
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

1

Software Defect Prediction using Boosting Techniques

V.Jayaraj, PhD.

Associate Prof.
Bharathidasan University

Trichy

N.Saravana Raman
Research Scholar

Bharathidasan University
Trichy

ABSTRACT

Identification and removal of software defects is tedious and

time consuming for software development. Improperly

planned projects could have defects and the time spent to spot

and fix them requires more than the code development time.

A reverse engineering sub-area is identification of modules

necessitating re-engineering, focusing on faulty modules

prediction based on existing information sources like

documentation and source code. Predicting defective module

is essential in maintenance and reuse by simplifying system

working with information and reusable parts localization. In

software defect prediction, predictive models estimation is

based on code attributes to assess software modules

containing errors likelihood. In this paper, the classification

accuracy of Boosting techniques for software defect

prediction based on the KC1 dataset is investigated.

Keywords

 Software Defect Prediction, KC1 Dataset, Bagging

1. INTRODUCTION
Software engineering involves various aspects of software

production, developing and delivering useful, practical and

reliable software. Software engineering includes theoretical

methodology and tools required for professional software

development. Software engineers implement a

systematic/organized approach with suitable tools and

techniques desirable for software development. System

engineering as part of software engineering deals with

computer-based system development including hardware,

software and process engineering. Software development

involves actions called a software process which involves

system specification, development constraints and

development of software system, validation and evolution.

Identifying and fixing software defects is hard and

development teams place effort to find and fix defects. The

resulting change in software defects and subsequent change

that fixes it are recorded in project’s software history records.

Software defects can cause problems, ranging from minor to

catastrophic glitches leading to loss of life [1]. Finding and

removing defects is tedious and time consuming for software

development. Improperly planned projects are liable to defects

and time spent to spot and fix defects is more than actual

development time. Zero defects are not practical. Despite

intensive defect testing, many continue to exist, resulting in

unpredictable software behaviour, sometimes becoming

unusable or catastrophic.

Usually, software solutions are products with known and

unknown defects [2], leading to continuous evolving process

of software through unknown defect removal and uncovering

new defects over time. As new defects are uncovered in this

mode, fixing high priority defects is a software development

team’s job. Code review, unit testing and system testing

integration are conventional methods to identify defects. It

also includes software defect prevention process which

accompanying software evaluation and design processes.

Software developer’s record defects discovered during

evaluation/testing operations. An organized software

development team analyzes defects with statistical processes;

systems like Six Sigma effectively reduce defects.

Software metrics usually define program complexity, and

estimate programming time. Extensive research has been

carried out to calculate a module’s defects through use of

software metrics [3]. This work includes data mining

techniques and classification module applications [4]

requiring optimization to ensure software reliability which in

turn is evaluated using NASA dataset, KC1 dataset

specifically for classification and reliability prediction [5].

The aim of this paper is to identify defects based on existing

software metrics using data mining techniques and thereby

improve software quality which ultimately leads to reducing

the software development cost in the developing and

maintenance phase. This paper focuses on predicting defective

modules using Boosting techniques.

2. RELATED WORKS
Baojun et al [6] assessed CBA2 classification method

comparing it to other rule based classification methods for

software defect prediction problems. Investigation were done

to check rule sets effectiveness generated on data from a

software project and also whether it could predict defective

software modules in other similar software projects.

Application of CBA2 algorithm led to accurate and

comprehensible rule sets.

Song et al [7] suggested a general software defect prediction

framework supporting unbiased/comprehensive comparison

between competing prediction systems. The framework

includes scheme evaluation and defect prediction. Scheme

evaluation analyzes prediction performance of competing

schemes for specific historical data sets. The defect predictor

constructs models based on evaluated learning schemes

predicting software defects with new data according to a

constructed model. To demonstrate the proposed framework’s

performance, simulations were undertaken on publicly

available software defect datasets. Results demonstrated the

requirement of various learning schemes for differing datasets

(i.e., no scheme dominates) and that small details in

conducting evaluations conduct completely reverses findings.

The proposed framework is effective and not liable for bias

than earlier approaches.

Li et al [8] suggested a sample-based software defect

prediction procedure. It is possible to select and test a small

percentage of modules for a large software system, and build

a defect prediction model to predict defects. Three methods

described sample selection: random sampling with

conventional machine learners, random sampling with semi-

supervised learner and active sampling with active semi-

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

2

supervised learner. To ensure active sampling, a new active

semi-supervised learning method ACOForest was suggested

which could sample modules helpful for learning to build

good prediction model. Experiments were conducted on

PROMISE datasets, revealed that proposed methods were

effective and had the potential of being applicable to

industrial practice.

Defect predictor learners were improved by Zhang et al [9]

focusing on training sets with defect-rich portions. Defect data

CM1, KC1, MC1, PC1, PC3 were separated into components.

A projects subset (randomly selected) was tested. Training

sets were generated for a Naïve Bayes classifier in two ways.

Components, with higher than median number of defective

modules were used for training in dense treatment. In standard

treatment, any component modules were used for training.

Both samples were run against a test set and evaluated using

recall, probability of false alarm, and precision. Under

sampling and over sampling were performed on defect data

additionally. Every method was repeated in a 10-by-10 cross-

validation experiment. Prediction models from defect dense

components out-performed the standard method, in both under

and over sampling. In statistical rankings based on recall,

Probability of false alarm, and precision models learned from

dense components won 4-5 times other methods, and also lost

the least.

Menzies et al [10] proposed a meta-learner framework

WHICH that could be customized to various goals. When

customized to AUC (effort, pd), WHICH out-performed all

data mining methods. Effectiveness of learning defect

predictors from static code features was demonstrated and that

it did not necessarily hold when studying performance criteria

other than AUC (pf, pd). When defect predictors are assessed

by criteria like “read less, see more defects” (i.e. AUC (effort,

pd) selection of appropriate learner is critical. The study

concluded that:

– A learner tuned to “read less, see more defects” performs

best.

– A simple manual analysis out-performs standard learners

like NB, C4.5, RIPPER. Learners use is depreciated for “read

less, see more defects”.

3. METHODOLGY

3.1 KC1 Dataset
KC1 dataset is a NASA Metrics Data Program [11], and it is

publicly. KC1 dataset is widely used for verification, and

improving predictive software engineering models. KC1 is a

C++ system implementing storage management for receipt

and processing ground data. The dataset includes McCabe and

Halstead features code extractors. The measures are module

based.

The defect detectors are assessed as follows:

a = Classifier predicts no defects and module actually has no

error.

b= Classifier predicts no defects and module actually has

error.

c = Classifier predicts some defects and module actually has

no error.

d = Classifier predicts some defects and module actually has

error.

The accuracy, probability of detection (pd) or recall,

probability of false alarm (pf), precision (prec) and effort is

calculated as

 

 

a d
Accuracy

a b c d




  

 

d
recall

b d




 

c
pf

a c




 

d
prec

c d




 

 

. .c LOC d LOC
effort

TotalLOC




The KC1 dataset includes 2109 instances and 22 different

attributes which are 5 different LOC, 3 McCabe metrics, 12

Halstead metrics, a branch count and 1 goal-field. Attribute

information in the dataset is as follows: McCabe's line count

of code (LOC), cyclomatic complexity, design complexity,

program length, effort, Halstead, total operands, class and so

on.

Examples from dataset:

Example 1 - 1.1, 1.4, 1.4, 1.4, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3,

1.3, 2,2, 2,2, 1.2, 1.2, 1.2, 1.2, 1.4, false

Example 2 - 1,

1, true

Example 3 - 83, 11, 1, 11, 171, 927.89, 0.04, 23.04, 40.27,

21378.61, 0.31, 1187.7,65, 10,6, 0,18, 25, 107, 64, 21, true.

3.2 Boosting Methods
Boosting [12, 13] works through classification algorithms use

sequentially on training data reweighted versions. The

predicted final class label is based on weighted majority vote.

The initial weights is set at 1/N in Logitboost where N is the

number of instances with probability estimate p(xi=0.5). The

process is repeated m times and function fitted using least

squares regression. LogitBoost is a boosting algorithm casting

AdaBoost algorithm into a statistical framework [14]. If

AdaBoost is considered a generalized additive model and then

applied the cost functional of logistic regression, one derives

LogitBoost algorithm.

LogitBoost is a convex optimization, given that an additive

form model in the equation given below is searched for.

 t t

t

f h

The logistic loss is minimized by the LogitBoost algorithm as

follows:

  log 1 i iy f x

i

e




The bagging for classification or regression can be defined as

follows: The data is represented in pairs   , 1,...,i iX Y i n ,

where d

iX R denotes the d-dimensional predictor variable

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

3

and the output is iY R (regression) or  0,1,...., 1iY J 

(classification with classes).

  |E Y X x is generally the target function of

interest for regression or  | | | 0,..., 1P Y j X x j J    , the

multivariate function, for classification. The function

estimator is obtained from a base procedure, is given as

follows:

       1 1

ˆ . , ,..., , . : Rd

n n ng h X Y X Y R 

where the function  .nh defines the estimator as a function

of the data.

The Bagging procedure follows the steps given below:

 Step 1. Bootstrap sample    * * * *

1 2, ,..., ,n nX Y X Y is

constructed by randomly choosing n times with replacement

from the data    1 2, ,..., ,n nX Y X Y .

 Step 2. Calculate the bootstrapped estimator
 *ˆ .g

by:

 .
       * * * *

1 1
ˆ . , ,..., , . n n ng h X Y X Y

Step 3. The steps 1 and 2 are repeated M times; M value is

assigned either 50 or 100, yielding   *ˆ . 1,...,kg k M . Bagged

estimator is given by:

   1 *

1
ˆ ˆ. .

M k

Bag k
g M g


 

Bagged estimator in theory is given by:

   * *ˆ ˆ. .Bagg E g   

The precision and recall are given by the following equations:

tp tn
Accuracy

n




Pr
tp

ecision
tp fp




Re
tp

call
tp fn




 Where tp is true positives, fp is false positives and

fn is false negatives.

2 X precision X recall

F measure
precision recall

 


To evaluate the KC1 Dataset, Boosting with following

techniques are used:

 Boosting with decision stump

 Boosting with REPtree

 Boosting with M5

4. RESULTS AND DISCUSSION
The classification algorithms used in this study is Boosting.

The software complexity measures such as LOC measure,

Cyclomatic complexity, Base Halstead measures and Derived

Halstead measures of the KC1 (NASA) dataset are used to

classify the software modules. Weka is a machine learning

software written in Java. It supports several data mining

process such as preprocessing, clustering, classification and so

on. All classification in this study is carried out on Weka.

For the performance evaluation of the Boosting technique,

2107 samples from the KC1 Dataset is used, wherein 1391

samples are used as training set and 716 samples are used for

testing. Weka was used on KC1 dataset for classification and

the result is summarized in Table 1 and Figure 1 and Figure 2.

Table 1: Classification parameters

Fig 1: Classification accuracy on KC1 dataset

The mean absolute error is given by

1

1
| |

m

i i

k

i

i

p e
m

where

p



Mean absolute error=

 is the predicted output

e is the expected output

m is the number of instances

It is used to measure the deviation of the predicted output with

respect to the actual output.

Technique

used

Correctly

classified %

Root mean

squared error

Mean Absolute

error

Boosting

with

decision

stump 86.9483 0.3159 0.1969

Boosting

with

REPtree 86.5211 0.3233 0.1925

Boosting

with M5 87.3754 0.3165 0.178

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.13, March 2013

4

Figure 2: The RMSE and Mean absolute error

It is observed that boosting with M5 provides the best

classification accuracy. However from Figure 2, it is observed

that the difference between Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE) is minimum for Boosting

with decision stump which indicates the variance of the error.

5. CONCLUSION
Software defect prediction helps developers in defects

identification based on current software metrics with data

mining techniques. It is a major requirement for enhancing the

quality of the software. This also helps in reducing the

software development cost in the development and

maintenance phases. The objective of this paper is to

investigate the classification performance of various boosting

techniques for defect prediction. KC1 dataset was used for

evaluation of the boosting algorithms. The static code metrics

in the dataset is utilized to predict software defect.

Experiments reveal that bagging with decision stump provides

the best accuracy of 86.03%. Though Bagging with Random

forest achieves minimum difference between Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE) which

indicate error variance.

6. REFERENCES
[1] Sommerville. I, Software Engineering, 9th Edition, 2010.

Pearson.

[2] Zeller, A. (2009). Why programs fail: a guide to

systematic debugging. Morgan Kaufmann.

[3] C. Catal, and B. Diri, “A systematic review of software

fault prediction studies,” Expert Systems With

applications, 36(4):7346-7354, 2009.

[4] Huselius, J.,Andersson, J., Hansson, H.,Punnekkat, S:

Automatic Generation and Validation of Models of

Legacy Software, 12th IEEE International conference on

Embedded and Real-Time Computing Systems and

Applications 2006, Sydney, 2006, pp. 342 – 349.

[5] Chia-Chu Chiang,Bayrak, C: Legacy Software

Modernization, IEEE International Conference on

Systems, Man and Cybernetics, 2006, SMC '06, Taipei,

Vol. 2, 2006, pp. 1304-1309.

[6] Baojun, M., Dejaeger, K., Vanthienen, J., & Baesens, B.

(2011). Software defect prediction based on association

rule classification. Available at SSRN 1785381.

[7] Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J.

(2011). A general software defect-proneness prediction

framework. Software Engineering, IEEE Transactions

on, 37(3), 356-370.

[8] Li, M., Zhang, H., Wu, R., & Zhou, Z. H. (2012).

Sample-based software defect prediction with active and

semi-supervised learning. Automated Software

Engineering, 19(2), 201-230.

[9] Zhang, H., Nelson, A., & Menzies, T. (2010, September).

On the value of learning from defect dense components

for software defect prediction. InProceedings of the 6th

International Conference on Predictive Models in

Software Engineering (p. 14). ACM.

[10] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y.,

& Bener, A. (2010). Defect prediction from static code

features: current results, limitations, new

approaches. Automated Software Engineering, 17(4),

375-407.

[11] Shirabad, J. S., & Menzies, T. J. (2005). The PROMISE

repository of software engineering databases. School of

Information Technology and Engineering, University of

Ottawa, Canada, 24.

[12] Jerome Friedman, Trevor Hastie and Robert Tibshirani,

“Additive Logistic Regression: A Statistical View of

Boosting”, Annals of Statistcs, Vol. 28, No. 2, pp. 337-

407, 2000.

[13] Friedman, J. H. (2001). Greedy function approximation:

a gradient boosting machine.(English summary). Ann.

Statist, 29(5), 1189-1232.

[14] Friedman, T. Hastie , R. Tibshirani, “Additive Logistic

Regression: a Statistical View of Boosting,” Ann.

Statist., vol. 28, no. 2, pp.337-407, 1998

