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ABSTRACT 

For over three decades the Graph Isomorphism (GI) problem 

has been extensively studied by many researchers in 

algorithms and complexity theory. To date, there is no formal 

proof to classify this problem to be in the class P or the class 

NP. In this paper, evidence had been proposed of the existing 

of polynomial time algorithm based on edge classification 

which can be used to prove that GI is rather in the class P. 
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Nomenclature 

GI Graph isomorphism 

Gd Directed Graph 

DG Directed unweighted graph with no self-loops 

and no multiple edges 

SnD Square n-partite directed acyclic graph 

EBFS Edge Breadth First Search 

 

1. INTRODUCTION 
The Graph Isomorphism (GI) problem consists of deciding 

whether two given graphs are identical even if they look 

different in their graphical or adjacency matrices 

representation. Formally, two graphs G1 and G2 are called 

isomorphic if there is a bijection function b from the vertex-

set V1 of G1 to the vertex-set V2 of G2 such that the edge 

(vi,vj) belongs to G1 if and only if the edge (b(vi),b(vj)) 

belongs to G2 and b is an isomorphism [10]. The problem has 

many applications in different fields, such as in 

cheminformatics [15], graphical data mining [9] and 

electronic design verification [5]. Even though, the GI 

problem has remarkable properties in terms of its complexity 

structure, it is still not known whether it is in the class P, or 

the class NP (assuming that P ≠ NP). However, there is some 

evidence to support that GI is not an NP-complete problem. In 

fact, if it is in NP then the polynomial hierarchy would 

collapse to the second level [17][6]. In addition, GI is also not 

known to be hard for P. In fact, the best known hardness 

results are still relatively weak [19][1][17]. 

More formally, two graphs G1 and G2 are isomorphic if they 

have the same number of vertices, the same number of edges, 

the same degree sequence for the vertices, and the same edges 

relations (i.e. paths) among vertices. The first three conditions 

could be tested in a polynomial time. Without any loss of 

generality, the graphs G1 and G2 have the same number of 

vertices, the same number of edges and the same degree 

sequences. The fourth condition is relatively hard to be tested.  

It could be shown that there exists two graphs that satisfy the 

first three conditions but do not have isomorphic set of 

consistently generated trees (i.e. they do not satisfy the fourth 

condition) [17].  It is sufficient and enough to generate all 

possible paths of length at most n, where n is the number of 

vertices in both graphs G1 and G2, to prove the isomorphism 

of G1 and G2 based on the isomorphism of all possible 

generated paths. This could be done in an exponential time at 

the worst case. 

We assume that the graphs G1 and G2 are connected, 

unweighted, undirected and their vertices have no self-loops. 

In this paper, an undirected graph G will be represented by its 

corresponding Directed Graph (Gd), such that every 

undirected edge between the vertices v1 and v2 of G will be 

replaced by two directed edges in Gd. The first edge is from 

v1 to v2 while the second edge is from v2 to v1. Figure 1 

shows an example. 

Note that the adjacency matrices of G and Gd are clearly 

identical. Then the undirected graphs G1 and G2 will be 

replaced by their corresponding directed graphs Gd1 and Gd2. 

The isomorphism problem between G1 and G2 will be 

transformed to the problem of finding the isomorphism 

between Gd1 and Gd2. 

 

Fig. 1: The undirected graph G is represented by its 

corresponding directed graph Gd. 

2. PREVIOUS WORKS 
Unlike general graphs, it has been shown that there exists an 

efficient solution for the GI problem for special graphs with 

specific constraints on the number of vertices and edges (i.e. 

trees, planar graphs, permutation graphs, graphs of bounded 

degree) [16][14][8][20][13]. 

The graph canonization is the essence of many graph 

isomorphism algorithms. It is an open question whether there 
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is some canonizing function for graphs that can be computed 

in polynomial time, and if the two problems are polynomial-

time equivalent [3][4][1][17][18][12].   

Many attempts, of different nature, have been made to 

establish the GI complexity status. According to the current 

knowledge, there is no formal proof to solve the GI problem 

in a polynomial time. An attempt of using the edge 

classification algorithm to classify the GI problem was 

introduced in the late sixties [22][21]. Even though, it didn’t 

provide a general formal proof, it succeeded however  to 

classify GI for several types of graphs [2]. Note that, it has 

been proved in [7] that edge classification and n-tuples 

classification algorithms were unable to distinguish among all 

pairs of non isomorphic graphs. In [7], they considered graphs 

of O(n) distinct vertices, with color class size of 4, and 

assumed a linear time canonical labeling algorithm. The 

resulted canonical form of the graph is isomorphic to its 

corresponding graph. 

In [11], it has been mentioned that: 

"….if f is an isomorphism between H and G itself, then any 

change in G must be reflected by a corresponding change in 

H, or else f will no longer be an isomorphism. In other words, 

proofs of NP-completeness seem to require a certain amount 

of redundancy in the target problem, a redundancy that 

GRAPH ISOMORPHISM lacks. Unfortunately, this lack of 

redundancy does not seem to be much of a help in designing a 

polynomial time algorithm for GRAPH ISOMORPHISM 

either, so perhaps it belongs to NPI…" 

 

In this work, an edge classification algorithm that can be used 

to classify GI problem to be rather in the class P has been 

presented. The paper edge classification algorithm doesn’t run 

against the proof given in [7]. In fact, the resulted canonical 

labeling graph, presented in this paper, contains redundant 

(not distinct) vertices. The element of redundancy will be used 

later, as a constraint, in the isomorphism testing without 

contradicting [7] (see figure 3 and theorem 2). The resulted 

canonical labeling graph is not isomorphic to its 

corresponding graph, yet it is a one-to-one and onto 

transformation.  

3. GRAPH CANONIZATION 
In this section, a vertex v of one graph will be chosen. The 

edges will be classified according to their distance from v. 

The classification procedure is presented as a (one-to-one and 

onto) transformation from the input graph (Gd) to an output 

graph denoted by SnD (the square n-partite directed acyclic 

graph) allowing the representation of paths of minimal length 

between the initial vertex v and all other vertices.  The 

resulted graph (SnD) is not isomorphic to the original graph 

(Gd). Theorem 1 and its proof summarize the idea. 

We assume that there exists a given starting vertex for any 

given graph Gd and for any directed unweighted graph with 

no self-loops and no multiple-edges (DG).  Any criteria could 

be used to choose the starting vertex.  Since Gd   DG, then 

the work will be done first with DG and later with Gd.   

A square n-partite directed acyclic graph of n   n vertices 

(SnD), is an ordered finite set S of tuples Sj, where S = {Sj | 1 

≤ j ≤ n} and n is the number of vertices in DG, such that the 

following four rules must be satisfied: 

1. The tuple Sj, 1 ≤ j ≤ n, is a finite collection of 

distinct n vertices, Sj=(vi | 1 ≤ i ≤ n). 

 

2. Tuples Sj, 1 ≤ j ≤ n, are equal (i.e. 

S1=S2=S3=…..=Sn). 

 

3. Vertices of Sj, has a direct relation only with 

vertices of Sj+1, 1 ≤ j ≤ n-1.   

This direct relation is written as an ordered pair (vxj,vy(j+1)), 

with 1≤x,y≤n, x   y,  (i.e. vxj  is vertex vx that is a member of 

Sj and has a direct relation with vy(j+1) which is vertex vy that 

is a member of Sj+1).   

4. For any x and y, 1≤x,y≤n, if there exists a direct 

relation between vx and vy then there exists one and 

only one tuple (vxi,vy(i+1)), 1 ≤ i ≤ n-1.  This means 

that if there exists (vx3,vy4) then it is prohibited to 

have (vxi,vy(i+1)), such that (1 ≤ i ≤ n-1and i   3). 

(i.e, if (vx3,vy4) is true, then it is prohibited to have 

(vx1,vy2),(vx2,vy3), (vx4,vy5),…..,(vx(n-1),vyn)). 

3.1 Example 1   

Assuming a square 3-partite SnD with a certain order as 

S={S1=(v1,v3,v2),S2=(v1,v3,v2),S3=(v1,v3,v2)}.   

By rule 1 and 2, it could be written as S={(v11,v31,v21), 

(v12,v32,v22), (v13,v33,v23)}, see figure 2.  By rule 3, (v11,v22), 

(v11,v32) are allowed  while (v11,v12), (v11,v23) are prohibited.  

By rule 4, if (v11,v32) does exist then (v12, v33) is prohibited.  

Fig. 2: The graph representation of 

S={(v11,v31,v21),(v12,v32,v22),(v13,v33,v23)}. 

3.2 Definition 1 

Definition 1: Let Gs denotes the set of (vx,DG), vx is the 

starting vertex of DG, 1≤x≤n, n is the number of vertices in 

DG. Let Gt denotes the set of (vx1,SnD), vx1, which is the 

vertex vx that is a member of S1 of SnD, is the starting vertex 

of SnD. A canonical function for Gs is a one-to-one and onto 

function f (f: Gs  Gt) from Gs to Gt, f(vx,DG) = (vx1,SnD) 

and f-1(vx1,SnD)= (vx,DG), such that the (vx1,SnDi) is 

isomorphic to (vy1,SnDj) if and only if (vx,DGi) is isomorphic 

to (vy,DGj). 

Next, a one-to-one (f) and onto (f)-1 canonical functions that 

respect definition 1 will be proposed. 

V11 V31 V21 

V12 V32 V22 
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We define the function (f) as follows:  

1. The input is a directed graph DG with a starting 

vertex vx. 

2. We have f(vx,DG) =(vx1,SnD). 

3. The output is SnD with a starting vertex vx at tuple 

S1 (i.e. vx1). 

We apply (f) as follows: 

1. The input is (vx,DG) 

2. Apply (EBFS(vx,DG)) 

Edge-Breadth-First-Search (EBFS), is 

similar in execution mechanism, 

correctness and time complexity to 

Breadth-First-Search (BFS) [10], but 

differs in the following:- 

EBFS(vx,DG) 

1. The input is a directed graph 

DG with a starting vertex vx. 

2. The distance value (d) will be 

assigned to each edge rather 

than to each vertex. The 

distance value of the edge 

indicates how far is the edge on 

a path taken starting from the 

vertex vx. Each edge traversed 

exactly once, and a distance 

value (d) is assigned to it.   

3. The output is a directed graph 

DG with a starting vertex vx and 

a distance value (d) for each 

edge, 1≤d≤n. 

3. Create an Empty SnD, as stated at the definition of 

SnD n is the number of vertices in DG used in the 

previous steps. For each directed edge e=(vy,vz) 

with distance (d) in DG, set a direct edge from vy 

that belongs to set S(d) to vz that belongs to set S(d+1) 

(i.e. (vy(d),vz(d+1))). 

4. Output SnD with starting vertex vx at tuple S1 (i.e. 

vx1). 

We conclude that f(vx,DG) =f(EBFS(vx,DG))= (vx1,SnD). 

We define (f) -1 as follows:  

1. The Input is SnD with a starting vertex vx at tuple S1 

(i.e. vx1). 

2. f-1 (vx1,SnD)=(vx,DG). 

3. The output is a directed graph DG with starting 

vertex vx. 

Apply (f) -1 as follows: 

1. The input is SnD with starting vertex vx at tuple S1 

(i.e. vx1). 

2. Create an empty DG with n vertices. For each 

directed edge e=(vy(d),vz(d+1)), set a direct edge from 

vy to vz with one distance (d) for the edge in DG.  

Delete the value of (d) from each edge. 

3. The output is a directed graph DG with a starting 

vertex vx.   

We conclude that f-1 (vx1,SnD)= f-1 (EBFS(vx,DG))= f-1 

(vx,DG)= (vx,DG). 

3.3 Theorem 1 

Theorem 1: The function (f) is a one-to-one and onto 

function, such that: 

1. f(vx,DG)=(vx1,SnD). 

2. f-1(vx1,SnD)= (vx,DG). 

Proof: 

1. In order for (f) not to be one-to-one, the following 

equations must be true:- 

f(vx,DG)=f(EBFS(vx,DG))=(vx1,SnD1)  

and f(vx,DG)=f(EBFS(vx,DG))=(vx1,SnD2), 

Assume that SnD1  SnD2, there must exist a directed edge 

e=(vy,vz) with distance (d) in DG, such that there exists a 

direct edge from vy at set S(d) to vz at set S(d+1) (i.e. 

(vy(d),vz(d+1))) at SnD1 and a different direct edge from vy at set 

S(d) to vz at set S(d+1) (i.e. (vy(d),vz(d+1))) at SnD2. 

Since the edge e=(vy,vz) has one and only one value for (d), 

the edge e=(vy,vz) with distance (d) at SnD1 and e=(vy,vz) 

with distance (d) at SnD2 will be equal in distance (d) and 

position. The same could be said about all other edges, which 

means SnD1= SnD2 (contradiction). 

2. In order for f-1 not to be onto, the following 

equations must be true:- f-1 (vx1,SnD)= f-1 

(EBFS(vx,DG1)) = (vx,DG1) and f-1 (vx1,SnD)= f-1 

(EBFS(vx,DG2)) = (vx,DG2) 

Assume that DG1  DG2, there must exist a directed edge 

e=(vy(d),vz(d+1)), such that there exists a direct edge from vy to 

vz with distance (d) at DG1 and a different direct edge from vy 

to vz with distance (d) at DG2. Since the edge e=(vy(d),vz(d+1)) 

is corresponding to one and only one edge e=(vy,vz) with 

distance (d), the edge e=(vy,vz) with distance (d) at DG1 will 

be equal with the edge e=(vy,vz) with distance (d) at DG2.  

The same could be said about all other edges, which means 

DG1= DG2 (contradiction). 

4. THE RELATIONSHIP BETWEEN 

Gd1, Gd2 AND SnD1, SnD2 
From now on and without any loss of generality, the paper 

will only deal with the Gd that represents a connected 

unweighted and undirected graph G.   

As stated earlier, if and only if there is an algorithm to 

discover the isomorphism between SnD1 and SnD2 that will 

enforce that Gd1 is isomorphic to Gd2 and vise versa.         

(i.e. G1  Gd1 SnD1, and G2 Gd2 SnD2).    

One reason behind the believe of the existence of a 

polynomial time algorithm that can discover the isomorphism 
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between SnD1 and SnD2 lies in the fact that SnD graph is 

sharing some common characteristics with planar graphs.  An 

efficient polynomial time algorithm that can discover 

isomorphism between planar graphs was given in 

[16][14][8][20][13]. By definition, SnD1 does not have K5. 

By definition, SnD1 has V=n2 vertices and maximum of E=n2-

n edges.  E = n2-n   3V2 – 6), for n2   3, and E = n2-n  
 (2V2- 4), for n2   3 [16][14][8][20][13]. In spite of these 

common characteristics with planar graphs, the graph SnD 

considered here is not a planar graph.   

Before trying to discover a polynomial time algorithm for 

isomorphism between SnD1 and SnD2, a proof should be 

given for the case of any two distinct graphs Gd1 and Gd2 it 

holds that SnD1 and SnD2 differ at least in one characteristic 

of one metric.  A definition of SnD metric will be given 

followed by a theorem and its proof. 

4.1 Definition 2 

Definition 2: define the metric sg(vi,ki) as the ordered finite 

tuple (vi1,vi2,vi3,…..,vin), for 1   i   n that belongs to SnD, ki, 

1   ki   n, is the location of vi within all tuples S. It is 

allowed for a whole metric to swap with another whole metric 

only.  

There exist some characteristics on metrics sg(vi,ki), for 1  
 i   n. These characteristics are: 

in-degree(viy) is the number of edges coming from any other 

vertex to vertex viy,  

out-degree(viy) is the number of edges coming into any other 

vertex from vertex viy, 

from-to(viy) is the ordered tuple of location(s) kj, such that an 

edge is coming from vertex (viy), which belongs to the metric 

sg(vi,ki), going to vertex (vjx) which belongs to the metric 

sg(vj,ki) (i.e. (viy)(vjx)). 

4.2 Example 2 

Assuming a square 3-partite SnD is: 

 S={S1=(v1,v3,v2), S2=(v1,v3,v2), S3=(v1,v3,v2)}, that could be 

written as S={(v11,v31,v21), (v12,v32,v22), (v13,v33,v23)}.  

Assuming the starting vertex is v11, see figure 3.  The 

characteristics on metric sg(vi,ki) of figure 3 are as follows:  

metric sg(v1,k1=1)=(v11,v12,v13): 

in-degree(v11)=0 ,                     

out-degree(v11)=2,                

from-to(v11)=(k3=2,k2=3), 

in-degree(v12)=0 ,                    

out-degree(v12)=0,                 

from-to(v12)= Ø,  

in-degree(v13)=2 ,                    

out-degree(v13)=0,                     

from-to(v13)= Ø. 

 

 

metric sg(v2,k2=3)=(v21,v22,v23): 

in-degree(v21)=0 ,                   

out-degree(v21)=0,                  

from-to(v21)= Ø,  

in-degree(v22)=1 ,                    

out-degree(v22)=2,                 

from-to(v22)=(k1=1,k3=2),  

in-degree(v23)=1 ,                    

out-degree(v23)=0,                

from-to(v23)= Ø. 

metric sg(v3,k3=2)=(v31,v32,v33): 

in-degree(v31)=0,                    

out-degree(v31)=0,                     

from-to(v31)= Ø,  

in-degree(v32)=1 ,                    

out-degree(v32)=2,                     

from-to(v32)=(k1=1,k2=3),  

in-degree(v33)=1 ,                    

out-degree(v33)=0,                 

from-to(v33)= Ø. 

4.3 Theorem 2 

Theorem 2: Given the set of all metrics computed for SnD1 

of Gd1 and SnD2 of Gd2, it holds that if and only if Gd1 and 

Gd2 are distinct then SnD1 and SnD2 will differ at least in 

one characteristic of one metric. 

Proof: 

1. (If) Gd1 and Gd2 are distinct then SnD1 and SnD2 

will differ at least in one characteristic of one 

metric. 

 

1.1. It is sufficient and enough to generate all 

possible paths of length at most n, beginning 

from a certain vertex vx, where n is the 

number of vertices in both graphs Gd1 and 

Gd2, to prove the isomorphism of Gd1 and 

Gd2 based on the isomorphism of all possible 

generated paths. That could be done in 

exponential time at worst case analysis. 

 

1.2. For every path, the initial vertex vx, will be 

vx1, the second vertex vy in the path will be 

vy2, … etc. It could be shown that all paths of 

designated SnD is a subset of the generated all 

possible paths. From now on and without any 

lose of generality the proof will deal with that 

subset of the generated all possible paths (i.e. 

all paths of designated SnD). 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 65– No.13, March 2013 

42 

                           Gd 

 

 

 

 

 SnD 

 

 

 

 

 

        sg(v1,k1=1)         sg(v3,k3=2)            sg(v2,k2=3) 

        

 

Fig. 3: This is the resulted SnD, with the starting vertex 

v11, from the corresponding directed graph Gd, with the 

starting vertex v1, such that 

Gd={(v1,v2),(v2,v1),(v1,v3),(v3,v1),(v2,v3),(v3,v2)}, ki is the 

location of the metric sg(vi,ki)=(vi1,vi2,vi3), 1≤ki≤3. 

 

1.3. If Gd1 and Gd2 are distinct then: 

1.3.1. Either at least one path, of the subset 

of the generated all possible paths, 

has different length at Gd1 than Gd2. 

For that case, it could be shown that 

at least one metric at SnD1 has 

different characteristic (in-

degree(viy),out-degree(viy),from-

to(viy)) than SnD2; 

 

1.3.2. Or all paths have the same length, 

but at least one path, of that subset of 

the generated all possible paths at 

Gd1, has different relations (i.e. no 

bijection) than any paths at Gd2.  

For that case, metrics at SnD1 and 

SnD2 will have the same (in-

degree(viy),out-degree(viy)) 

characteristics, but at least one metric 

at SnD1 will be different in its 

(from-to(viy)) characteristic than any 

metric at SnD2.  

Because since the paths length are 

equal in both Gd1 and Gd2, then  

(in-degree(viy),out-degree(viy)) 

characteristics in SnD1 and SnD2 

will not be enough to distinguish 

between them, but from the 

definition of isomorphism no 

bijection means there exist at least 

one edge between two vertices in 

Gd1 that has no match in Gd2, that 

case will manifest itself at the (from-

to(viy)) characteristic which catch 

that relation between vertices of 

metrics in SnD1.   

From the definition of isomorphism, 

the (from-to(viy)) characteristic of 

one metric in SnD1 will be different 

than any (from-to(viy)) characteristic 

of any metric in SnD2.    

2. (Only if) SnD1 and SnD2 differ at least in one 

characteristic of one metric then Gd1 and Gd2 are 

distinct.   That could be deduced directly from f-1 of 

Theorem 1. 

5. CONCLUSION AND FURTHER 

WORK 
The GI problem is extremely relevant in theoretical computer 

science.  Many attempts, of different nature, have been made 

to establish its complexity status. Among these attempts, the 

classification of tuples of vertices is an important one. An 

edge classification algorithm that can be used to prove that GI 

problem is rather in the class P will be presented. The 

proposed algorithm chooses a vertex v of one graph and 

classifies the edges according to their distance from that 

vertex v. The classification procedure is presented as a 

transformation from the input graph Gd to a directed graph 

SnD allowing the representation of paths of minimal length 

between the initial vertex and all other vertices.  The 

transformed graph SnD is not isomorphic to the original graph 

Gd.  The proposed approach introduces the element of 

redundancy that does not contradict with the work given in 

[7]. 

As further work, a polynomial time algorithm that shows 

SnD1 is isomorphic to SnD2 is worth the trial to be found.  

Based on Theorem 2, if and only if Gd1 and Gd2 are distinct 

then SnD1 and SnD2 will differ at least in one characteristic 

of one metric. One reason behind the believe of the existence 

of a polynomial time algorithm that can discover isomorphism 

between SnD1 and SnD2 lies in the fact that SnD graph 

sharing some common characteristics with planar graphs. In 

spite of these characteristics, SnD is not a planar graph.   
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