
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

38

 G Gd

Towards a Promising Edge Classification Algorithm for
the Graph Isomorphism Problem

Islam A.T.F.Taj-Eddin

Faculty of Informatics and
Computer Science, The British

University in Egypt, Cairo,
Egypt.

Samir Abou El-Seoud
Faculty of Informatics and

Computer Science, The British
University in Egypt, Cairo,

Egypt.

Jihad M. AL-Ja’am
College of Engineering,

Dept. of Computer Science

and Engineering, Qatar
University, Qatar.

ABSTRACT

For over three decades the Graph Isomorphism (GI) problem

has been extensively studied by many researchers in

algorithms and complexity theory. To date, there is no formal

proof to classify this problem to be in the class P or the class

NP. In this paper, evidence had been proposed of the existing

of polynomial time algorithm based on edge classification

which can be used to prove that GI is rather in the class P.

General Terms

Computational Mathematics, Theoretical Informatics,

Theoretical Computer Science, Graph Algorithms,

Algorithms.

Keywords

Edge Classification, Graph Isomorphism, Polynomial

Algorithm, Graph Canonization.

Nomenclature

GI Graph isomorphism

Gd Directed Graph

DG Directed unweighted graph with no self-loops

and no multiple edges

SnD Square n-partite directed acyclic graph

EBFS Edge Breadth First Search

1. INTRODUCTION
The Graph Isomorphism (GI) problem consists of deciding

whether two given graphs are identical even if they look

different in their graphical or adjacency matrices

representation. Formally, two graphs G1 and G2 are called

isomorphic if there is a bijection function b from the vertex-

set V1 of G1 to the vertex-set V2 of G2 such that the edge

(vi,vj) belongs to G1 if and only if the edge (b(vi),b(vj))

belongs to G2 and b is an isomorphism [10]. The problem has

many applications in different fields, such as in

cheminformatics [15], graphical data mining [9] and

electronic design verification [5]. Even though, the GI

problem has remarkable properties in terms of its complexity

structure, it is still not known whether it is in the class P, or

the class NP (assuming that P ≠ NP). However, there is some

evidence to support that GI is not an NP-complete problem. In

fact, if it is in NP then the polynomial hierarchy would

collapse to the second level [17][6]. In addition, GI is also not

known to be hard for P. In fact, the best known hardness

results are still relatively weak [19][1][17].

More formally, two graphs G1 and G2 are isomorphic if they

have the same number of vertices, the same number of edges,

the same degree sequence for the vertices, and the same edges

relations (i.e. paths) among vertices. The first three conditions

could be tested in a polynomial time. Without any loss of

generality, the graphs G1 and G2 have the same number of

vertices, the same number of edges and the same degree

sequences. The fourth condition is relatively hard to be tested.

It could be shown that there exists two graphs that satisfy the

first three conditions but do not have isomorphic set of

consistently generated trees (i.e. they do not satisfy the fourth

condition) [17]. It is sufficient and enough to generate all

possible paths of length at most n, where n is the number of

vertices in both graphs G1 and G2, to prove the isomorphism

of G1 and G2 based on the isomorphism of all possible

generated paths. This could be done in an exponential time at

the worst case.

We assume that the graphs G1 and G2 are connected,

unweighted, undirected and their vertices have no self-loops.

In this paper, an undirected graph G will be represented by its

corresponding Directed Graph (Gd), such that every

undirected edge between the vertices v1 and v2 of G will be

replaced by two directed edges in Gd. The first edge is from

v1 to v2 while the second edge is from v2 to v1. Figure 1

shows an example.

Note that the adjacency matrices of G and Gd are clearly

identical. Then the undirected graphs G1 and G2 will be

replaced by their corresponding directed graphs Gd1 and Gd2.

The isomorphism problem between G1 and G2 will be

transformed to the problem of finding the isomorphism

between Gd1 and Gd2.

Fig. 1: The undirected graph G is represented by its

corresponding directed graph Gd.

2. PREVIOUS WORKS
Unlike general graphs, it has been shown that there exists an

efficient solution for the GI problem for special graphs with

specific constraints on the number of vertices and edges (i.e.

trees, planar graphs, permutation graphs, graphs of bounded

degree) [16][14][8][20][13].

The graph canonization is the essence of many graph

isomorphism algorithms. It is an open question whether there

V1 V2 V1 V2

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

39

is some canonizing function for graphs that can be computed

in polynomial time, and if the two problems are polynomial-

time equivalent [3][4][1][17][18][12].

Many attempts, of different nature, have been made to

establish the GI complexity status. According to the current

knowledge, there is no formal proof to solve the GI problem

in a polynomial time. An attempt of using the edge

classification algorithm to classify the GI problem was

introduced in the late sixties [22][21]. Even though, it didn’t

provide a general formal proof, it succeeded however to

classify GI for several types of graphs [2]. Note that, it has

been proved in [7] that edge classification and n-tuples

classification algorithms were unable to distinguish among all

pairs of non isomorphic graphs. In [7], they considered graphs

of O(n) distinct vertices, with color class size of 4, and

assumed a linear time canonical labeling algorithm. The

resulted canonical form of the graph is isomorphic to its

corresponding graph.

In [11], it has been mentioned that:

"….if f is an isomorphism between H and G itself, then any

change in G must be reflected by a corresponding change in

H, or else f will no longer be an isomorphism. In other words,

proofs of NP-completeness seem to require a certain amount

of redundancy in the target problem, a redundancy that

GRAPH ISOMORPHISM lacks. Unfortunately, this lack of

redundancy does not seem to be much of a help in designing a

polynomial time algorithm for GRAPH ISOMORPHISM

either, so perhaps it belongs to NPI…"

In this work, an edge classification algorithm that can be used

to classify GI problem to be rather in the class P has been

presented. The paper edge classification algorithm doesn’t run

against the proof given in [7]. In fact, the resulted canonical

labeling graph, presented in this paper, contains redundant

(not distinct) vertices. The element of redundancy will be used

later, as a constraint, in the isomorphism testing without

contradicting [7] (see figure 3 and theorem 2). The resulted

canonical labeling graph is not isomorphic to its

corresponding graph, yet it is a one-to-one and onto

transformation.

3. GRAPH CANONIZATION
In this section, a vertex v of one graph will be chosen. The

edges will be classified according to their distance from v.

The classification procedure is presented as a (one-to-one and

onto) transformation from the input graph (Gd) to an output

graph denoted by SnD (the square n-partite directed acyclic

graph) allowing the representation of paths of minimal length

between the initial vertex v and all other vertices. The

resulted graph (SnD) is not isomorphic to the original graph

(Gd). Theorem 1 and its proof summarize the idea.

We assume that there exists a given starting vertex for any

given graph Gd and for any directed unweighted graph with

no self-loops and no multiple-edges (DG). Any criteria could

be used to choose the starting vertex. Since Gd DG, then

the work will be done first with DG and later with Gd.

A square n-partite directed acyclic graph of n n vertices

(SnD), is an ordered finite set S of tuples Sj, where S = {Sj | 1

≤ j ≤ n} and n is the number of vertices in DG, such that the

following four rules must be satisfied:

1. The tuple Sj, 1 ≤ j ≤ n, is a finite collection of

distinct n vertices, Sj=(vi | 1 ≤ i ≤ n).

2. Tuples Sj, 1 ≤ j ≤ n, are equal (i.e.

S1=S2=S3=…..=Sn).

3. Vertices of Sj, has a direct relation only with

vertices of Sj+1, 1 ≤ j ≤ n-1.

This direct relation is written as an ordered pair (vxj,vy(j+1)),

with 1≤x,y≤n, x y, (i.e. vxj is vertex vx that is a member of

Sj and has a direct relation with vy(j+1) which is vertex vy that

is a member of Sj+1).

4. For any x and y, 1≤x,y≤n, if there exists a direct

relation between vx and vy then there exists one and

only one tuple (vxi,vy(i+1)), 1 ≤ i ≤ n-1. This means

that if there exists (vx3,vy4) then it is prohibited to

have (vxi,vy(i+1)), such that (1 ≤ i ≤ n-1and i 3).

(i.e, if (vx3,vy4) is true, then it is prohibited to have

(vx1,vy2),(vx2,vy3), (vx4,vy5),…..,(vx(n-1),vyn)).

3.1 Example 1

Assuming a square 3-partite SnD with a certain order as

S={S1=(v1,v3,v2),S2=(v1,v3,v2),S3=(v1,v3,v2)}.

By rule 1 and 2, it could be written as S={(v11,v31,v21),

(v12,v32,v22), (v13,v33,v23)}, see figure 2. By rule 3, (v11,v22),

(v11,v32) are allowed while (v11,v12), (v11,v23) are prohibited.

By rule 4, if (v11,v32) does exist then (v12, v33) is prohibited.

Fig. 2: The graph representation of

S={(v11,v31,v21),(v12,v32,v22),(v13,v33,v23)}.

3.2 Definition 1

Definition 1: Let Gs denotes the set of (vx,DG), vx is the

starting vertex of DG, 1≤x≤n, n is the number of vertices in

DG. Let Gt denotes the set of (vx1,SnD), vx1, which is the

vertex vx that is a member of S1 of SnD, is the starting vertex

of SnD. A canonical function for Gs is a one-to-one and onto

function f (f: Gs  Gt) from Gs to Gt, f(vx,DG) = (vx1,SnD)

and f-1(vx1,SnD)= (vx,DG), such that the (vx1,SnDi) is

isomorphic to (vy1,SnDj) if and only if (vx,DGi) is isomorphic

to (vy,DGj).

Next, a one-to-one (f) and onto (f)-1 canonical functions that

respect definition 1 will be proposed.

V11 V31 V21

V12 V32 V22

V13 V33 V23

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

40

We define the function (f) as follows:

1. The input is a directed graph DG with a starting

vertex vx.

2. We have f(vx,DG) =(vx1,SnD).

3. The output is SnD with a starting vertex vx at tuple

S1 (i.e. vx1).

We apply (f) as follows:

1. The input is (vx,DG)

2. Apply (EBFS(vx,DG))

Edge-Breadth-First-Search (EBFS), is

similar in execution mechanism,

correctness and time complexity to

Breadth-First-Search (BFS) [10], but

differs in the following:-

EBFS(vx,DG)

1. The input is a directed graph

DG with a starting vertex vx.

2. The distance value (d) will be

assigned to each edge rather

than to each vertex. The

distance value of the edge

indicates how far is the edge on

a path taken starting from the

vertex vx. Each edge traversed

exactly once, and a distance

value (d) is assigned to it.

3. The output is a directed graph

DG with a starting vertex vx and

a distance value (d) for each

edge, 1≤d≤n.

3. Create an Empty SnD, as stated at the definition of

SnD n is the number of vertices in DG used in the

previous steps. For each directed edge e=(vy,vz)

with distance (d) in DG, set a direct edge from vy

that belongs to set S(d) to vz that belongs to set S(d+1)

(i.e. (vy(d),vz(d+1))).

4. Output SnD with starting vertex vx at tuple S1 (i.e.

vx1).

We conclude that f(vx,DG) =f(EBFS(vx,DG))= (vx1,SnD).

We define (f) -1 as follows:

1. The Input is SnD with a starting vertex vx at tuple S1

(i.e. vx1).

2. f-1 (vx1,SnD)=(vx,DG).

3. The output is a directed graph DG with starting

vertex vx.

Apply (f) -1 as follows:

1. The input is SnD with starting vertex vx at tuple S1

(i.e. vx1).

2. Create an empty DG with n vertices. For each

directed edge e=(vy(d),vz(d+1)), set a direct edge from

vy to vz with one distance (d) for the edge in DG.

Delete the value of (d) from each edge.

3. The output is a directed graph DG with a starting

vertex vx.

We conclude that f-1 (vx1,SnD)= f-1 (EBFS(vx,DG))= f-1

(vx,DG)= (vx,DG).

3.3 Theorem 1

Theorem 1: The function (f) is a one-to-one and onto

function, such that:

1. f(vx,DG)=(vx1,SnD).

2. f-1(vx1,SnD)= (vx,DG).

Proof:

1. In order for (f) not to be one-to-one, the following

equations must be true:-

f(vx,DG)=f(EBFS(vx,DG))=(vx1,SnD1)

and f(vx,DG)=f(EBFS(vx,DG))=(vx1,SnD2),

Assume that SnD1 SnD2, there must exist a directed edge

e=(vy,vz) with distance (d) in DG, such that there exists a

direct edge from vy at set S(d) to vz at set S(d+1) (i.e.

(vy(d),vz(d+1))) at SnD1 and a different direct edge from vy at set

S(d) to vz at set S(d+1) (i.e. (vy(d),vz(d+1))) at SnD2.

Since the edge e=(vy,vz) has one and only one value for (d),

the edge e=(vy,vz) with distance (d) at SnD1 and e=(vy,vz)

with distance (d) at SnD2 will be equal in distance (d) and

position. The same could be said about all other edges, which

means SnD1= SnD2 (contradiction).

2. In order for f-1 not to be onto, the following

equations must be true:- f-1 (vx1,SnD)= f-1

(EBFS(vx,DG1)) = (vx,DG1) and f-1 (vx1,SnD)= f-1

(EBFS(vx,DG2)) = (vx,DG2)

Assume that DG1 DG2, there must exist a directed edge

e=(vy(d),vz(d+1)), such that there exists a direct edge from vy to

vz with distance (d) at DG1 and a different direct edge from vy

to vz with distance (d) at DG2. Since the edge e=(vy(d),vz(d+1))

is corresponding to one and only one edge e=(vy,vz) with

distance (d), the edge e=(vy,vz) with distance (d) at DG1 will

be equal with the edge e=(vy,vz) with distance (d) at DG2.

The same could be said about all other edges, which means

DG1= DG2 (contradiction).

4. THE RELATIONSHIP BETWEEN

Gd1, Gd2 AND SnD1, SnD2
From now on and without any loss of generality, the paper

will only deal with the Gd that represents a connected

unweighted and undirected graph G.

As stated earlier, if and only if there is an algorithm to

discover the isomorphism between SnD1 and SnD2 that will

enforce that Gd1 is isomorphic to Gd2 and vise versa.

(i.e. G1 Gd1 SnD1, and G2 Gd2 SnD2).

One reason behind the believe of the existence of a

polynomial time algorithm that can discover the isomorphism

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

41

between SnD1 and SnD2 lies in the fact that SnD graph is

sharing some common characteristics with planar graphs. An

efficient polynomial time algorithm that can discover

isomorphism between planar graphs was given in

[16][14][8][20][13]. By definition, SnD1 does not have K5.

By definition, SnD1 has V=n2 vertices and maximum of E=n2-

n edges. E = n2-n 3V2 – 6), for n2 3, and E = n2-n
 (2V2- 4), for n2 3 [16][14][8][20][13]. In spite of these

common characteristics with planar graphs, the graph SnD

considered here is not a planar graph.

Before trying to discover a polynomial time algorithm for

isomorphism between SnD1 and SnD2, a proof should be

given for the case of any two distinct graphs Gd1 and Gd2 it

holds that SnD1 and SnD2 differ at least in one characteristic

of one metric. A definition of SnD metric will be given

followed by a theorem and its proof.

4.1 Definition 2

Definition 2: define the metric sg(vi,ki) as the ordered finite

tuple (vi1,vi2,vi3,…..,vin), for 1 i n that belongs to SnD, ki,

1 ki n, is the location of vi within all tuples S. It is

allowed for a whole metric to swap with another whole metric

only.

There exist some characteristics on metrics sg(vi,ki), for 1
 i n. These characteristics are:

in-degree(viy) is the number of edges coming from any other

vertex to vertex viy,

out-degree(viy) is the number of edges coming into any other

vertex from vertex viy,

from-to(viy) is the ordered tuple of location(s) kj, such that an

edge is coming from vertex (viy), which belongs to the metric

sg(vi,ki), going to vertex (vjx) which belongs to the metric

sg(vj,ki) (i.e. (viy)(vjx)).

4.2 Example 2

Assuming a square 3-partite SnD is:

 S={S1=(v1,v3,v2), S2=(v1,v3,v2), S3=(v1,v3,v2)}, that could be

written as S={(v11,v31,v21), (v12,v32,v22), (v13,v33,v23)}.

Assuming the starting vertex is v11, see figure 3. The

characteristics on metric sg(vi,ki) of figure 3 are as follows:

metric sg(v1,k1=1)=(v11,v12,v13):

in-degree(v11)=0 ,

out-degree(v11)=2,

from-to(v11)=(k3=2,k2=3),

in-degree(v12)=0 ,

out-degree(v12)=0,

from-to(v12)= Ø,

in-degree(v13)=2 ,

out-degree(v13)=0,

from-to(v13)= Ø.

metric sg(v2,k2=3)=(v21,v22,v23):

in-degree(v21)=0 ,

out-degree(v21)=0,

from-to(v21)= Ø,

in-degree(v22)=1 ,

out-degree(v22)=2,

from-to(v22)=(k1=1,k3=2),

in-degree(v23)=1 ,

out-degree(v23)=0,

from-to(v23)= Ø.

metric sg(v3,k3=2)=(v31,v32,v33):

in-degree(v31)=0,

out-degree(v31)=0,

from-to(v31)= Ø,

in-degree(v32)=1 ,

out-degree(v32)=2,

from-to(v32)=(k1=1,k2=3),

in-degree(v33)=1 ,

out-degree(v33)=0,

from-to(v33)= Ø.

4.3 Theorem 2

Theorem 2: Given the set of all metrics computed for SnD1

of Gd1 and SnD2 of Gd2, it holds that if and only if Gd1 and

Gd2 are distinct then SnD1 and SnD2 will differ at least in

one characteristic of one metric.

Proof:

1. (If) Gd1 and Gd2 are distinct then SnD1 and SnD2

will differ at least in one characteristic of one

metric.

1.1. It is sufficient and enough to generate all

possible paths of length at most n, beginning

from a certain vertex vx, where n is the

number of vertices in both graphs Gd1 and

Gd2, to prove the isomorphism of Gd1 and

Gd2 based on the isomorphism of all possible

generated paths. That could be done in

exponential time at worst case analysis.

1.2. For every path, the initial vertex vx, will be

vx1, the second vertex vy in the path will be

vy2, … etc. It could be shown that all paths of

designated SnD is a subset of the generated all

possible paths. From now on and without any

lose of generality the proof will deal with that

subset of the generated all possible paths (i.e.

all paths of designated SnD).

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

42

 Gd

 SnD

 sg(v1,k1=1) sg(v3,k3=2) sg(v2,k2=3)

Fig. 3: This is the resulted SnD, with the starting vertex

v11, from the corresponding directed graph Gd, with the

starting vertex v1, such that

Gd={(v1,v2),(v2,v1),(v1,v3),(v3,v1),(v2,v3),(v3,v2)}, ki is the

location of the metric sg(vi,ki)=(vi1,vi2,vi3), 1≤ki≤3.

1.3. If Gd1 and Gd2 are distinct then:

1.3.1. Either at least one path, of the subset

of the generated all possible paths,

has different length at Gd1 than Gd2.

For that case, it could be shown that

at least one metric at SnD1 has

different characteristic (in-

degree(viy),out-degree(viy),from-

to(viy)) than SnD2;

1.3.2. Or all paths have the same length,

but at least one path, of that subset of

the generated all possible paths at

Gd1, has different relations (i.e. no

bijection) than any paths at Gd2.

For that case, metrics at SnD1 and

SnD2 will have the same (in-

degree(viy),out-degree(viy))

characteristics, but at least one metric

at SnD1 will be different in its

(from-to(viy)) characteristic than any

metric at SnD2.

Because since the paths length are

equal in both Gd1 and Gd2, then

(in-degree(viy),out-degree(viy))

characteristics in SnD1 and SnD2

will not be enough to distinguish

between them, but from the

definition of isomorphism no

bijection means there exist at least

one edge between two vertices in

Gd1 that has no match in Gd2, that

case will manifest itself at the (from-

to(viy)) characteristic which catch

that relation between vertices of

metrics in SnD1.

From the definition of isomorphism,

the (from-to(viy)) characteristic of

one metric in SnD1 will be different

than any (from-to(viy)) characteristic

of any metric in SnD2.

2. (Only if) SnD1 and SnD2 differ at least in one

characteristic of one metric then Gd1 and Gd2 are

distinct. That could be deduced directly from f-1 of

Theorem 1.

5. CONCLUSION AND FURTHER

WORK
The GI problem is extremely relevant in theoretical computer

science. Many attempts, of different nature, have been made

to establish its complexity status. Among these attempts, the

classification of tuples of vertices is an important one. An

edge classification algorithm that can be used to prove that GI

problem is rather in the class P will be presented. The

proposed algorithm chooses a vertex v of one graph and

classifies the edges according to their distance from that

vertex v. The classification procedure is presented as a

transformation from the input graph Gd to a directed graph

SnD allowing the representation of paths of minimal length

between the initial vertex and all other vertices. The

transformed graph SnD is not isomorphic to the original graph

Gd. The proposed approach introduces the element of

redundancy that does not contradict with the work given in

[7].

As further work, a polynomial time algorithm that shows

SnD1 is isomorphic to SnD2 is worth the trial to be found.

Based on Theorem 2, if and only if Gd1 and Gd2 are distinct

then SnD1 and SnD2 will differ at least in one characteristic

of one metric. One reason behind the believe of the existence

of a polynomial time algorithm that can discover isomorphism

between SnD1 and SnD2 lies in the fact that SnD graph

sharing some common characteristics with planar graphs. In

spite of these characteristics, SnD is not a planar graph.

6. ACKNOWLEDGMENTS
The authors would like to thank Dr. Khaled Nagati, and all of

the academic staff of the Faculty of Informatics and Computer

Science at the BUE for their valuable remarks and

suggestions.

7. REFERENCES
[1] Arvind V., and Toran J. 2005. Isomorphism Testing:

Perspective and Open Problems, Bulletin of the

European Association for Theoretical Computer Science,

Computational Complexity Column, (June, 2005),

Number 86.

V11 V31 V21

V12 V32 V22

V13 V33 V23

V1 V2

V3

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

43

[2] Babai L. 1996. Automorphism groups, isomorphism,

reconstruction, Handbook of Combinatorics (eds. R. L.

Graham, M. Grotschel and L. Lovasz), Chapter 27,

North-Holland, Amsterdam, (1996), pages 1447-1540.

[3] Babai L. and Kucera L. 1979. Canonical labeling of

graphs in average linear time. Proc. 20th Annual IEEE

Symposium on Foundations of Computer Science, 1979,

39–46.

[4] Babai L. and Luks M. 1983. Canonical labeling of

graphs. In proceedings of the fifteenth annual ACM

symposium on theory of computing, 1983, page 171-183.

[5] Baird H.S., Cho Y.E. 1975. An artwork design

verification system, Proceedings of the 12th Design

Automation Conference. IEEE Press., (1975) , pp. 414-

420.

[6] Boppana R., Hastad J. and Zachos S. 1987. Does co-NP

have short interactive proofs?, Information Processing

Letters 25(2), (1987), pages 127-132.

[7] Cai J., Furer M., and Immerman N. 1992. An optimal

lower bound on the number of variables for graph

identification. Combinatorica, 12:389-410, (1992).

[8] Colbourn C.J. 1981. On testing isomorphism of

permutation graphs, 1981, Networks 11: 13–21,

doi:10.1002/net.3230110103.

[9] Cook D. J. and Holder L. B. 2007. Mining Graph Data,

John Wiley & Sons, 2007.

[10] Cormen T. H., Leiserson C. E., Rivest R. L. and Stein C.

2009. Introduction to algorithms, 3rd edition, the MIT

press, 2009.

[11] Gary M. R. and Johnson D. S. 2000. Computers and

Intractability a Guide to the Theory of NP-Completeness,

W.H. FREEMAN AND COMPANY, NY, 1979, pp.

155-156.

[12] Gurevich Y. 1997. From Invariants to Canonization, The

Bulletin of European Association for Theory of

Computer Science, 1997, Number 63.

[13] Hopcroft J. and Tarjan R. E. 1974. Efficient planarity

testing. J. ACM, (1974), 21(4):549–568.

[14] Hopcroft J. and Wong J. 1974. Linear time algorithm for

isomorphism of planar graphs, Proceedings of the Sixth

Annual ACM Symposium on Theory of Computing,

1974, pp. 172–184, doi:10.1145/800119.803896.

[15] Irniger C-A M 2005. Graph Matching: Filtering

Databases of Graphs Using Machine Learning, Aka,

2005.

[16] Kelly P.J. 1957. A congruence theorem for trees, Pacific

J. Math., 7, 1957, pp. 961–968.

[17] kobler J., Schoning U., and Toran J. 1993. The graph

isomorphism problem: Its structural complexity.

Birkhauser, 1993.

[18] McKAY B. D. 1981. Practical Graph Isomorphism.

Congr. Numerantium ,(1981), 30, 45-87. (Nauty User’s

Guide, Version 2.2 (beta 6); (2003)

(http://cs.anu.edu.au/people/bdm/nauty/)).

[19] Toran J. 2000. On the hardness of graph isomorphism.

FOCS, 2000, 180–186.

[20] Toran J. and Wagner F. 2009. The complexity of planar

graph isomorphism, Bulletin of the European Association

for Theoretical Computer Science, Computational

Complexity Column, (February 2009), Number 97.

[21] Weisfeiler Boris ed. 1976. On Construction and

Identification of Graphs, Lecture Notes in Mathematics

558, Springer, (1976).

[22] Weisfeiler B. and A.A. Lehman 1968. A Reduction of a

Graph to a Canonical Form and an Algebra Arising

during this Reduction, (in Russian), Nauchno-

Technicheskaya Informatsia, Seriya 2, 9 (1968), 12-16.

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1002%2Fnet.3230110103
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F800119.803896

