
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

8

ABSTRACT
Data mining refers to extracting or mining knowledge from

large amounts of data. Among the various data mining tasks

sequential pattern mining is one of the most important tasks. It

has broad applications in several domains such as the analysis

of customer purchase patterns, web access patterns,

seismologic data, and weather observations. Sequential pattern

mining consists of mining subsequences that appear frequently

in a set of sequences. Sequential pattern mining was first

introduced by Rakesh Agarwal and Ramakrishnan Srikant in

1995. Many novel approaches for sequential pattern mining

were proposed like Apriori, AprioriALL, GSP, SPADE,

SPAM and PrefixSpan.

In this paper, the performance of state-of-the-art sequential

pattern mining algorithms PrefixSpan and SPAM is evaluated.

"From the comprehensive experiments what have been done

several phenomena were observed which are different from the

traditional standpoint will be explained in this paper."

Keywords: Data Mining, Sequential Pattern Mining,

PrefixSpan, SPAM.

1. INTRODUCTION
Sequential pattern mining was first introduced by Agrawal and

Srikant [2]. “Given a set of sequences, where each sequence

consists of a list of events (or elements) and each event

consists of a set of items, and given a user-specified minimum

support threshold of min_sup, sequential pattern mining finds

all frequent subsequences, i.e., the subsequences whose

occurrence frequency in the set of sequences is no less than

min_sup.” Let I = {i1, i2,, in} be the set of all items. An

itemset is a nonempty set of items. A sequence is an ordered

list of events. A sequence s is denoted < e1e2e3…el > where

event e1 occurs before e2, which occurs before e3, and so on.

Event ej is also called an element of s sequence. An event is an

itemset, i.e., an unordered list of items. An itemset (or event) is

denoted as (x1x2… xq), where xk is an item. For brevity, the

brackets are omitted if an element has only one item, i.e,

element (x) is written as x. The number of instances of items in

a sequence is called an l-sequence. A sequence sa = (a1,a2,,

an) is contained in another sequence sb = (b1,b2,,bm) if there

exist integers 1 < ί1< ί2 < …..< ίn < m such that a1 bi1, a2

bi2,, an bin. If sequence sa is contained in sequence sb,

then it is called sa a subsequence of sb and sb a supersequence

of sa.

A database D is a set of tuples (cid, tid, X), where cid is a

customer-id, tid is a transaction-id based on the transaction

time, and X is an itemset such that X I. Each tuple in D is

referred to as a transaction. A sequence database S, is a set of

tuples, <SID, s> where SID is a sequence_ID and s is

sequence.

The absolute support of a sequence sa in the sequence

representation of a database D is defined as the number of

sequences sD that contains sa, and the relative support is

defined as the percentage of sequences sD that contain sa.

The support of sa in D is denoted by supD (sa). Given a support

threshold minsup, a sequence sa is called a frequent sequential

pattern on D if supD (sa) > minsup. The problem of mining

sequential patterns is to find all frequent sequential patterns for
a database D, given a support threshold sup.

Consider the sequence database, given in Table 2 which, will

be used in examples throughout this section.

Table 1. Sample Sequence Database D

 [[
User ID TID Access Sequence

10 t1 <qrqpt>

20 t2 <qprqpt>

30 t3 <pqt>

40 t4 <pqtqs>

50 t5 <pqps>

Table 2. Sequence Database D

Sequence ID for each Customer Data Sequence

1 <(p)(t)>

2 <(uv)p(uqzr)>

3 <(pwrs)>

4 <p(pqrs)t>

5 <t>

 PPeerrffoorrmmaannccee EEvvaalluuaattiioonn oonn SSttaattee ooff tthhee AArrtt SSeeqquueennttiiaall

PPaatttteerrnn MMiinniinngg AAllggoorriitthhmmss

 TThhoommaass.. RRiinnccyy.. NN YYooggaaddhhaarr PPaannddeeyy

 MM.. TTeecchh ((SScchhoollaarr)),, AAssssiissttaanntt PPrrooffeessssoorr,, ((CCSSEE)) DDeepptt,,

 SSIIRRTT,, BBhhooppaall SSIIRRTT,, BBhhooppaall

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

9

 {}

 p q

 pp pq (pq) qp qq

 qpp qpq q(pq) qqp qqq

 qp(pq) q(pq)p q(pq)q

 q(pq)(pq)

 Figure 1: Lexicographic sequence subtree for items p and

q only. Light lines mean sequence-extended

sequence (S-Step), bold lines mean item-set

extended sequence (I-Step).

2. SPAM ALGORITHM
SPAM [Ayres et al. 2002] [3]. SPAM: (Sequential PAttern

Mining) algorithm is based on the Apriori property. SPAM

uses some interesting efficient techniques and data structures.

It uses a vertical bitmap database that allows for simple and

efficient support count. It is designed to work with data in

main memory, and it is the first algorithm for mining

sequential patterns that traverse the lexicographical sequence

tree in depth-first manner. For example, for SPAM, consider

the database of Table 2. The lexicographical subtree for item p

(abbreviated as a) is provided in Ayres et al. [2002], Figure 1

shows the lexicographical subtree for item q, assuming a

maximum sequence size of 3. By traversing the tree if a

sequence is generated then each node in the tree has sequence-

extended children sequences generated in the S-Step of the

algorithm, and itemset-extended children sequences generated

by the I-Step of the algorithm at each node. SPAM traverses

the sequence tree in depth-first search manner and checks the

support of each sequence-extended or itemset-extended child

against minsup recursively. If the support of a certain child s is

greater than or equal to minsup that sequence is stored and

depth-first search is repeated recursively. If the support of a

certain child s is less than min_sup there is no need to repeat

depth-first search on s by the Apriori property. For minimizing

the number of children nodes Apriori-based pruning is applied

at each S-Step and I-Step of the algorithm and this technique

guarantees that all nodes corresponding to frequent sequences

are visited. For efficient counting SPAM uses a vertical bitmap

representation of data. Each bitmap has a bit corresponding to

each element of the sequences in the database. Each bitmap

partition of a sequence to be extended in the S-Step is first

transformed using a lookup table, such that all the bits after the

index of the first "1" bit (call it index y) are set to one and all

the bits with index less than or equal to y are set to zero. Then,

the resulting bitmap can be obtained by the ANDing operation

of the transformed bitmap and the bitmap of the appended

item. In the I-Step, ANDing is performed directly without

transformation of the sequence. Now the support-counting it is

a simple count of how many bitmap partitions, not containing

all zeros. Each item in Table 2 will be represented by a vertical

bitmap. The AND bitwise operation is used for checking

support in the S-Step generation of, say <pt>, <p>'s bitmap, is

transformed as described above and a regular AND operation

is performed with the bitmap for <t> to generate the bitmap of

<pt>. If min_sup = 2, then the candidate sequence <pt> will

not be pruned because the number of nonzero bitmap partitions

in this case is > 2. SPAM it uses bitwise operations rather than

regular and temporal joins. Here, Ayres et al. proposes to use a

compressed bitmap representation in SPAM to save space, but

do not elaborate on the idea.

Pseudocode for DFS with pruning

DFS-Pruning (node n = (s1,, sk), Sn , In)

(1) Stemp = .

(2) Itemp = .

(3) For each (i Sn)

(4) if ((s1,, sk , {i}) is frequent)

(5) Stemp = Stemp {i}

(6) For each (i Stemp)

(7) DFS-Pruning((s1,…………..,sk,{i}),Stemp,

all elements in Stemp greater than i)

(8) For each (i In)

(9) if ((s1, , sk {i}) is frequent)

(10) Itemp = Itemp {i}

(11) For each (i Itemp)

(12) DFS-Pruning ((s1,, sk {i}), Stemp,

 all elements in Itemp greater than i)

3. PrefixSpan ALGORITHM

PrefixSpan [Pei et al. 2004] [4]. PrefixSpan: (Prefix-Projected

Sequential Patterns Mining) algorithm is a pattern-growth

algorithm. It examines only the prefix subsequences and

projects only their corresponding postfix subsequences into

projected databases. The sequential patterns are grown in each

projected database by exploring only local frequent sequences.

To illustrate the idea of projected databases, consider <u>,

<(uv)>, <(uv)p>, which are all prefixes of sequence

<(uv)p(uqzr)> from Table 2, but neither <up> nor <vp> is

considered a prefix while, <(_v)p(uqzr)> is the postfix of the

same sequence w.r.t. <(u)>,and <p(uqzr)> is the postfix w.r.t.

prefix <(uv)>. A running example of PrefixSpan on database

D (Table 2) acts in three steps:

1. The first step is to scan the sequential database D to get the

length-1 sequences. It generates p:4, r:3, t:3, q:2, s:2 along

with their support counts.

2. Sequential database is divided into different partitions

according to the number of length-1 sequence to get projected

databases. This example generates 5 disjoint subsets according

to the 5 prefixes <p>, <q>, <r>, <s>, <t>.

3. Find subsets of sequential patterns; these subsets can be

mined by constructing projected databases, and mining each

one recursively. To find sequential patterns having prefix <p>,

extend it by adding one item at a time. To add the next item x,

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

10

there are two possibilities: (1) the algorithm joins the last

itemset of the prefix (i.e.,<(px)>) and (2) it forms a separate

itemset (i.e.,<px>). So to produce <p> - projected database: if

a sequence contains item <p> then the suffix following the

first <p> is extracted as a sequence in the projected database.

By looking at the second sequence (second row) of Table 2,

<(uv)p(uqzr)>, which is projected to <(qr)> where u and z are

removed because they are infrequent. The third sequence is

projected to <(_rs)>, the fourth to <(pqrs)t>, eventually the

final projected database for prefix <p> contains the following

sequences: t, (qr), (_rs), (pqrs)t; for the other prefixes refer

Table 3.

Table 3. Running PrefixSpan on Table 2

Now to find all frequent sequences of the form <(px)>, two

templates are used: <(_x)> and <px> to match each projected

sequences, to accumulate the support count for each possible x

(x match any item). The second template uses the last itemset

in the prefix rather than only its last item. In the example here,

they are the same because there is only one item in the last

itemset of the prefix. Then, it needs to find all frequent

sequences of the form <px>. Table 3 contains all frequent

sequential patterns generated for this example using

PrefixSpan. Looking at the patterns generated for prefix <p>,

after finding the frequent 2-sequences (namely, pq, pr, (pr),

(ps), pt), it recursively create projected databases for them and

start mining for frequent 3-sequences etc. The key advantage

of PrefixSpan is that it does not generate any candidates. It

only counts the frequency of local items. It utilizes a divide-

and-conquer framework by creating subsets of sequential

patterns (i.e. projected databases) that can be further divided

when necessary.

 Algorithm (PrefixSpan): Prefix-projected sequential pattern

mining.

Input: A sequence database S, and the minimum

support threshold min_support.

Output: The complete set of sequential patterns.

Method: Call PrefixSpan (< >, O, S).

 Subroutine PrefixSpan (, l, S|)

The parameters are 1) is sequential pattern; 2) l is the length

of ; and 3) S| is the projected database if < >,

otherwise, it is the sequence database S.

Method:

1. Scan S| once, find each frequent item, b, such that

(a) b can be assembled to the last element of

to form a sequential pattern; or

(b) can be appended to to form a

sequential pattern.

2. For each frequent item b, append it to to form a

sequential pattern ’, and output ’.

3. For each ’, construct ’ - projected database S|’, and

call PrefixSpan (’, l + 1, S|’).

The major cost of PrefixSpan is the construction of projected

database.

Pseudoprojection:
If the number and/or the size of projected database can be

reduced, the performance of sequential pattern mining can be

further improved. Usually, a large number of projected

databases will be generated in sequential pattern mining. The

technique which may reduce the number and size of projected

databases is pseudoprojection. Instead of performing physical

projection, one can register the index (or identifier) of the

corresponding sequence and the starting position of the

projected suffix in the sequence. Then, a physical projection of

a sequence is replaced by registering a sequence identifier and

the projected position index point. Pseudoprojection reduces

the cost of projection substantially when the projected database

can fit in main memory.

Table 4. Characteristics of PrefixSpan and SPAM

algorithms

 PrefixSpan SPAM

Database

Layout

Projected Databases,

List of Items

Vertical,

Bitmap

Space-search

Enumeration

Bottom-Up Bottom-Up

Space-search

Traversal

Variable Length

patterns

Depth-First

Candidate

Generation

No Yes

Classes of

Sequence

Patterns

All All

Taxonomies &

Constraints

Doesn't

support

Doesn't

support

Prefix Projected Database

Sequential Patterns

<p> <t>, <(qr)>,<(_rs)>,<(pqrs)t> p, pq, pr, (pr), (ps), pt

<q> <(_r)>, <(_rs) t> q, (qr)

<r> <(_s)>, <(_s)t> (rs)

<s> <t>

<t>

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

11

4. RELATED WORK
Sequential pattern mining is computationally challenging

because such mining may generate and/or test a combinatorial

explosive number of intermediate sequence. Many novel

algorithms are proposed such as Apriori, AprioriALL, GSP,

SPADE, SPAM and PrefixSpan. Apriori is seminal algorithm.

The Apriori property states that any supersequence of a

frequent sequence must not be frequent. AprioriAll [5] first

finds all frequent itemsets transforms the database so that each

transaction is replaced by all frequent itemsets it contains, and

then finds patterns. They solve the problem of finding all

sequential patterns in five phases: sort phase, itemset phase,

transformation phase, sequence phase, and maximal phase.

The main drawback of AprioriAll is that it performs many

passes over the databases and it can generate a large amount of

candidates which is time consuming. GSP (Generalized

Sequential Patterns) [6] adopts a candidate generate-and-test

approach using horizontal data format (where the data are

represented as <sequence_ID: sequence_ of _itemsets>, as

usual, where each itemset is an event). GSP reduces the search

space; it typically needs to scan the database multiple times, as

it will likely generate huge set of candidate sequences,

especially when mining long sequences. SPADE (Sequential

PAttern using Equivalent classes) [7] adopts a candidate

generate-and-test approach using vertical data format (where

the data are represented as <itemset: (sequence_ID,

event_ID)>). The vertical data format can be obtained by

transformed from a horizontally formatted sequence database

in just one scan; however the basic methodology is breadth-

first search and Apriori pruning. Despite the pruning SPADE

have to generate large sets of candidates in breadth-first

manner in order to grow longer sequences. SPAM (Sequential

PAttern Mining) algorithm as described in previous section it

uses a vertical bitmap database layout that allows for simple

and efficient support count and it is the first strategy for

mining sequential patterns to traverse the lexicographical

sequence tree in depth-first manner. For efficient counting

SPAM uses a vertical bitmap representation of data, and uses

two pruning techniques: S-step pruning and I-step pruning

based on Apriori heuristic to minimize the size of the candidate

items. SPAM is very fast algorithm because it uses bitmap and

other optimizations. PrefixSpan (Prefix-Projected Sequential

Patterns Mining) algorithm as described in previous section is

based on pattern-growth sequential pattern mining method.

PrefixSpan examines only the prefix subsequences and

projects only their corresponding postfix subsequences into

projected databases. It utilizes a divide-and-conquer

framework by creating subsets of sequential patterns (i.e.

projected databases) that can be further divided when

necessary. The key advantage of PrefixSpan is that it does not

generate any candidates, on the other hand the major drawback

of PrefixSpan is database projection, usually; a large number

of projected databases will be generated in sequential pattern

mining. The authors proposed the use of pseudoprojection

technique to reduce the cost of projection substantially when

the projected database can fit in memory.

Of all the novel algorithms discussed above, PrefixSpan and

SPAM is interesting by considering, its various approach and

optimization techniques. The research work lays a great

interest in following topics “An UpDown Directed Acyclic

Graph Approach for Sequential Pattern Mining” the author

quoted that (“Among the various approaches, PrefixSpan was

(a) Execution time comparison (b) Memory usage comparison

Figure 2: One example shows PrefixSpan outperforms

SPAM.

(a) Execution time comparison (b) Memory usage comparison

 Figure 3: One example shows SPAM outperforms

PrefixSpan in execution time but consumes

more memory.

one of the most influential and efficient ones in terms of both

time and space. Some approaches may achieve better

performance under special circumstances; however the overall

performance of PrefixSpan is among the best. For example

LAPIN [8] is more efficient for dense data sets with long

patterns but less efficient in other cases. Besides, it consumes

much memory than PrefixSpan. SPAM outperforms the basic

PrefixSpan but is much slower than PrefixSpan with

pseudoprojection technique.”) [9]. On another topic “Existing

Sequential Pattern Mining Algorithms” the author quoted

(“The main drawback of SPAM is the huge memory space.

This disadvantage restricts SPAM as a best algorithm on

mining large datasets in limited resource environments.”

Figure.2 shows a performance comparison in which

PrefixSpan outperforms SPAM on execution time comparison

and memory time comparison on a synthetic dataset. Figure.3

shows a performance comparison in which SPAM

outperforming PrefixSpan in execution time but consumes

more memory than PrefixSpan on a synthetic dataset) [10].

Although the author had referred about LAPIN, LAPIN is

considered as an improved algorithm of SPAM which is

popularly known as LAPIN-SPAM.

The traditional standpoint about SPAM is that “SPAM it

generally consumes more memory than PrefixSpan and SPAM

is faster on dense datasets with long patterns and less efficient

on other dataset, besides it consumes more memory. SPAM is

slower than PrefixSpan with pseudoprojection technique.” To

the best of knowledge, the traditional standpoint about SPAM

still exists as on today. The related work is to fairly evaluate

the performance of state-of-the-art sequential pattern mining

algorithms PrefixSpan and SPAM on real-life datasets to see

what’s the actual trend is? The algorithms of PrefixSpan and

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

12

SPAM is implemented in C++ by their respective authors, so

as decided, PrefixSpan and SPAM algorithms are implemented

in Java programming language. The performance evaluation is

done on real-life datasets having sparse and dense

characteristics. “From the comprehensive experiments what

have been done several phenomena were observed which are

different from the traditional standpoint.”

5. DATASETS CHARACTERISTICS
To compare the performance of PrefixSpan and SPAM

algorithms a series of experiments are performed with real-life

datasets.

If the performance is an issue, then the dataset characteristics

should be considered. To determine, if a dataset is sparse or

dense one should look at the dataset’s basic characteristics

such as the number of sequences, the number of items, the

average sequence length and the average number of items per

sequence.

The first dataset is “BMS-Webview1” the first of the three

KDD-Cup datasets which are sometimes called “Gazelle” is a

sequence database containing, several months of click-stream

data from an e-commerce website. This dataset was used for

the KDD-Cup 2001 competition and can be downloaded from

http:/www.ecn.purdue.edu/KDD-CUP. The BMS-Webview1

originally contains 59,601 sequences, (59,601 lines in the file).

There is a 497 different items for whole dataset. Each sequence

in this database contains on average 2.51 items with a standard

deviation of 4.85 and a variance of 23.54. It is possible that,

the same item appears several times in a sequence. For this

dataset, the average number of distinct items for each sequence

is 2.51 with a standard deviation of 4.85 and a variance of

23.54. Each item in a sequence appears on average 1 time in

the sequence with a standard deviation of 0 and a variance of

0. In this dataset, there is always only 1 item per itemset. The

BMS-Webview1 is a sparse dataset, there is on average 2.51

different items in each sequence.

The second dataset is “BMS-Webview1 at 30,000 sequences”

which is named and created, is another variation of

BMS-Webview1 dataset to test the algorithms on shorter

sequences. The BMS-Webview1 originally contains 59,601

sequences. The BMS-Webview1 at 30,000 sequences contains

30,000 sequences, (30,000 lines in the file). Each sequence in

this database contains on average 2.36 items with a standard

deviation of 4.31 and a variance of 18.63. For this dataset, the

average number of distinct items for each sequence is 2.36

with a standard deviation of 4.31 and a variance of 18.63. Each

item in a sequence appears on average 1 time in the sequence

with a standard deviation of 0 and a variance of 0. In this

dataset, there is always only 1 item per itemset. There is a 348

different items for whole dataset. The BMS-Webview1 at

30,000 sequences is a sparse dataset, there is on average 2.36

different items in each sequence.

The third dataset is “Toxin-Snake” [11], a sequence database

from the domain of the biology. It contains 192 protein

sequences. For these experiments only sequences containing

more than 50 items were kept. Keeping only these sequences

has been done to make the dataset more uniform; (because the

original Toxin-Snake dataset contains a few sequences that are

very short and many long sequences). This resulted in 163 long

sequences containing an average 60.61 items. Besides having

longer sequences, Toxin-Snake is a very dense dataset. Each of

the item occurs in almost every sequence (there is on average

17.84 different items in each sequence and only 20 different

items for the whole dataset).

Table 5. Real Dataset Characteristics

 BMS-

Webview1

BMS-

Webview1 at

30,000

sequences

Toxin-Snake

Number

of

sequences

59,601 30,000

163

Number

of items

497

348 20

Number

of items

per

itemset

1

1

1

Average

number of

items per

sequence

2.51 (σ =4.85) 2.36 (σ =4.31) 60.61(σ = 0.598)

Average

number of

different

items per

sequence

2.51(σ =4.85)

2.36 (σ =4.31) 17.84 (σ = 1.09)

6. PERFORMANCE EVALUATION

An intensive experiment is conducted to evaluate the

performance of PrefixSpan and SPAM algorithms in terms of

computational costs and memory usage. The algorithms of

PrefixSpan and SPAM are implemented in Java programming

language and run in Eclipse SDK 4.2.0. Experiments were

performed on a notebook computer with a 2.00 GHz T3200,

Intel Dual Core Processor running Windows 7 Ultimate and 2

GB of free RAM. The size of virtual memory is set to 1GB, as

by default Java virtual machine allocates 256 MB of memory.

Figure 4: shows the execution times and maximum memory

usage of two algorithms PrefixSpan and SPAM on real dataset

“BMS-Webview1.” The BMS-Webview1 is a sparse dataset

there is on average 2.51 items in each sequence. Both

algorithms are applied with minsup = 0.00085, , 0.00061.

As minsup value goes lower SPAM starts to grow faster than

PrefixSpan. When minsup = 0.00065, PrefixSpan run time is

401.19 seconds while SPAM run time is 230.61 seconds

which is more than 1.5 times faster than PrefixSpan. When

minsup = 0.00061, SPAM has a runtime of 262.08 seconds

which is more than 2.5 times faster than PrefixSpan (884.97

seconds). The memory usage trend is compared among the two

algorithms PrefixSpan and SPAM. SPAM has stable memory
usage than PrefixSpan for all minsup values for this dataset.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

13

 (a) Execution time comparison

(b) Memory usage comparison

Figure 4: PrefixSpan and SPAM evaluated on BMS-

Webview1 dataset.

To test the performance comparison among two algorithms

PrefixSpan and SPAM on shorter sequences which is named

and created is “BMS-Webview1 at 30,000 sequences” dataset,

which contains 30,000 sequences as there is on average 2.36

different items in each sequence, as compared to BMS-

Webview1 which originally contains 59,601 sequences, having

on average 2.51 different items in each sequence.

(a) Execution time comparison

 (b) Memory usage comparison

Figure 5: PrefixSpan and SPAM evaluated on BMS-

 Webview1 at 30,000 sequences dataset.

Figure 5: shows the performance comparison among two

algorithms PrefixSpan and SPAM on real dataset “BMS-

Webview1 at 30,000 sequences” with minsup = 0.00042,

0.00040, 0.00038, ,0.00032. When minsup < 0.00042 the

SPAM started to become faster than PrefixSpan. At minsup =

0.00032, SPAM run time is 217.04 seconds, which is more

than 1.25 times faster than PrefixSpan (533.39 seconds),while

the memory usage trend clearly indicates that SPAM has a

stable memory consumption than PrefixSpan at all minsup

values for this dataset.

(a) Execution time comparison

(b) Memory usage comparison

 Figure 6: PrefixSpan and SPAM evaluated on Toxin –

Snake dataset.

Figure 6: shows the performance comparison among two

algorithms PrefixSpan and SPAM on real dataset

“Toxin-Snake.” Besides having longer sequences the

Toxin-Snake is a very dense dataset. Each item occurs in

almost every sequence (there is average 17.84 different items

in each sequence and only 20 different items for the whole

dataset). Both algorithms are applied with minsup = 0.99, 0.98,

0.97, 0.96, 0.95. The performance gap between the algorithms

was highest among all the experiments. When minsup = 0.95

SPAM is about two orders of magnitude faster than

PrefixSpan, while comparing memory usage trend SPAM has a

more stable memory consumption than PrefixSpan at all

minsup values for this dataset.

By observing the performance evaluation trend it clearly shows

that SPAM performs much better and has a better scalability

than PrefixSpan in terms of execution time while in terms of

memory usage the trend clearly indicates that SPAM has stable

memory usage than PrefixSpan for all minsup values.

PrefixSpan algorithm is implemented with pseudoprojection

technique, still by observing the performance evaluation trend

it clearly shows that SPAM can be faster on sparse and dense

datasets, also the memory consumption is stable as compared

to PrefixSpan which is contradictory to the traditional

standpoint “SPAM it generally consumes more memory than

PrefixSpan and SPAM is faster on dense datasets with long

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

14

patterns and less efficient on other dataset, besides it consumes

more memory. SPAM is slower than PrefixSpan with

pseudoprojection technique.”

7. DISCUSSIONS

Database (1) Database (2)

(a) Two special type of databases

 (b) Effect on different types of databases

Figure 7: Performance of Suffix-oriented and LCI-

oriented algorithms on different databases.

PrefixSpan belongs to Suf fix-oriented category of algorithm,

because candidates are come from the suffix of the dataset.

SPAM belongs to LCI-oriented category of algorithm, because

the candidates are come from the local candidate item list. For

example we have two sequence databases as shown in

figure 7(a), the prefix sequence is p, and minsup = 1. To test

the 2-length candidate sequences, whose prefix is p for

database (1) the Suf fix-oriented algorithm scans the projected

database which requires 1×5 = 5 scanning time. The LCI-

oriented algorithm scans the local candidate item list for each

sequence, which requires 5×5 = 25 scanning time. However,

for database (2) suppose, to grow from <pp> to longer

patterns, Suf fix-oriented algorithm requires a 4 scanning time

(because there are four items q, r, s, t in the projected database

of <pp>), and the LCI-oriented algorithm requires a, 0

scanning time (because only one candidate item, p, in the local

list and no need to join). The effect of these two datasets on the

two approaches is shown in Table 7(b). The above example

illustrates that, if the average suffix sequence length is less

than the average element length for those items in the local

candidate list as in database (1) then Suf fix-oriented algorithm

spends less time. However, if the average suffix sequence

length is larger than the average element length for those items

in the local candidate list as in database (2) then LCI-oriented

algorithm is faster, which is different from traditional opinions

that the Suf fix-oriented algorithm is always better and efficient

than LCI-oriented algorithm. The two kinds of algorithms have

their advantages and disadvantages with regard to different

datasets. The reason that PrefixSpan is worse than SPAM is

due to useless of scanning those items which are not frequent

in the projected databases (i.e. q,r,s and t) in database (2) as

shown in figure 7(a). In other words, PrefixSpan cannot fully

utilize the Apriori heuristic because the intrinsic difference of

the two algorithms.

8. CONCLUSION
By observing all the trends in the performance evaluation

section, it concludes that SPAM performs better than

PrefixSpan on particular datasets having sparse and dense

characteristics, which is contradictory to the traditional opinion

that (“SPAM it consumes more memory than PrefixSpan,

SPAM is faster on dense dataset with long pattern but less

efficient on other dataset besides, it consumes more memory.

SPAM is much slower than PrefixSpan with pseudoprojection

technique.”).

Although PrefixSpan algorithm is implemented with

pseudoprojection technique still, by observing all the trends of

performance evaluation section SPAM is faster, performs

better, and consumes less memory than PrefixSpan.

Performance evaluation of PrefixSpan and SPAM is performed

on real-life datasets. The datasets used for performance

evaluation is determined by sparse datasets, (“BMS-

Webview1”, “BMS-Webview1 at 30,000 sequences”) and a

dense dataset, (“Toxin-Snake”) which are real-life datasets

which confirms the related work statement in aspects of

accuracy and efficiency and proves the related method feasible

and efficient. The performance evaluation section concludes

that SPAM performs better and has a better scalability than

PrefixSpan in terms of execution time, while in terms of

memory usage comparison SPAM has more stable memory

consumption than PrefixSpan at all minsup values.

9. ACKNOWLEDGEMENT
The authors would like to express sincere thanks to Philippe

Fournier-Viger for providing all necessary help by taking his

precious time. For more information about Philippe Fournier-

Viger visit, http://www.philippe-fournier-viger.com/spmf/

10. REFERENCES

[1] R. AGRAWAL AND R. SRIKANT. "Fast

Algorithms for Mining Association Rules," Proc.

1994. Int'l Can! Very Large Data Bases (VLDB 94),

pp. 487-499, Sept. 1994.

[2] R.AGRAWAL AND R. SRIKANT. “Mining

Sequential Patterns," Proc. 1995. Int'l Can! Data

Eng. (lCDE ' 95), pp. 3-14. Mar. 1995.

[3] JAY AYRES, JOHANNES GEHRKE, TOMI YIU,

JASON FLANNICK. Sequential pattern mining

using a bitmap representation. In Proceedings of the

8th ACM SIGKDD, International Conference on

Knowledge Discovery and Data Mining.

[4] J. PEI, J. HAN, B. MORTAZAVI-ASL, H.WANG,

J. PINTO, Q. CHEN, U. DAYAL, AND M. HSU.

2004. Mining Sequential Patterns by Pattern-Growth:

The PrefixSpan Approach. pp. 1424 -1440. In

Proceedings of IEEE TKDE.

CID Seq.

10 p p

20 p q

30 p r

40 p s

50 p t

CID Seq.

10 p p q r s t

20 q r s t p p

Avg.

Suffix

length

Avg. local

candidate

list item

Suffix-

oriented

LCI-

oriented

Database (1) 1 5 5 times 25 times

Database (2) 2 1 4 times 0 times

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.14, March 2013

15

[5] R. AGRAWAL AND R. SRIKANT. “Mining

Sequential Patterns," In Proceedings of

International conference on data engineering. pp.

3-14.

[6] SRIKANT R. AND AGRAWAL R. “Mining

Sequential Patterns: Generalizations and

Improvements: In Proceedings of the 5th

International Conference Extending Database

Technology, 1996, 1057, pp. 3-17.

[7] M. J. ZAKI. Spade: An efficient algorithm for

mining frequent sequences. Machine Learning. 42

(1/2): pp.31-60, 2001.

[8] YANG, Z. AND KITSUREGAWA, M. 2005.

LAPIN-SPAM: An improved algorithm for mining

sequential pattern. In Proceedings of the 21st

International Conference on Data Engineering

(ICDE ’05). IEEE.

[9] JINLIN CHEN 2010. An UpDown Directed Acyclic

Graph Approach for Sequential Pattern Mining, pp

914, Section 2.2, Para 9, lines 1 to 8 & 12 to 13. In

Proceedings with IEEE Transactions on knowledge

and Data Engineering.

[10] ZHENGLU YANG, 2008. Fast Algorithms for

Sequential Pattern Mining, pp 19, Section 2.2.4, Para

5, lines 1 to 4, Section 3.1.2, Figure 3.1 (a & b), pp

24. Figure 3.2 (a & b), pp 25.

[11] I. JONASSEN, J.F. COLLINS, AND D.G

HIGGINS. Finding flexible patterns in unaligned

protein sequences, Protein Science vol. 4, no. 8 pp

1587-1595, Wiley-Blackwell, 1995.

[12] UNIL YUN, JOHN J.LEGGETT. WSpan: Weighted

Sequential pattern mining in large sequence

databases. In proceedings of the 3rd International

IEEE conference Intelligent Systems, September

2006. pp. 512 – 517.

[13] VEERA BOONJING, PANIDA SONGRAM.

Efficient Algorithms for Mining Closed

Multidimensional Sequential Patterns. In

Proceedings of the Fourth International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD

2007).

[14] JEN.WEI HUANG, CHI-YAO TSENG, JIAN-
CHIHOU AND MING-SYAN CHEN. A General
Model for Sequential Pattern Mining with a
progressive Database In Proceedings with IEEE
Transaction on Knowledge and Data Engineering,
Vol. 20 No. 9, September 2008. pp. 1153 – 1167.

[15] YI SUI, FENGJING SHAO, RENCHANG SUN,

JINLONG WANG. A Sequential Pattern Mining
Algorithm Based on Improved FP-tree. In
Proceedings with Ninth ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed
Computing 2008. pp. 440 – 444.

[16] TONY, CHENG–KUI HUANG. Developing an
Efficient Knowledge Discovering Model for Mining
Fuzzy Multi-level Sequential Patterns in Sequence
Databases. In Proceedings with International
Conference on New Trends in Information and
Service Science. 2009. pp. 362 - 371.

[17] SHIN-YI WU, YEN-LIANG CHEN. Discovering

hybrid temporal patterns from sequences consisting
of point- and interval-based events. In Proceedings
of Data and knowledge Engineering 68 (2009).
pp.1309-1330. Elsevier.

[18] R.J. KUO, C.M. CHAO, C.Y. LIU. Integration of K-

means algorithm and AprioriSome algorithm for
fuzzy sequential pattern mining. In Proceedings of
Applied Soft Computing 9(2009). pp. 85-93.Elsevier.

[19] NASEER AHMED SAJID, SALMAN ZAFAR,

SOHAIL ASGHAR. Sequential Pattern Finding: A
Survey. In Proceedings with IEEE transaction.2010.

[20] DMITRIY FRADKIN, FABIAN MOERCHEN.

Margin-Closed Frequent Sequential Pattern Mining.
In Proceedings with UP’10, July 25th, 2010
Washington, DC, USA. pp 45-54. ACM.

[21] HAIFENG LI. A Stream Sequential Pattern Mining

Model. In Proceedings with International

Conference on Computer Science and Network

Technology.2011. pp. 704-707.

[22] KEN KANEIWA, YASUO KUDO. A sequential
pattern mining algorithm using rough set theory. In
proceedings of International Journal of Approximate
Reasoning 52(2011). pp. 881-893.

[23] YANG TANG, FEIFEI LI, HONGYAN LI. Mining

Scalable Pattern Based on Temporal Logic over Data
Streams. 2012, 9th International conference on
Fuzzy Systems and knowledge discovery (FSKD)
2012.

[24] JUNFU YIN, ZHIGANG ZHENG, LONGBING

CAO. USpan: An efficient Algorithm for Mining
High Utility Sequential Patterns. In Proceedings with
KDD’12, August 12-16, Beijing, China. pp. 660-
668. ACM.

[25] ZHOU ZHAO, DA YAN AND WILFRED NG.
Mining Probabilistically Frequent Sequential
Patterns in Uncertain Databases. In Proceedings
with, EDBT 2012, March 26-30, 2012, Berlin,
Germany. pp. 74-85. ACM.

[26] CHIH-HUNG WU, CHIH-CHIN LAI, YU-CHIEH

LO. An empirical study on mining sequential
patterns in a grid computing environment. In
proceedings of Expert Systems with Applications 39
(2012). pp. 5748-5757. Elsevier.

