
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

20

Dependency Detection for Regression Testing using

Test Case Prioritization Techniques

A. Mohamed Shameem

PG Scholar
ME Software Engineering, Final Semester
Saveetha Engineering College, Chennai.

N. Kanagavalli
Assistant Professor,

Department of Information Technology,
Saveetha Engineering College, Chennai.

ABSTRACT

Regression testing is one of the important activities of

software development. When a older version of the software

is modified into a newer version a set of test cases needs to be

run and the both the versions of the test cases are compared. If

both the outputs are matched then the modifications does not

affect the remaining part of the software. Rerunning the entire

test suite of the previous version increases the cost and time of

regression testing. In order to overcome test case prioritization

is used. Test case prioritization schedules the test cases for the

regression testing. Test cases with highest priority are

scheduled to be executed first. There are several number of

prioritization techniques are available with their own

limitations. This paper presents a metric for assessing the rate

of fault dependency detection. This proposed algorithm

identifies the faults in earlier stages and the effectiveness of

the prioritized test cases are compared with the non prioritized

ones by APFDD.

Keywords

Software Engineering; Software Testing; Regression Testing;

Test Cases; Test Case Prioritization; Average Percentage of

Faults Dependency Detection(APFDD).

1. INTRODUCTION
Regression testing is any type of software testing that seeks to

uncover new software bugs in existing functional and non-

functional areas of a system after changes, such as patches or

configuration changes, have been made to them. The intent of

regression testing is to ensure that a change such as those

mentioned above has not introduced new faults.[1] One of the

main reasons for regression testing is to determine whether a

change in one part of the software affects other parts of the

software.[2]

Common methods of regression testing include rerunning

previously-completed tests and checking whether program

behavior has changed and whether previously-fixed faults

have re-emerged. Regression testing can be used to test a

system efficiently by systematically selecting the appropriate

minimum set of tests needed to adequately cover a particular

change.

Prioritizing test cases offer the possibility to exploit some

execution goals or strength. One of the execution goals may

be appraise of dependency detection among faults. During

software testing practical experiences convey that individual

faults can be directly perceived and removed, but mutually

interdependent faults can be removed if and only if the

superior faults have been removed. That is, dependent faults

may not be straightaway removed and the fault removal

activity lags the fault detection process [3]. For example, if

software takes specific amount of inputs and after operative

generates various types of outputs then a unique fault in input

ability may make a wide amount of faults in output ability if

they are not mutually independent. So, in regression testing if

the test cases that discover the faults of output ability execute

first and test cases reveals faults of input ability executes after

then it will be deferred and in numerous cases will abide long

time to observe the original effort of output faults. If the

dependencies can be detected originally in regression testing

then debugging can be started originally and fault removal

time will improve. In this article I present a metric APFDD

which measures fault dependency detection cost and I also

present an algorithm to alter APFDD.A likeness between

prioritized and non-prioritized test cases is also shown with

the assist of APFDD.

2. PROBLEM STATEMENT
Rothermel at el. [4, 5] defines the test case prioritization

problem as follows:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real numbers.

Problem: Find T’ belongs to PT such that (for all T”) (T”

belongs to PT) (T” � T’) [f (T’) � f (T”)]. Here, PT

represents the set of all possible prioritizations (orderings) of

T and f is a function that, applied to any such ordering, yields

an award value for that ordering [4, 5].

The goal of this research is to find a metric to quantify the rate

of dependency detection among faults and provide an

algorithm that prioritizes the test cases in an order that has

improved dependency detection rate compare to non

prioritized test cases.

3. RELATED WORK
Pavan Kumar Chittimalli et. el [6] used Regression Test

Selection technique which allows for selecting the subset of

Test cases from the original Test Suite of the original program

version. A safe Regression-Test-Selection technique selects

every Test case from the original Test Suite that can expose

fault in the modified program version. Gregg Rothermel et. el

[7] prioritized Test cases based on the rate of Fault detection

which is the number of faults covered by that Test case.

Hyuncheol Park et. el[8] used the Historical Value-Based

Approach, which is based on the use of historical information,

to estimate the current cost and fault severity for cost

cognizant Test case Prioritization. It allowed software testers

to perform Regression testing and to prioritize their Test cases

so that their effectiveness can be improved in terms of

Average Percentage of Fault Detected per Cost. An Average

Percentage of Faults Detected (APFD) metric is used to

determine the effectiveness of the new Test case orderings.

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Functional_testing
http://en.wikipedia.org/wiki/Non-functional_testing
http://en.wikipedia.org/wiki/Non-functional_testing
http://en.wikipedia.org/wiki/Patch_%28computing%29
http://en.wikipedia.org/wiki/Configuration_file
http://en.wikipedia.org/wiki/Regression_testing#cite_note-1
http://en.wikipedia.org/wiki/Regression_testing#cite_note-2

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

21

Krishnamoorthi [9] et. el proposed a technique which

prioritizes subsequences of the original Test Suite so that the

new Test Suite, which is run within a time-constrained

execution environment, will have a superior rate of fault

detection when compared to rates of randomly prioritized Test

Suites . The approach based on the faults is theoretical as it is

not possible to have prior knowledge of all faults present in a

program.

Lee J. White et.al [10] presented methodology which involves

Regression testing of modules where dependencies due to

both control-flow and data-flow are taken into account [20].

The Control-flow dependency is modeled as a Control Flow

Graph, and a firewall defined to include all affected modules

which must be retested.

Mary Jean Harrold [11] prioritized Test cases based on the

Statement Coverage but the method needs to prioritize all the

Test cases in the Test Suite of the Original version. The

method prioritizes all the Test cases from the Test Suite of the

Original version which increases the cost and time of

Regression testing.

Guoqing Xu presented a technique [12] that safely selects

tests from the old Test Suite for testing the new aspect-

oriented features. It pre-selects a set of Test cases based on the

differences of Control Flow paths of two program versions. It

does not suit for object oriented programs.

To improve the software testing activity in regression testing,

researchers have proposed many metrics as well as techniques

for test case prioritization in recent years. In [13], [5], a metric

APFD is proposed for measuring rate of fault detection as a

means of objective function and prioritization techniques such

as total statement coverage and additional statement coverage

are discussed to improve the rate of fault detection. This

metric and these techniques, however, assume that all test

case and fault costs are uniform. Later to overcome this

problem, in [4], a new metric APFDc was proposed which

incorporates varying test case and fault costs. The paper also

describes adjustments to previous prioritization techniques

that allow them, too, to be “cognizant” of these varying costs

[4]. Jeffrey and Gupta prioritize test cases using relevant

slices [14]. In [15] Qu et al propose an approach to prioritize

test cases in black box environment. In [16, 17], Korel et al

propose a model based test case prioritization technique,

which uses the different information about the system model

and its behavior to prioritize the test suite for regression

testing. Zhang et al prioritizes test cases based on varying

testing requirement priorities and test case costs [18].

4. REGRESSION TESTING METHOD
In particular, researchers have considered four methodologies

related to regression testing and test reuse: retest all,

regression test selection, test suite reduction, and test case

prioritization. This section provides additional background on

the various methodologies of regression testing.

4.1 Retest-all
When P is modified, creating P’, test engineers may simply

reuse all non-obsolete test cases in T to test P’, this is known

as the retest-all technique [19].

4.2 Regression Test Selection
The retest-all technique can be expensive: Regression test

selection (RTS) techniques (e.g., [20, 21]) use information

about P, P’, and T to select a subset of T with which to test P’.

One cost-benefit tradeoff among RTS techniques involves

safety and efficiency. Safe RTS techniques guarantee that,

under certain conditions, test cases not selected could not have
exposed faults in P’ [20].

4.3 Test Suite Reduction
Test suite reduction techniques remove redundant test cases

from T by using information about P and T..

4.4 Test Case Prioritization
Test case prioritization techniques [7,21], schedule test cases

so that those with the highest priority, according to some

criterion, are executed earlier in the regression testing process

than lower priority test cases.

A potential advantage of these techniques is that unlike test

case reduction and non-safe regression test selection

techniques, they do not discard tests. Many different

prioritization techniques have been proposed [21], but the

techniques utilize simple code coverage information like

statement and method coverage.

5. PROPOSED WORK ON TEST CASE

PRIORITIZATION
The prioritization techniques most prevalent in literature and

practice involve those that utilize simple (statement and

method) code coverage information. We have performed test

case prioritization based on all types of coverage’s like

Statement coverage, branch coverage, loop coverage and

condition coverage including varying cost. We have

developed a test case prioritization framework that prioritizes

the various test cases.

5.1 Test Case Generation
Test case is a combination of inputs, executing function,

expected outputs. We have used the JUnit framework [13] for

executing unit tests. JUnit test cases are Java classes that

contain one or more test methods that are grouped into test

suites. A test case tests the response of a single method to a

particular set of inputs.

5.2 Estimating the Cost of Test Case
The value of a test case is affiliated to the resources required

to fulfill and authorize it. Different measures are affirmable

like ,when the basic required imagination is machine or

earthborn test expenditure can be measured in terms of the

effective time required to execute a test case.

Added measure considers the monetary costs of test case

execution and validation this may reverberate component

expenditure, payoff, expenditure of materials required for

testing, earnings unsaved due to delays in unsuccessful to

agree target accomplishment dates, and so on.

5.3 Fault Generation
Regression faults vary in two ways: by locating naturally

occurring faults and by seeding faults. Naturally occurring

faults offer external validity, but they are costly to locate and

often cannot be found in numbers sufficient to support

controlled work. But seeded faults, mutation faults can be

provided in larger numbers, allowing more data to be

gathered.

5.4 Measuring Effectiveness
To convey how speedily a prioritized test suite can observe

dependency among faults, an non-subjective function is

required. For this use I propose a metric APFDD to transpose

the weighted "Average of the Percentage Fault Dependency

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

22

Detected" during the enforcement of the test suite. APFDD

values array from 0 to 100; higher appraise implies faster fault

dependency detection.

Consider an example of a package with five faults (F1, F2, F3,

F4, F5), and test suite with five test cases (T1, T2, T3, T4,

T5).

Fault dependencies can be represented with a directed graph

G (V, E). The vertex set V represents the faults, V= {V1, V2,

V3, V4, V5}. The edge set E represents fault dependencies

where an edge (F1, F2) represents fault F1 is dependent on

fault F2. Let in our package we have the following six

dependencies E= {(F2, F4), (F2, F5), (F4, F3), (F5, F1), (F5,

F3), (F5, F4))}. “Fig. 1” shows the dependency graph.

Fig. 1: Dependency graph

We can represent the graph by the dependency matrix of

Table 1, M, where M (i, j)=1 if fault Fi is dependent on fault

Fj and M (i, j)=0 if Fi is not dependent on fault Fj.

Table 1. Dependency Matrix

 F1 F2 F3 F4 F5

F1 0 0 0 0 0

F2 0 0 0 1 1

F3 0 0 0 0 0

F4 0 0 1 0 0

F5 1 0 1 1 0

Let NFD (F) = Number of faults dependent on fault F. So,

NFD (F1) =1, NFD (F2) =0, NFD (F3) =2, NFD (F4) =2,

NFD (F5) =1.

Table 2. Exposure of Fault and Test Case

 F1 F2 F3 F4 F5

T1 *

T2 *

T3 * *

T4 *

T5 * * *

Speculate the test cases are situated in order T1-T2-T3-T4- T5

to comprise a prioritized test suite T'. "Fig. 2" shows the

percentage of fault dependencies detected versus the fraction

of T' utilized. After running T1 one dependency is detected as

just one fault F1 is unprotected and NFD (F1) =1, that mean

after executing 20% of T' 16.67% dependencies are detected.

Correspondent way after 40%, 60%, 80% and 100% execution

of T' 16.67%, 50%, 83.33% and 100% fault dependencies are

detected respectively. The region low the curve represents the

weighted average of the percentage of the fault dependency

detected metric (APFDD) over the spirit of the test suite; the

APFDD is 43.33% in this case. APFDD is measured by

dividing the region low this curve by the region low the curve

if all the dependencies are detected after enforcement of the

first test case. The division outcome multiplied by hundred

has been taken as a measure of APFDD. "Fig. 3" reflects what

encounter when arrangement of the test suite changes to T5-

T4-T2-T1-T3. This prioritized test suite has faster dependency

detection rate with APFDD reckon of 83.33%.

Fig. 2: APFDD Graph for Non-Prioritized Test Suite

Fig. 3: APFDD Graph for Prioritized Test Suite

5.5 New Prioritization Technique
Introduction: Prioritizing test cases based on fault dependency

detected reveals those faults early on which there survive

maximum dependencies. An reinforced rate of fault

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

23

dependency detection during regression testing can let

software engineers commence their debugging activities

earlier on those faults that make fault proliferation later,

hurrying the accomplishment of the software. An reinforced

rate of fault dependency detection can also furnish faster

feedback on the software, and provide early grounds when

quality goals have not been met, allowing strategic decisions

about accomplishment schedules to be made early.

The model presented in this article implements a new

regression test suite prioritization rule that prioritizes the test

cases with the end of increasing the amount of faults

dependency detection that are promising to be saved during

the enforcement of the prioritized test suite. Fault dependency

associated aggregation which misused in the model can be

obtained from early enforcement of test suite.

5.5.1 The Algorithm:

Input: Test suite T, Fault dependency matrix M, fault F

Output: Prioritized test suite T’

1: begin

2: set T’ empty

3: set NFD empty

4: set TDC empty

4: for each fault f’ F do

5: for each fault f’’ F do

6: if M [f’, f’’] =1 then

7: NFD [f’’] =NFD [f’’] +1

8: end if

9: end for

10: end for

11: for each test case t T do

12: for each fault f F do

13: if f first exposes in T then

14: TDC[t] =TDC[t] +NFD[f]

15: end if

16: end for

17: end for

18: sort T descending order based on the TDC value of each

test case

19: let T’ be T

20: end

The algorithm explains the NFD of each faults based on the

fault dependency matrix M. It then calculated total

dependency count (TDC) of each test case. TDC of a test case

is simply the summation of NFD of faults that first expose in

the test case. Using the value of TDC the algorithm then sorts

the test cases in descending order of TDC value.

6. EXPERIMENTATION AND ANALYSIS
“Fig. 4” shows a dependency graph where dependencies

among ten faults are shown after an execution of test suite T.

Fig. 1: Dependency graph

Dependency graph represents the fault dependencies between

the nodes and test cases are prioritized based on the fault

dependencies using Average Percentage of Faults

Dependency Detected algorithm which improves efficiency

over other.

Table 3 shows the corresponding dependency matrix.

Table 3. Dependency Matrix

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F1 0 0 0 0 0 0 0 0 0 0

F2 1 0 0 1 1 0 1 0 0 0

F3 0 1 0 0 0 0 0 1 1 0

F4 0 0 1 0 1 1 0 0 0 0

F5 1 0 0 0 0 0 0 0 1 0

F6 0 1 0 0 1 0 0 1 0 0

F7 0 0 1 0 0 1 0 0 1 0

F8 1 0 0 1 0 0 0 0 0 0

F9 0 0 0 1 0 0 0 0 0 1

F10 0 0 0 0 1 0 0 1 0 0

Table 4 shows the faults detected by a test case in the test

suite.

Table 4. Exposure of Fault and Test Case

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F1 *

F2 *

F3 *

F4 * *

F5 * *

F6 * *

F7 *

F8 * * *

F9 *

F10 *

With the use of the algorithm from dependency matrix we can

calculate NFD of each fault.

NFD (F1) = 3 NFD (F6) = 2

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

24

NFD (F2) = 2 NFD (F7) = 1

NFD (F3) = 2 NFD (F8) = 3

NFD (F4) = 3 NFD (F9) = 3

NFD(F5) = 4 NFD (F10) = 1

After calculating TDC of each test case we get,

TDC (T1) = NFD (F10) =1

TDC (T2) = NFD (F9) =3

TDC (T3) =NFD (F7) =1

TDC (T4) =NFD (F2) +NFD (F8) =5

TDC (T5) =NFD (F4) +NFD (F5) =7

TDC (T6) =NFD (F1) +NFD (F6) =5

TDC (T7) =0

TDC (T8) =NFD (F3) =2

TDC (T9) =0

TDC (T10) =0

So, sorting test cases descending order of TDC we get the

following test cases ordering- T5, T4, T6, T2, T8, T1, T3, T7,

T9, T10.This is new prioritized test suite T’.

Plotting graph of percentage of fault dependencies detected

versus the fraction of test cases used we get the “Fig. 5” for

non-prioritized and “Fig. 6” for prioritized test cases.

Fig. 5: APFDD Graph for Non-Prioritized Test Suite

Fig. 6: APFDD Graph for Prioritized Test Suite

7. CONCLUSION AND FUTURE WORK
We have performed the prioritization and examined the

effectiveness of prioritization techniques with APFDD.

Analysis is done for both the prioritized and non prioritized

test suite with the help of APFDD. Prioritized test suites are

more effective than non prioritized test suite which is proven

in graph. APFDD does not explain about Fault severity and

Test case execution time. However, in practical world this

assumption may vary. Test cases with more severe faults with

relatively low fault dependencies on them may be sometimes

executed first depending upon business need, test cases with

higher execution time but revealing faults with relatively

higher fault dependencies on them may be executed later.

In future I will improve the other factors and incorporate fault

severity and test case execution time and also by applying

other prioritization techniques which considers cost factors

and other improved performances.

8. REFERENCES
[1] Myers, Glenford. The Art of Software Testing. Wiley.

ISBN 978-0-471-46912-4, 2004.

[2] Savenkov, Roman, How to Become a Software Tester.

Roman Savenkov Consulting. ISBN 978-0-615-23372-7,

2008.

[3] Huang,Chin-Yu, Lin,Chu-Ti, Software reliability

analysis by considering fault dependency and debugging

time lag. IEEE Transactions, vol. 55(3),pp. 436-

450,2006.

[4] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel, Sebastian Elbaum, “Cost-cognizant Test Case

Prioritization,” Technical Report TR-UNL-CSE-2006-

004, Department of Computer Science and Engineering,

University of Nebraska–Lincoln, Lincoln, Nebraska,

U.S.A., March 2006.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel,

“Prioritizing test cases for regression testing,” Proc. The

2000 ACM SIGSOFT International Symposium on

Software Testing and Analysis, Portland, Oregon,

U.S.A., August, 102–112,2000.

[6] Pavan Kumar Chittimalli and Mary Jean Harrold”

Recomputing Coverage Information to Assist Regression

Testing” IEEE on Software engineering, Vol. 35, No.

4,2009.

[7] Gregg Rothermel, Roland H. Untch, Chengyun Chu and

Mary Jean Harrold, “Test case Prioritization: An

Empirical Study‟, Proceedings of the IEEE International

Conference on Software Maintenance, Vol. 10, pp.77-

109,1999.

[8] Hyuncheol Park, Hoyeon Ryu and Jongmoon Baik,

‟Historical Value Based Approach for Cost-cognizant

Test case Prioritization to Improve the Effectiveness of

Regression testing‟, Proc. IEEE International Conference

on Secure System Integration and Reliability

Improvement, pp. 170-179,2008.

[9] Krishnamoorthi.R and Sahaaya Arul Mary.S.A, ‟

Regression Test Suite Prioritization using Genetic

Algorithms‟, International Journal of Hybrid Information

Technology,Vol.2, No.3,2009

[10] Lee J. White and Hareton K.N. bung ‟ A Firewall

Concept for both Control- Flow and Data-Flow in

Regression Integration Testing”, Bell-Northern

Research,Ltd,2000.

[11] Mary Jean Harrold, Gregg Rothermel and Roland H.

Untch “Prioritizing Test cases For Regression testing‟,

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-471-46912-4
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-615-23372-7

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

25

IEEE Transactions on Software Engineering, Vol. 27,

No.10,2001.

[12] Guoqing Xu‟ A Regression Tests Selection Technique

for Aspect-Oriented Programs‟ Proc. of the ACM Conf.

on Software Engineering, ACM Copyright, pp.120-

130,2006.

 [13] S. Elbaum, A. Malishevsky, and G. Rothermel,“Test case

prioritization: A family of empirical studies,” IEEE

Transactions on Software Engineering, vol. 28(2), pp.

159–182,2002.

[14] D. Jeffrey and N. Gupta, “Test case prioritization using

relevant slices,” Proc. Computer Software and

Applications Conference, 411–420,2006.

[15] B. Qu, C. Nie, B. Xu, and X. Zhang, “Test case

prioritization for black box testing,” Proc. Computer

Software and Applications Conference, July 465–

474,2007.

[16] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Model-

based test prioritization heuristic methods and their

evaluation,” Proc. International Conference on Software

Maintenance, 34–43,2007.

[17] B. Korel, L. Tahat, and B. Vaysburg, “Model based

regression test reduction using dependence analysis,”

Proc. International Conf. on Software Maintenance, 214–

223,2002.

[18] X. Zhang, C. Nie, B. Xu, and B. Qu, “Test case

prioritization based on varying testing requirement

priorities and test case costs,” Proc. International

Conference on Quality Software, 15–24,2007.

19] K. Onoma, W-T. Tsai, M. Poonawala, and H.

Suganuma,Regression Testing in an Industrial

Environment, Comm.ACM, vol. 41, no. 5, pp. 81-86,

May 1988.

[20] D. Binkley.Semantics guided regression test cost

reduction. IEEE Transactions on Software Engineering,

23(8):498- 516, August 1997.

