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ABSTRACT                                                                                    
Data mining refers to extracting or mining knowledge from 

large amounts of data. Among the various data mining tasks 

sequential pattern mining is one of the most important tasks. It   

has broad applications in several domains such as the analysis 

of customer purchase patterns, web access patterns, 

seismologic data, and weather observations.  Sequential pattern 

mining consists of mining subsequences that appear frequently 

in a set of sequences. Sequential pattern mining was first 

introduced by Rakesh Agarwal and Ramakrishnan Srikant in 

1995. Many novel approaches for sequential pattern mining 

were proposed like Apriori, AprioriALL, GSP, SPADE, 

SPAM and PrefixSpan.  

 

In this paper, the performance of state-of-the-art sequential 

pattern mining algorithms PrefixSpan and SPAM is evaluated. 

"From the comprehensive experiments what have been done 

several phenomena were observed which are different from the 

traditional standpoint will be explained in this paper." 

 

Keywords: Data Mining, Sequential Pattern Mining, 

PrefixSpan, SPAM. 

 

1. INTRODUCTION 
Sequential pattern mining was first introduced by Agrawal and 

Srikant [2]. “Given a set of sequences, where each sequence 

consists of a list of events (or elements) and each event 

consists of a set of items, and given a user-specified minimum 

support threshold of min_sup, sequential pattern mining finds 

all frequent subsequences, i.e., the subsequences whose 

occurrence frequency in the set of sequences is no less than 

min_sup.” Let   I = {i1, i2, ...., in} be the set of all items. An 

itemset is a nonempty set of items. A sequence is an ordered 

list of events. A sequence s is denoted < e1e2e3…el > where 

event e1 occurs before e2, which occurs before e3, and so on. 

Event ej is also called an element of s sequence. An event is an 

itemset, i.e., an unordered list of items. An itemset (or event) is 

denoted as (x1x2… xq), where xk is an item. For brevity, the 

brackets are omitted if an element has only one item, i.e, 

element (x) is written as x. The number of instances of items in 

a sequence is called an l-sequence. A sequence sa = (a1,a2, ....., 

an) is contained in another sequence sb = (b1,b2, ......,bm) if there 

exist integers  1 < ί1<  ί2 < …..< ίn   <  m such that a1  bi1, a2  

bi2, ........, an bin. If sequence sa is contained in sequence sb, 

then it is called sa a subsequence of sb and sb a supersequence 

of sa. 

 

A database D is a set of tuples (cid, tid, X), where cid is a 

customer-id, tid is a transaction-id based on the transaction 

time, and X is an itemset such that X  I. Each tuple in D is 

referred to as a transaction. A sequence database S, is a set of 

tuples, <SID, s> where SID is a sequence_ID and s is 

sequence.                                                                               

                                                                                        

 

 

 

 

 

 

 

 

 

The absolute support of a sequence sa in the sequence 

representation of a database D is defined as the number of 

sequences sD that contains sa, and the relative support is 

defined as the percentage of sequences sD that contain sa.  

 

The support of sa in D is denoted by supD (sa). Given a support 

threshold minsup, a sequence sa is called a frequent sequential 

pattern on D if supD (sa) > minsup. The problem of mining 

sequential patterns is to find all frequent sequential patterns for  
a database D, given a support threshold sup. 

 

Consider the sequence database, given in Table 2 which, will 

be used in examples throughout this section. 

Table 1. Sample Sequence Database D 

   [[            
User ID TID Access Sequence 

 

10 t1 <qrqpt> 

 

 

20 t2 <qprqpt> 

 

 

30 t3 <pqt> 

 

 

40 t4 <pqtqs> 

 

 

50 t5 <pqps> 

 

 

Table 2. Sequence Database D 

 

Sequence ID for each Customer Data Sequence 

 

1 <(p)(t)> 

 

 

2 <(uv)p(uqzr)> 

 

 

3 <(pwrs)> 

 

 

4 <p(pqrs)t> 

 

 

5 <t> 

 

 

  PPeerrffoorrmmaannccee  EEvvaalluuaattiioonn  oonn  SSttaattee  ooff  tthhee  AArrtt  SSeeqquueennttiiaall                    

PPaatttteerrnn  MMiinniinngg  AAllggoorriitthhmmss  

  
                                            TThhoommaass..  RRiinnccyy..  NN                                                                                  YYooggaaddhhaarr  PPaannddeeyy  

                                                    MM..  TTeecchh  ((SScchhoollaarr)),,                                                                                          AAssssiissttaanntt  PPrrooffeessssoorr,,  ((CCSSEE))  DDeepptt,,  

                                                            SSIIRRTT,,  BBhhooppaall                                                                                              SSIIRRTT,,  BBhhooppaall  
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                                                      {}    

                     p             q  

 

      pp       pq        (pq)        qp        qq 

 

       qpp   qpq         q(pq)       qqp       qqq 

 

   qp(pq)       q(pq)p                   q(pq)q  

 

         q(pq)(pq) 

 

     Figure 1: Lexicographic sequence subtree for items p and 

q only. Light lines mean sequence-extended 

sequence (S-Step), bold lines mean item-set 

extended sequence (I-Step). 

 

2. SPAM ALGORITHM 
SPAM [Ayres et al. 2002] [3]. SPAM: (Sequential PAttern 

Mining) algorithm is based on the Apriori property. SPAM 

uses some interesting efficient techniques and data structures. 

It uses a vertical bitmap database that allows for simple and 

efficient support count. It is designed to work with data in 

main memory, and it is the first algorithm for mining 

sequential patterns that traverse the lexicographical sequence 

tree in depth-first manner. For example, for SPAM, consider 

the database of Table 2. The lexicographical subtree for item p 

(abbreviated as a) is provided in Ayres et al. [2002], Figure 1 

shows the lexicographical subtree for item q, assuming a 

maximum sequence size of 3. By traversing the tree if a 

sequence is generated then each node in the tree has sequence-

extended children sequences generated in the S-Step of the 

algorithm, and itemset-extended children sequences generated 

by the I-Step of the algorithm at each node. SPAM traverses 

the sequence tree in depth-first search manner and checks the 

support of each sequence-extended or itemset-extended child 

against minsup recursively. If the support of a certain child s is 

greater than or equal to minsup that sequence is stored and 

depth-first search is repeated recursively.  If the support of a 

certain child s is less than min_sup there is no need to repeat 

depth-first search on s by the Apriori property. For minimizing 

the number of children nodes Apriori-based pruning is applied 

at each S-Step and I-Step of the algorithm and this technique 

guarantees that all nodes corresponding to frequent sequences 

are visited. For efficient counting SPAM uses a vertical bitmap 

representation of data. Each bitmap has a bit corresponding to 

each element of the sequences in the database. Each bitmap 

partition of a sequence to be extended in the S-Step is first 

transformed using a lookup table, such that all the bits after the 

index of the first "1" bit (call it index y) are set to one and all 

the bits with index less than or equal to y are set to zero. Then, 

the resulting bitmap can be obtained by the ANDing operation 

of the transformed bitmap and the bitmap of the appended 

item. In the I-Step, ANDing is performed directly without 

transformation of the sequence. Now the support-counting it is 

 

 

a simple count of how many bitmap partitions, not containing 

all zeros. Each item in Table 2 will be represented by a vertical 

bitmap. The AND bitwise operation is used for checking 

support in the S-Step generation of, say <pt>, <p>'s bitmap, is 

transformed as described above and a regular AND operation 

is performed with the bitmap for <t> to generate the bitmap of 

<pt>. If min_sup = 2, then the candidate sequence <pt> will 

not be pruned because the number of nonzero bitmap partitions 

in this case is > 2. SPAM it uses bitwise operations rather than 

regular and temporal joins. Here, Ayres et al. proposes to use a 

compressed bitmap representation in SPAM to save space, but 

do not elaborate on the idea. 

Pseudocode for DFS with pruning 

DFS-Pruning (node n = (s1, ...., sk), Sn , In) 

(1) Stemp = . 

(2) Itemp = . 

(3) For each (i  Sn)  

(4)           if ((s1, ....., sk , {i}) is frequent) 

(5)            Stemp = Stemp   {i} 

(6) For each (i  Stemp)  

(7)      DFS-Pruning((s1,…………..,sk,{i}),Stemp,                        

all elements in Stemp greater than i ) 

(8)  For each (i  In) 

(9)              if ((s1, ..... , sk  {i}) is frequent) 

(10)                     Itemp = Itemp   {i} 

(11)  For each (i   Itemp) 

(12)                  DFS-Pruning ((s1, ......, sk {i}), Stemp, 

 all elements in Itemp greater than i) 

 

3. PrefixSpan ALGORITHM                 

PrefixSpan [Pei  et al. 2004] [4].  PrefixSpan: (Prefix-Projected 

Sequential Patterns Mining) algorithm is a pattern-growth 

algorithm. It examines only the prefix subsequences and 

projects only their corresponding postfix subsequences into 

projected databases. The sequential patterns are grown in each 

projected database by exploring only local frequent sequences. 

To illustrate the idea of projected databases, consider <u>, 

<(uv)>, <(uv)p>, which are all prefixes of sequence 

<(uv)p(uqzr)> from Table 2, but neither <up> nor <vp> is 

considered a prefix while, <(_v)p(uqzr)> is the postfix of the 

same sequence w.r.t. <(u)>,and <p(uqzr)> is the postfix w.r.t. 

prefix <(uv)>. A running example of PrefixSpan on database 

D (Table 2) acts in three steps: 

 

1. The first step is to scan the sequential database D to get the 

length-1 sequences. It generates p:4, r:3, t:3, q:2, s:2 along 

with their support counts. 

2. Sequential database is divided into different partitions 

according to the number of length-1 sequence to get projected 

databases. This example generates 5 disjoint subsets according 

to the 5 prefixes <p>, <q>, <r>, <s>, <t>. 

3. Find subsets of sequential patterns; these subsets can be 

mined by constructing projected databases, and mining each 

one recursively. To find sequential patterns having prefix <p>, 

extend it by adding one item at a time. To add the next item x, 
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there are two possibilities: (1) the algorithm joins the last 

itemset of the prefix (i.e.,<(px)>) and (2) it forms a separate 

itemset (i.e.,<px>). So to produce <p> - projected database: if 

a sequence contains item <p> then the suffix following the 

first <p> is extracted as a sequence in the projected database. 

By looking at the second sequence (second row) of Table 2, 

<(uv)p(uqzr)>, which is projected to <(qr)> where u and z are 

removed because they are infrequent. The third sequence is 

projected to <(_rs)>, the fourth to <(pqrs)t>, eventually the 

final projected database for prefix <p> contains the following 

sequences: t, (qr), (_rs), (pqrs)t; for the other prefixes refer 

Table 3.  

 

Table  3.  Running PrefixSpan on Table 2 

 

 

Now to find all frequent sequences of the form <(px)>, two 

templates are used: <(_x)> and <px> to match each projected 

sequences, to accumulate the support count for each possible x 

( x match any item). The second template uses the last itemset 

in the prefix rather than only its last item. In the example here, 

they are the same because there is only one item in the last 

itemset of the prefix. Then, it needs to find all frequent 

sequences of the form <px>. Table 3 contains all frequent 

sequential patterns generated for this example using 

PrefixSpan. Looking at the patterns generated for prefix <p>, 

after finding the frequent 2-sequences (namely, pq, pr, (pr), 

(ps), pt), it recursively create projected databases for them and 

start mining for frequent 3-sequences etc. The key advantage 

of PrefixSpan is that it does not generate any candidates. It 

only counts the frequency of local items. It utilizes a divide-

and-conquer framework by creating subsets of sequential 

patterns (i.e. projected databases) that can be further divided 

when necessary.  

 

  Algorithm (PrefixSpan):  Prefix-projected sequential pattern 

mining.  

Input:         A sequence database S, and the minimum 

support threshold min_support. 

Output:      The complete set of sequential patterns. 

Method:    Call PrefixSpan (< >, O, S). 

          Subroutine   PrefixSpan (, l, S|) 

 

 

The parameters are 1) is sequential pattern; 2) l is the length 

of ; and 3) S| is the projected database if   < >, 

otherwise, it is the sequence database S. 

Method:  

1. Scan S| once, find each frequent item, b, such that  

(a) b can be assembled to the last element of  

to form a sequential pattern; or 

(b) <b> can be appended to  to form a 

sequential pattern. 

2. For each frequent item b, append it to  to form a 

sequential pattern ’, and output ’. 

3. For each ’, construct ’ - projected database S|’, and 

call PrefixSpan (’, l + 1, S|’). 

 

The major cost of PrefixSpan is the construction of projected 

database. 

Pseudoprojection: 
If the number and/or the size of projected database can be 

reduced, the performance of sequential pattern mining can be 

further improved. Usually, a large number of projected 

databases will be generated in sequential pattern mining.  The 

technique which may reduce the number and size of projected 

databases is pseudoprojection. Instead of performing physical 

projection, one can register the index (or identifier) of the 

corresponding sequence and the starting position of the 

projected suffix in the sequence. Then, a physical projection of 

a sequence is replaced by registering a sequence identifier and 

the projected position index point. Pseudoprojection reduces 

the cost of projection substantially when the projected database 

can fit in main memory.                                                                               
 

Table 4.  Characteristics of PrefixSpan and SPAM 

algorithms 
 

 PrefixSpan SPAM 
 

Database 

Layout 

Projected Databases, 

List of Items 

Vertical, 

Bitmap 

 

Space-search 

Enumeration 

Bottom-Up Bottom-Up 

 

 

Space-search 

Traversal 

Variable Length 

patterns 

Depth-First 

 

 

Candidate 

Generation 

No Yes 

 

 

Classes of 

Sequence 

Patterns 

All All 

 

 

Taxonomies & 

Constraints 

Doesn't 

support 

Doesn't 

support 

 

 

 

 

Prefix Projected Database 

 
Sequential Patterns 

 

<p> <t>, <(qr)>,<(_rs)>,<(pqrs)t> p, pq, pr, (pr), (ps), pt 

 

 

<q> <(_r )>, <(_rs ) t> q, (qr) 

 

 

<r> <(_s)>, <(_s)t> (rs) 

 

 

<s> <t>  
 

 

<t>   
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4. RELATED WORK                                                          
Sequential pattern mining is computationally challenging 

because such mining may generate and/or test a combinatorial 

explosive number of intermediate sequence. Many novel 

algorithms are proposed such as Apriori, AprioriALL, GSP, 

SPADE, SPAM and PrefixSpan. Apriori is seminal algorithm. 

The Apriori property states that any supersequence of a 

frequent sequence must not be frequent. AprioriAll [5] first 

finds all frequent itemsets transforms the database so that each 

transaction is replaced by all frequent itemsets it contains, and 

then finds patterns. They solve the problem of finding all 

sequential patterns in five phases: sort phase, itemset phase, 

transformation phase, sequence phase, and maximal phase.  

The main drawback of AprioriAll is that it performs many 

passes over the databases and it can generate a large amount of 

candidates which is time consuming. GSP (Generalized 

Sequential Patterns) [6] adopts a candidate generate-and-test 

approach using horizontal data format (where the data are 

represented as <sequence_ID: sequence_ of _itemsets>, as 

usual, where each itemset is an event). GSP reduces the search 

space; it typically needs to scan the database multiple times, as 

it will likely generate huge set of candidate sequences, 

especially when mining long sequences. SPADE (Sequential 

PAttern using Equivalent classes) [7] adopts a candidate 

generate-and-test approach using vertical data format (where 

the data are represented as <itemset: (sequence_ID, 

event_ID)>). The vertical data format can be obtained by 

transformed from a horizontally formatted sequence database 

in just one scan; however the basic methodology is breadth-

first search and Apriori pruning. Despite the pruning SPADE 

have to generate large sets of candidates in breadth-first 

manner in order to grow longer sequences. SPAM (Sequential 

PAttern Mining) algorithm as described in previous section it 

uses a vertical bitmap database layout that allows for simple 

and efficient support count and it is the first strategy for 

mining sequential patterns to traverse the lexicographical 

sequence tree in depth-first manner. For efficient counting 

SPAM uses a vertical bitmap representation of data, and uses 

two pruning techniques: S-step pruning and I-step pruning 

based on Apriori heuristic to minimize the size of the candidate 

items. SPAM is very fast algorithm because it uses bitmap and 

other optimizations. PrefixSpan (Prefix-Projected Sequential 

Patterns Mining) algorithm as described in previous section is 

based on pattern-growth sequential pattern mining method. 

PrefixSpan examines only the prefix subsequences and 

projects only their corresponding postfix subsequences into 

projected databases. It utilizes a divide-and-conquer 

framework by creating subsets of sequential patterns (i.e. 

projected databases) that can be further divided when 

necessary. The key advantage of PrefixSpan is that it does not 

generate any candidates, on the other hand the major drawback 

of PrefixSpan is database projection, usually; a large number 

of projected databases will be generated in sequential pattern 

mining. The authors proposed the use of pseudoprojection 

technique to reduce the cost of projection substantially when 

the projected database can fit in memory.   

 

Of all the novel algorithms discussed above, PrefixSpan and 

SPAM is interesting by considering, its various approach and 

optimization techniques. The research work lays a great 

interest in following topics “An UpDown Directed Acyclic 

Graph Approach for Sequential Pattern Mining” the author 

quoted that (“Among the various approaches,   PrefixSpan was   

 

 

 

 

 

 

 

 

(a) Execution time comparison (b) Memory usage comparison 

 

Figure 2:  One example shows PrefixSpan outperforms          

SPAM. 

 

 

 

        

        

        

        

 

(a) Execution time comparison (b) Memory usage comparison 

 

  Figure 3:    One example shows SPAM outperforms 

PrefixSpan in execution time but consumes 

more memory. 

 

one of the most influential and efficient ones in terms of both 

time and space. Some approaches may achieve better 

performance under special circumstances; however the overall 

performance of PrefixSpan is among the best. For example 

LAPIN [8] is more efficient for dense data sets with long 

patterns but less efficient in other cases. Besides, it consumes 

much memory than PrefixSpan. SPAM outperforms the basic 

PrefixSpan but is much slower than PrefixSpan with 

pseudoprojection technique.”) [9]. On another topic “Existing 

Sequential Pattern Mining Algorithms” the author quoted 

(“The main drawback of SPAM is the huge memory space. 

This disadvantage restricts SPAM as a best algorithm on 

mining large datasets in limited resource environments.”    

Figure.2 shows a performance comparison in which 

PrefixSpan outperforms SPAM on execution time comparison 

and memory time comparison on a synthetic dataset. Figure.3 

shows a performance comparison in which SPAM 

outperforming PrefixSpan in execution time but consumes 

more memory than PrefixSpan on a synthetic dataset) [10]. 

Although the author had referred about LAPIN, LAPIN is 

considered as an improved algorithm of SPAM which is 

popularly known as LAPIN-SPAM. 

 

The traditional standpoint about SPAM is that “SPAM it 

generally consumes more memory than PrefixSpan and SPAM 

is faster on dense datasets with long patterns and less efficient 

on other dataset, besides it consumes more memory.  SPAM is 

slower than PrefixSpan with pseudoprojection technique.” To 

the best of knowledge, the traditional standpoint about SPAM 

still exists as on today. The related work is to fairly evaluate 

the performance of state-of-the-art sequential pattern mining 

algorithms PrefixSpan and SPAM on real-life datasets to see 

what’s the actual trend is?     The algorithms of PrefixSpan and  
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SPAM is implemented in C++ by their respective authors, so 

as decided, PrefixSpan and SPAM algorithms are implemented 

in Java programming language. The performance evaluation is 

done on real-life datasets having sparse and dense 

characteristics. “From the comprehensive experiments what 

have been done several phenomena were observed which are 

different from the traditional standpoint.” 

 

5. DATASETS CHARACTERISTICS 
To compare the performance of PrefixSpan and SPAM 

algorithms a series of experiments are performed with real-life 

datasets.  

 

If the performance is an issue, then the dataset characteristics 

should be considered. To determine, if a dataset is sparse or 

dense one should look at the dataset’s basic characteristics 

such as the number of sequences, the number of items, the 

average sequence length and the average number of items per 

sequence. 

 

The first dataset is “BMS-Webview1” the first of the three 

KDD-Cup datasets which are sometimes called “Gazelle” is a 

sequence database containing, several months of click-stream 

data from an e-commerce website. This dataset was used for 

the KDD-Cup 2001 competition and can be downloaded from 

http:/www.ecn.purdue.edu/KDD-CUP. The BMS-Webview1 

originally contains 59,601 sequences, (59,601 lines in the file). 

There is a 497 different items for whole dataset. Each sequence 

in this database contains on average 2.51 items with a standard 

deviation of 4.85 and a variance of 23.54. It is possible that, 

the same item appears several times in a sequence. For this 

dataset, the average number of distinct items for each sequence 

is 2.51 with a standard deviation of 4.85 and a variance of 

23.54.  Each item in a sequence appears on average 1 time in 

the sequence with a standard deviation of 0 and a variance of 

0. In this dataset, there is always only 1 item per itemset. The    

BMS-Webview1 is a sparse dataset, there is on average 2.51 

different items in each sequence. 

 
The second dataset is “BMS-Webview1 at 30,000 sequences” 

which is named and created, is another variation of            

BMS-Webview1 dataset to test the algorithms on shorter 

sequences. The BMS-Webview1 originally contains 59,601 

sequences. The BMS-Webview1 at 30,000 sequences contains 

30,000 sequences, (30,000 lines in the file). Each sequence in 

this database contains on average 2.36 items with a standard 

deviation of 4.31 and a variance of 18.63. For this dataset, the 

average number of distinct items for each sequence is 2.36 

with a standard deviation of 4.31 and a variance of 18.63. Each 

item in a sequence appears on average 1 time in the sequence 

with a standard deviation of 0 and a variance of 0. In this 

dataset, there is always only 1 item per itemset. There is a 348 

different items for whole dataset. The BMS-Webview1 at 

30,000 sequences is a sparse dataset, there is on average 2.36 

different items in each sequence. 

 

The third dataset is “Toxin-Snake” [11], a sequence database 

from the domain of the biology. It contains 192 protein 

sequences. For these experiments only sequences containing 

more than 50 items were kept. Keeping only these sequences 

has been done to make the dataset more uniform; (because the 

original Toxin-Snake dataset contains a few sequences that are 

very short and many long sequences). This resulted in 163 long 

sequences containing an average 60.61 items. Besides having 

longer sequences, Toxin-Snake is a very dense dataset. Each of 

the item occurs in almost every sequence (there is on average 

17.84 different items in each sequence and only 20 different 

items for the whole dataset). 

 

Table 5. Real Dataset Characteristics 

 

 BMS- 

Webview1 

BMS- 

Webview1 at 

30,000 

sequences 

Toxin-Snake 

 

 

Number 

of 

sequences 

 

59,601 30,000 

 

163 

 

 

 

 

Number 

of items 

497 

 

 

348 20 

 

 

 

 
 

 

 
 

Number 

of items 

per 

itemset 

1 

 

 

 

1 

 

1 

 

 

 

 
 

Average 

number of  

items per 

sequence 

2.51 (σ =4.85) 2.36 (σ =4.31) 60.61(σ = 0.598) 

 

 

 

 

 

Average 

number of 

different 

items per 

sequence 

2.51(σ =4.85) 

 

 

 

2.36 (σ =4.31) 17.84 (σ = 1.09) 

 

 

 

 

 

   

 

6. PERFORMANCE EVALUATION 

An intensive experiment is conducted to evaluate the 

performance of PrefixSpan and SPAM algorithms in terms of 

computational costs and memory usage. The algorithms of 

PrefixSpan and SPAM are implemented in Java programming 

language and run in Eclipse SDK 4.2.0. Experiments were 

performed on a notebook computer with a 2.00 GHz T3200, 

Intel Dual Core Processor running Windows 7 Ultimate and 2 

GB of free RAM. The size of virtual memory is set to 1GB, as 

by default Java virtual machine allocates 256 MB of memory. 

 

Figure 4: shows the execution times and maximum memory 

usage of two algorithms PrefixSpan and SPAM on real dataset              

“BMS-Webview1.” The BMS-Webview1 is a sparse dataset 

there is on average 2.51 items in each sequence. Both 

algorithms are applied with minsup = 0.00085, .... , 0.00061. 

As minsup value goes lower SPAM starts to grow faster than 

PrefixSpan. When minsup = 0.00065, PrefixSpan run time is 

401.19 seconds while SPAM run time is 230.61 seconds  

which is more than 1.5 times faster than PrefixSpan. When 

minsup = 0.00061, SPAM has a runtime of 262.08 seconds 

which is more than 2.5 times faster than PrefixSpan (884.97 

seconds). The memory usage trend is compared among the two 

algorithms PrefixSpan and SPAM. SPAM has stable memory 
usage than PrefixSpan for all minsup values for this dataset. 
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  (a)     Execution time comparison 

 

(b) Memory usage comparison 

Figure 4: PrefixSpan and SPAM evaluated on BMS-   

Webview1 dataset. 

 

To test the performance comparison among two algorithms 

PrefixSpan and SPAM on shorter sequences which is named 

and created is “BMS-Webview1 at 30,000 sequences” dataset, 

which contains 30,000 sequences as there is on average 2.36 

different items in each sequence, as compared to BMS-

Webview1 which originally contains 59,601 sequences, having 

on average 2.51 different items in each sequence.  

 

   
 

(a) Execution time comparison 

 

 
  

                      ( b)   Memory usage comparison 

 

Figure 5: PrefixSpan and SPAM evaluated on BMS-  

                 Webview1 at 30,000 sequences dataset.            

 

 

 

Figure 5: shows the performance comparison among two 

algorithms PrefixSpan and SPAM on real dataset “BMS- 

Webview1 at 30,000 sequences” with minsup = 0.00042, 

0.00040, 0.00038, ....... ,0.00032. When minsup < 0.00042 the 

SPAM started to become faster than PrefixSpan. At minsup = 

0.00032, SPAM run time is 217.04 seconds, which is more 

than 1.25 times faster than PrefixSpan (533.39 seconds),while 

the memory usage trend clearly indicates that SPAM has a 

stable memory consumption than PrefixSpan at all minsup 

values for this dataset. 

 

 

(a) Execution time comparison 

 

(b) Memory usage comparison 

   Figure 6: PrefixSpan and SPAM evaluated on Toxin –

Snake dataset. 

 

Figure 6: shows the performance comparison among two 

algorithms PrefixSpan and SPAM on real dataset              

“Toxin-Snake.” Besides having longer sequences the      

Toxin-Snake is a very dense dataset. Each item occurs in 

almost every sequence (there is average 17.84 different items 

in each sequence and only 20 different items for the whole 

dataset). Both algorithms are applied with minsup = 0.99, 0.98, 

0.97, 0.96, 0.95. The performance gap between the algorithms 

was highest among all the experiments. When minsup = 0.95 

SPAM is about two orders of magnitude  faster  than 

PrefixSpan, while comparing memory usage trend SPAM has a 

more stable memory consumption than PrefixSpan at all 

minsup values for this dataset. 

 

By observing the performance evaluation trend it clearly shows 

that SPAM performs much better and has a better scalability 

than PrefixSpan in terms of execution time while in terms of 

memory usage the trend clearly indicates that SPAM has stable 

memory usage than PrefixSpan for all minsup values.  

PrefixSpan algorithm is implemented with pseudoprojection 

technique, still by observing the performance evaluation trend 

it clearly shows that SPAM can be faster on sparse and dense 

datasets, also the memory consumption is stable as compared 

to PrefixSpan which is contradictory to the traditional 

standpoint “SPAM it generally consumes more memory than 

PrefixSpan and SPAM is faster on dense datasets with long 
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patterns and less efficient on other dataset, besides it consumes 

more memory. SPAM is slower than PrefixSpan with 

pseudoprojection technique.” 

 

7. DISCUSSIONS 

  
Database (1)                     Database (2) 

                                                                                                                                                 

                                                                                                              

 

 

 

 

 

 

                      

 

 

 

 

 

 

(a) Two special type of databases 

 

 

 

                                     

                     (b)  Effect on different types of databases 

 

Figure 7:    Performance of Suffix-oriented and LCI-

oriented algorithms on different databases. 

 

PrefixSpan belongs to Suf fix-oriented category of algorithm, 

because candidates are come from the suffix of the dataset. 

SPAM belongs to LCI-oriented category of algorithm, because 

the candidates are come from the local candidate item list. For 

example we have two sequence databases as shown in       

figure 7(a), the prefix sequence is p, and minsup = 1. To test 

the 2-length candidate sequences, whose prefix is p for 

database (1) the Suf fix-oriented algorithm scans the projected 

database which requires 1×5 = 5 scanning time. The LCI-

oriented algorithm scans the local candidate item list for each 

sequence, which requires 5×5 = 25 scanning time. However, 

for database (2) suppose, to grow from <pp> to longer 

patterns, Suf fix-oriented algorithm requires a 4 scanning time 

(because there are four items q, r, s, t in the projected database 

of <pp>), and the LCI-oriented algorithm requires a, 0 

scanning time (because only one candidate item, p, in the local 

list and no need to join). The effect of these two datasets on the 

two approaches is shown in Table 7(b). The above example 

illustrates that, if the average suffix sequence length is less 

than the average element length for those items in the local 

candidate list as in database (1) then Suf fix-oriented algorithm 

spends less time. However, if the average suffix sequence 

length is larger than the average element length for those items 

in the local candidate list as in database (2) then LCI-oriented  

algorithm is faster, which is different from traditional opinions  

that the Suf fix-oriented algorithm is always better and efficient 

than LCI-oriented algorithm. The two kinds of algorithms have 

their advantages and disadvantages with regard to different 

datasets. The reason that PrefixSpan is worse than SPAM is 

due to useless of scanning those items which are not frequent 

in the projected databases (i.e. q,r,s and t) in database (2) as 

shown in figure 7(a). In other words, PrefixSpan cannot fully 

utilize the Apriori heuristic because the intrinsic difference of 

the two algorithms.  

 

8. CONCLUSION 
By observing all the trends in the performance evaluation 

section, it concludes that SPAM performs better than 

PrefixSpan on particular datasets having sparse and dense 

characteristics, which is contradictory to the traditional opinion 

that (“SPAM it consumes more memory than PrefixSpan, 

SPAM is faster on dense dataset with long pattern but less 

efficient on other dataset besides, it consumes more memory. 

SPAM is much slower than PrefixSpan with pseudoprojection 

technique.”).  

 

Although PrefixSpan algorithm is implemented with 

pseudoprojection technique still, by observing all the trends of 

performance evaluation section SPAM is faster, performs 

better, and consumes less memory than PrefixSpan. 

Performance evaluation of PrefixSpan and SPAM is performed 

on real-life datasets. The datasets used for performance 

evaluation is determined by sparse datasets, (“BMS-

Webview1”, “BMS-Webview1 at 30,000 sequences”) and a 

dense dataset, (“Toxin-Snake”) which are real-life datasets 

which confirms the related work statement in aspects of 

accuracy and efficiency and proves the related method feasible 

and efficient. The performance evaluation section concludes 

that SPAM performs better and has a better scalability than 

PrefixSpan in terms of execution time, while in terms of 

memory usage comparison SPAM has more stable memory 

consumption than PrefixSpan at all minsup values.   
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