≤ t ≤ T , it holds

∂

∂t
R(t, s) +A(t)R(t, s) = 0;

‖ ∂
∂t
R(t, s)‖ = ‖A(t)R(t, s)‖ ≤ K

t− s
;

‖A(t)R(t, s)A(s−1)‖ ≤ K,

(iii) for each y ∈ Y and t ∈ J , R(t, s)y is differentiable
with respect to s on 0 ≤ s ≤ t ≤ T and ∂

∂t
R(t, s)y =

R(t, s)A(s)y.

LEMMA 2. [9]Let {A(t), t ∈ J} be a family of linear op-
erators satisfying (B1) − (B4). If {R(t, s), 0 ≤ s ≤ t ≤ T}
is the linear evolution system generated by {A(t), t ∈ J}, then
{R(t, s), 0 ≤ s ≤ t ≤ T} is a compact operator whenever
t− s > 0.

LEMMA 3. [4]Let T > 0 and u0 ≥ 0, u(t), v(t) be the
continuous function on [0, T ]. Let K : R+ → R+ be a concave
continuous and nondecreasing function such that K(r) > 0 for
r > 0. If

u(t) ≤ u0 +

∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(
G(u0) +

∫ t

0

v(s)ds
)

for all t ∈ [0, T ] such that

G(u0) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds
K(s)

for r ≥ 0 and G−1 is the inverse func-
tion ofG. In particular, moreover if, u0 = 0 and

∫
0+

ds
K(s)

=∞,
then u(t) = 0 for all t ∈ [0, T ].

In order to obtain the stability of the solutions, the following
extended Bihari’s inequality is used.

LEMMA 4. [20]Let the assumption of Lemma 3 holds. If

u(t) ≤ u0 +

∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(
G(u0) +

∫ t

0

v(s)ds
)

for all t ∈ [0, T ] such that

G(u0) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds
K(s)

for r ≥ 0 and G−1 is the inverse func-
tion of G.

COROLLARY 1. [20]Let the assumption of Lemma 3 hold
and v(t) ≥ 0 for t ∈ [0, T ]. If for all ε > 0, there exists t1 ≥ 0

such that for 0 ≤ u0 ≤ ε,
∫ T
t1
v(s)ds ≤

∫ ε
u0

ds
K(s)

holds, then for
every t ∈ [t1, T ], the estimate u(t) ≤ ε holds.

LEMMA 5. [7]For any r ≥ 1 and for arbitrary L0
2-valued

predictable process Ψ(·)

sup
s∈[0,t]

E‖
∫ s

0

Ψ(u)dw(u)‖2rX =

(r(2r − 1))r
(∫ t

0

(E‖Ψ(s)‖2r
L0

2
)ds

)r
.

The following is the definition of the mild solution of the system
(1)-(2).

DEFINITION 3. A stochastic process {x(t) ∈
C(J,L2(Ω; H)), t ∈ (−∞, T ]}, (0 < T < ∞), is
said to be a mild solution of the equation (1)-(2) if

(i) x(t) ∈ H is Ft-adapted;
(ii) for each t ∈ J , x(t) satisfies the following integral equation

x(t) =



ϕ(t), for t ∈ (−∞, 0],

R(t, 0)
[
ϕ(0) + g(0, ϕ)

]
− g(t, xt)

+

∫ t

0

R(t, s)h(s, xs)ds

+

∫ t

0

R(t, s)σ(s, xs)dw(s)

for a.s t ∈ [0, T ].

(4)

3. EXISTENCE AND UNIQUENESS
In this section, the existence and uniqueness of mild solution of
the system (1)-(2) are discussed and worked under the following
assumptions:

(H3) There exists a resolvent operator R(t, s) which is com-
pact and continuous in the uniform operator topology for
t > s. Further, there exists a constant M1 > 0 such that
‖R(t, s)‖2 ≤M1, for all t ∈ J .

(H4) For each x, y ∈ B and for all t ∈ [0, T ] such that

‖h(t, xt)− h(t, yt)‖2 ∨ ‖σ(t, xt)− σ(t, yt)‖2

≤ K(‖xt − yt‖2B),

where K(·) is a concave non-decreasing function from R+

to R+, K(0) = 0, K(u) > 0, for u > 0 and
∫

0+
du
K(u)

=
∞.

(H5) Assuming that there exists a positive numberMg , such that
Mg <

1
8

, for any x, y ∈ B and for t ∈ [0, T ], we have

‖g(t, xt)− g(t, yt)‖2 ≤Mg‖xt − yt‖2B.

(H6) For all t ∈ [0, T ], it follows that σ(t, 0), h(t, 0), g(t, yt) ∈
L2 such that

‖σ(t, 0)‖2 ∨ ‖h(t, 0)‖2 ∨ ‖g(t, 0)‖2 ≤ κ0,

where κ0 > 0 is a constant.
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Let us now introduce the successive approximation to equation
(4) as follows

x0(t) =

{
ϕ(t) for t ∈ (−∞, 0],

R(t, 0)ϕ(0) for t ∈ [0, T ].
(5)

and, for n = 1, 2, . . . ,

xn(t) =



ϕ(t), for t ∈ (−∞, 0],

R(t, 0)
[
ϕ(0) + g(0, ϕ)

]
− g(t, xnt )

+

∫ t

0

R(t, s)h(s, xn−1
s )ds

+

∫ t

0

R(t, s)σ(s, xn−1
s )dw(s),

for a.s, t ∈ J,

(6)

with an arbitrary non-negative initial approximation x0 ∈
C(J,L2(Ω;H)).

THEOREM 1. Assume that (H3)−(H6) hold. Then the sys-
tem (1)-(2) has unique mild solution x(t) inC(J,L2(Ω;H)) and

E{ sup
0≤t≤T

‖xn(t)− x(t)‖2} → 0, n→∞,

where {xn(t)}n≥1 are successive approximations (6).

PROOF. Let x0 ∈ C(J,L2(Ω;H)) be a fixed initial approxi-
mation to (6). To begin with the assumptions (H3)− (H6) and
observing that ‖R(t, s)‖2 ≤ M1 for some M1 ≥ 1 and for all
t ∈ [0, T ]. Then for any n ≥ 1, we have

‖xn(t)‖2 ≤ 4M1‖
[
ϕ(0)− g(0, ϕ)

]
‖2

+ 8
[
‖g(t, xnt )− g(t, 0)‖2 + ‖g(t, 0)‖2

]
+ 8M1T

∫ t

0

[‖h(s, xn−1
s )− h(s, 0)‖2 + ‖h(s, 0)‖2]ds

+ 8M1

∫ t

0

[‖σ(s, xn−1
s )− σ(s, 0)‖2 + ‖σ(s, 0)‖2]ds.

Thus,

E‖xnt ‖2B ≤
N1

1− 8Mg

+
8M1(T + 1)

1− 8Mg

E

∫ t

0

K(‖xn−1
s ‖2B)ds,

where N1 = 8M1

[
E‖ϕ(0)‖+MgE‖ϕ‖20

]
+ 8
[
1 +M1T (T +

1)
]
κ0.

Given that K(·) is concave and K(0) = 0, the following pair of
positive constants a and b are found such that

K(u) ≤ a+ bu, for allu ≥ 0.

Then, we have

E‖xnt ‖2B ≤ N2 +
8M1(T + 1)b

1− 8Mg

∫ t

0

E‖xn−1
s ‖2Bds

≤ N2 +
8M1(T + 1)b

1− 8Mg

∫ t

0

[
N(t)E‖ϕ‖2B +M(t) sup

0≤s≤T

E‖xn−1(s)‖2
]
ds

≤ N2 +
8M1T (T + 1)b

1− 8Mg

NTE‖ϕ‖2B

+
8M1(T + 1)b

1− 8Mg

∫ t

0

sup
0≤s≤T

E‖xn−1(s)‖2ds,

where N2 = N1
1−8Mg

+ 8M1T (T+1)a
1−8Mg

.
Therefore,

E‖xnt ‖2B ≤ N3 +
8M1(T + 1)b

1− 8Mg

∫ t

0

sup
0≤s≤T

E‖xn−1(s)‖2ds,

(7)

where, N3 = N2 + 8M1T (T+1)b
1−8Mg

NTE‖ϕ‖2B .
Since

E‖x0
t‖2B ≤M1E‖ϕ(0)‖2 = N4 <∞. (8)

Thus,

E‖xnt ‖2B ≤ N5 <∞, (9)

for all n = 0, 1, 2, . . ., and t ∈ [0, T ]. This proves the bounded-
ness of {xn(t), n ∈ N}.
Let us next show that {xn(t)} is a Cauchy sequence in
C(J,L2(Ω;H)). For n,m ≥ 1, we have

E‖xn+1(t)− xm+1(t)‖2

≤ 3MgE‖xn+1(t)− xm+1(t)‖2B

+ 3M1(T + 1)

∫ t

0

K(E‖xn(s)− xm(s)‖2B)ds

≤ 3M1(T + 1)

1− 3Mg

∫ t

0

K(E‖xn(s)− xm(s)‖2B)ds.

Thus

sup
0≤s≤t

E‖xn+1
s − xm+1

s ‖2B

≤ N6

∫ t

0

K

(
sup

0≤r≤s
E‖xnr − xmr ‖2B

)
ds, (10)

where N6 = 3M1(T+1)
1−3Mg

.
Integrating both sides of equation (10) and applying Jensen’s in-
equality gives that∫ t

0

sup
0≤l≤s

E‖xn+1
l − xm+1

l ‖2Bds

≤ N6

∫ t

0

∫ s

0

K
(

sup
0≤r≤l

E‖xnr − xmr ‖2B
)
dlds

≤ N6

∫ t

0

s

∫ s

0

K
(

sup
0≤r≤l

E‖xnr − xmr ‖2B
)1

s
dlds

≤ N6t

∫ t

0

K
( ∫ s

0

sup
0≤r≤l

E‖xnr − xmr ‖2B
1

s
dl
)
ds.

Then

Φn+1,m+1(t) ≤ N6

∫ t

0

K
(
Φn,m(s)

)
ds, (11)

where

Φn,m(t) =

∫ t

0

sup
0≤r≤l

E‖xnr − xmr ‖2Bds

t
.

From (9), it is easy see that

sup
n,m

Φn,m(t) <∞.

So letting Φ(t) = lim supn,m→∞Φn,m(t) and enchanting the
relation Fatou’s lemma, it capitulate that

Φ(t) = N6

∫ t

0

K

(
Φ(s)

)
ds.

Now, applying the Lemma 3, instantaneously expose Φ(t) = 0
for any t ∈ [0, T ]. This further means {xn(t), n ∈ N} is
a Cauchy sequence in C(J,L2(Ω;H)). So there is an x ∈
C(J,L2(Ω;H)) such that

lim
n→∞

∫ T

0

sup
0≤s≤t

E‖xns − xs‖2Bdt = 0.
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In addition, by (9), it is easy to follow that E‖xt‖2B ≤ N5. Thus,
x(t) is a mild solution to (1) − (2). On the other hand, by (H4)
then, letting n→∞, we can also claim that for t ∈ [0, T ]

E‖
∫ t

0

R(t, s)

[
h(t, xn−1

s )− h(t, xs)

]
ds‖2B → 0,

E‖
∫ t

0

R(t, s)

[
σ(t, xn−1

s )− σ(t, xs)

]
dw(s)‖2B → 0.

On further, by applying (H5) then, for t ∈ [0, T ], that

E‖g(s, xns )− g(s, xs)‖2 ≤MgE‖xn(s)− x(s)‖2B → 0.

At this instant, taking limits in both sides of (6) leads, for t ≥ 0,
to

x(t) = R(t, 0)
[
ϕ(0)− g(0, ϕ)

]
+ g(t, xt)

+

∫ t

0

R(t, s)h(s, xs)ds+

∫ t

0

R(t, s)σ(s, xs)dw(s).

This certainly exhibit by the Definition 3 that x(t) is a mild so-
lution of (1)-(2) on the interval [0, T ].
Now, the uniqueness of the solutions of (4) is to be proved by
the following: Let x, y ∈ C(J,L2(Ω;H)) be the two solution
of (1)-(2) on some interval (−∞, T ]. Then, for t ∈ (−∞, 0], the
uniqueness is obvious and for 0 ≤ t ≤ T , we have

E‖x(t)− y(t)‖2 ≤ 3MgE‖xt − yt‖2B

+ 3M1(T + 1)

∫ t

0

K(E‖xs − ys‖2B)ds.

Thus,

E‖xt − yt‖2B ≤
3M1(T + 1)

1− 3Mg

∫ t

0

K(E‖xs − ys‖2B)ds

≤ N6

∫ t

0

K(E‖xs − ys‖2B)ds.

Thus, Bihari’s inequality yield that

sup
t∈[0,T ]

E‖xt − yt‖2B = 0, 0 ≤ t ≤ T.

Thus, x(t) = y(t), for all 0 ≤ t ≤ T . Therefore, for all −∞ ≤
t ≤ T , x(t) = y(t). This completes the proof.

4. STABILITY
In this section, the stability through the continuous dependence
on initial values is studied by the following definition.

DEFINITION 4. A mild solution x(t) of the system (1)-(2)
with initial value ϕ is said to be stable in the mean square if for
all ε > 0, there exists δ > 0 such that

E‖xt − x̂t‖2B ≤ ε, wheneverE‖ϕ− ϕ̂‖2 ≤ δ, for all t ∈ [0, T ],

where x̂(t) is another mild solution of the system (1)-(2) with
initial data ϕ̂.

THEOREM 2. Let x(t) and y(t) be the mild solution of the
system (1)-(2) with initial values ϕ1 and ϕ2 respectively. If the
assumption of Theorem 1 are satisfied, then the mild solution of
the system (1)-(2) is stable in the mean square.

PROOF. By the assumption, x(t) and y(t) are two mild solu-
tions of equations (1)-(2) with initial values ϕ1 and ϕ2 respec-

tively, then for 0 ≤ t ≤ T ,

x(t)− y(t)

= R(t, 0)
([
ϕ1(0)− ϕ2(0)

]
+
[
g(0, ϕ1)− g(0, ϕ2)

])
+
[
g(t, xt)− g(t, yt)

]
+

∫ t

0

R(t, s)
[
h(s, xs)− h(s, ys)

]
ds

+

∫ t

0

R(t, s)
[
σ(s, xs)− σ(s, ys)

]
dw(s).

So, estimating as before, we get

E‖x(t)− y(t)‖2

≤ 5M1

[
1 +Mg

]
E‖ϕ1 − ϕ2‖2 + 5MgE‖xt − yt‖2B

+ 5M1(T + 1)

∫ t

0

K(E‖xs − ys‖2B)ds.

Thus,

E‖xt − yt‖2B ≤
5M1

[
1 +Mg

]
1− 5Mg

E‖ϕ1 − ϕ2‖2

+
5M1(T + 1)

1− 5Mg

∫ t

0

K(E‖xs − ys‖2B)ds.

Let K1(u) = 5M1(T+1)
1−5Mg

K(u), where K is concave increasing
function from R+ to R+ such that K(0) = 0, K(u) > 0 for
u > 0 and

∫
0+

du
K(u)

= +∞. So, K1(u) is obviously, a concave
function from R+ to R+ such that K1(0) = 0, K1(u) ≥ K(u),
for 0 ≤ u ≤ 1 and

∫
0+

du
K1(u)

= +∞. Now for any ε > 0,

ε1 = 1
2
ε, then lim

s→0

∫ ε1

s

du

K1(u)
= ∞. So, there is a positive

constant δ < ε1, such that
∫ ε1
δ

du
K1(u)

≥ T .
Let

u0 =
5M1

[
1 +Mg

]
1− 5Mg

E‖ϕ1 − ϕ2‖2,

u(t) = E‖xt − yt‖2B, v(t) = 1,

when u0 ≤ δ ≤ ε1. From Corollary 1 we have∫ ε1

u0

du

K1(u)
≥
∫ ε1

δ

du

K1(u)
≥ T =

∫ T

0

v(s)ds.

So, for any t ∈ [0, T ], we estimate u(t) ≤ ε1 holds. This com-
pletes the proof.

REMARK 1. Consider the following stochastic functional
integro-differential systems of the form

d[x(t) + g(t, xt)] = A
[
x(t) + g(t, xt)

]
dt

+

[∫ t

0

f(t, s)
[
x(s) + g(s, xs)

]
ds+ h(t, xt)

]
dt

+ σ(t, xt)dw(t), t ∈ J := [0, T ], (12)
x0 = ϕ ∈ B, (13)

where A is the infinitesimal generator of a strongly continuous
semigroup R(t), t ≥ 0 defined on H. Moreover, g, h, σ are same
as defined in (1)-(2). Here R(t, s) = R(t − s), t > s. The
mild solution of (12)-(13) is as follows

x(t) =



ϕ(t), for t ∈ (−∞, 0],

R(t)
[
ϕ(0) + g(0, ϕ)

]
− g(t, xt)

+

∫ t

0

R(t− s)h(s, xs)ds

+

∫ t

0

R(t− s)σ(s, xs)dw(s)

for a.s t ∈ [0, T ].

(14)

5



International Journal of Computer Applications (0975 - 8887)
Volume 65 - No. 15, March 2013

REMARK 2. In [8] the author has studied existence and
uniqueness of the stochastic integro-differential systems for
(12)-(13) with finite delay. Here, the nature of work is to study
the existence, uniqueness and stability results of the equation
(12)-(13) with infinite delay. The result of equation (12)-(13) as
obtained by the following hypothesis.

(H7) There exists a resolvent operatorR(t−s) which is compact
and continuous in the uniform operator topology for t > s.
Further, there exists a constantM1 > 0 such that ‖R(t)‖2 ≤
M1, for all t ∈ J .

THEOREM 3. Assume that (H4) − (H6) and (H7) hold.
Then the system (12)-(13) has unique mild solution x(t) in
C(J,L2(Ω;H)) and

E{ sup
0≤t≤T

‖xn(t)− x(t)‖2} → 0, n→∞,

where {xn(t)}n≥1 are successive approximations (14).

PROOF. The proof is very similar to Theorem 1. Hence, it is
omitted.

THEOREM 4. Let x(t) and y(t) be the mild solution of the
system (12)-(13) with initial valuesϕ1 andϕ2 respectively. If the
assumption of Theorem 3 are satisfied, then the mild solution of
the system (12)-(13) is stable in the mean square.

PROOF. The proof of this theorem is similar to Theorem
2.

5. EXAMPLE
Consider the following stochastic partial integro-differential
equation of the form

d

[
u(t, ξ) +

∫ π

0

a(y, ξ)u(tsint, y)dy

]
=

∂2

∂ξ2

[
u(t, ξ) +

∫ π

0

a(y, ξ)u(tsint, y)dy

]
dt

+

[∫ t

0

f(t− s)
[
u(s, ξ) +

∫ π

0

a(y, ξ)u(tsint, y)dy
]
ds

+H(t, u(tsint, ξ))

]
dt+G(t, u(tsint, ξ))dβ(t),

0 ≤ ξ ≤ π, τ > 0, t ∈ J = [0, T ], (15)
u(t, 0) = u(t, π) = 0, t ∈ J, (16)
u(θ, ξ) = ϕ(θ, ξ), θ ∈ (−∞, 0], 0 ≤ ξ ≤ π, (17)

where β(t) denotes a standard cylindrical Wiener process in H
defined on a stochastic process (Ω,F , P ) and H = L2([0, π]).
To rewrite (15)-(17) into the form (1)-(2), defineA : H → H by
Az = z′′ with domain

D(A) =

{
z ∈ H, z, z′are absolutely continuousz′′ ∈

H, z(0) = z(π) = 0

}
.

Then, A generates a strongly continuous semigroup R(t) on H ,
thus (H1) is true. Moreover, the operator A can be expressed as

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A),

where zn(s) =
√

2
π
sin(ns), n = 1, 2, . . ., is orthonormal set

of eigenvectors of A.
In addition, it follows that R(t) is compact for every t > 0 and
‖R(t)‖ ≤ e−t for every t ≥ 0.
Now, we define an operator A(t) : D(A) ⊂ H → H by

A(t)x(ξ) = Ax(ξ) + b(t, ξ)x(ξ).

Let b(·) be continuous and b(t, ξ) ≤ −γ(γ > 0), for every t ∈
R. Then, the system{

u′(t) = A(t)u(t), t ≥ s,
u(s) = x ∈ H

has an associated evolution family, given by

R(t, s)x(ξ) = [R(t− s)e
∫ t
s b(ς,ξ)dςx](ξ)

From the above expression, it follows that R(t, s) is a compact
operator and for every t, s ∈ J with t > s

‖R(t, x)‖ = e−(1+γ)(t−s).

The assumption of the following conditions hold:

(i) The function b is measurable and∫ π

0

a2(y, ξ)dydξ <∞.

(ii) The function ∂
∂t
b(y, ξ) is measurable b(y, 0) = b(y, π) = 0

and let

Mg =

[∫ π

0

∫ π

0

( ∂
∂t
a(y, ξ)

)2
dydξ

] 1
2

<∞.

Let α < 0, define the phase space

B =

{
φ ∈ C((−∞, 0],H) : lim

θ→−r
eαθφ(θ) exists in H

}
,

and let ‖φ‖B = sup
θ∈(−∞,0]

{
eαθ‖φ(θ)‖L2

}
. Then, (B, ‖ · ‖B) is a

Banach space and satisfied axioms(1)-(2) with L = 1, N(t) =
e−αt, M(t) = max{1, e−αt}. Thus for (t, φ) ∈ J × B, where
φ(θ)(ξ) = ϕ(θ, ξ), (θ, ξ) ∈ (−∞, 0]× [0, π].
Suppose that conditions (i) and (ii) are verified, then the prob-
lem (5.1)-(5.3) can be represent as the abstract neutral stochastic
integro-differential equation of the form (1)-(2), as follows

g(t, xt) =

∫ π

0

a(y, ξ)u(tsint, y)dy, h(t, xt) = H(t, u(tsint, ξ)),

σ(t, xt) = G(t, u(tsint, ξ))

The below results are consequence of Theorem 1 and Theorem
2 respectively.

PROPOSITION 1. If the hypothesis (H1)-(H6) hold, then
there exists a unique mild solution of u of the system (15)-(17).

PROPOSITION 2. If all the hypothesis of Proposition 1 hold,
then the mild solution u of the system (15)-(17) is stable in the
mean square.

6. CONCLUSION
In this paper, the existence, uniqueness and stability of neutral
stochastic integro-differential evolution equations with infinite
delay are discussed by using phase space axioms. The results
are obtained by using the method of successive approximation
and Bihari’s inequality. Finally, an example is illustrated for the
effectiveness of the results.
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