
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

44

An Empirical and Analytical View of New Inheritance

Metric for Object-Oriented Design

Kumar Rajnish
Department of IT

Birla Institute of Technology Ranchi-835215, India

Yashbir Singh
Department of CSE

Birla Institute of Technology Ranchi-835215, India

ABSTRACT

Object-Oriented (OO) design is becoming more popular in

software development environment and OO design metrics

are essential parts of software environment. Inheritance is one

of the main features of OO programming paradigm. The

inheritance metrics gives information about the inheritance

tree of the system. This mechanism supports the class

hierarchy design and captures the IS-A relationship between a

super class and its subclass. This paper presents a new

approach for inheritance metrics CIT (Class Inheritance Tree)

for measuring the inheritance tree. The proposed metric is

evaluated against Weyuker’s properties (established criteria

for validity) and present empirical data from academic

projects (developed by experienced PG students) to illustrates

the usefulness of new metric. In this paper we also consider

the Chidamber and Kemerer (CK) and Li’s inheritance

metrics for study and presents a comparative study between

existing and propose metrics and the focus is on, how propose

metric is correlated with the existing ones.

General Terms

Design, Metrics, Measurement.

Keywords

Object-Oriented, Metrics, Inheritance Tree, Classes.

1. INTRODUCTION
It is clear that measurement of any process or product is

necessary for its success. Software engineering metrics are

units of measurement, which are used to characterized

software engineering products, processes and people. If used

properly they can allow us to identify and quantify

improvement and make meaning estimates.

The recent drive towards OO technology forces the growth of

OO metrics [1]. Several such metrics have been proposed and

their reviews are available [2-5]. The metrics suite proposed

by Chidamber and Kemerer (CK) is one of the best OO metric

[6-7]. Alshayeb and Li predict that OO metrics are effective

(at least in some cases) in predicting design efforts [8].

Rajnish and Bhattacherjee have also studied on the class

inheritance tree which is based on finding the depth of

inheritance tree of a class inheritance tree which is based on

finding the depth of inheritance tree of a class metric for class

inheritance tree in terms of sum of attributes (private,

protected and inherited) at each level on various C++ class

hierarchies [10-11] [14-16] [20-21].

Among the various measurements, metrics for class

inheritance tree is chosen for study. The inheritance metrics

gives information about the inheritance tree of the system.

Inheritance is a key feature of the OO paradigm. This

mechanism supports the class hierarchy design and captures

the IS-A relationship between a super class and its subclass.

Class design is central to the development of OO systems.

Because class design deals with functional requirements of the

system, it is the highest priority in OOD (Object-Oriented

Design). The use of inheritance is claimed to reduce the

amount of software maintenance necessary and ease the

burden of testing [7] and the reuse of software through

inheritance is claimed to produce more maintainable,

understandable and reliable software [22]. However, industrial

adoption of academic metrics research has been slow due to,

for example, a lack of perceived need. The results of such

research are not typically applied to industrial software [23],

which makes validation a daunting and difficult task. For

example, the experimental research of Harrison et al. [24]

indicates that a system not using inheritance is better for

understandability or maintainability than a system with

inheritance is easier to modify than system with no

inheritance.

However, it is agreed that the deeper the inheritance tree, the

better the reusability of classes, making it harder to maintain

the system. The designers may tend to keep the inheritance

hierarchies shallow, discarding reusability through inheritance

for simplicity of understanding [7]. So it is necessary to

measure the complexity of inheritance hierarchy to resolve

differences between the depth and shallowness of it.

This paper presents a new approach of inheritance metrics for

measuring the inheritance tree. The proposed metric is

evaluated against Weyuker properties (established criteria for

validity) [12] and present empirical data from academic

projects (developed by experienced PG students) [27] to

illustrates the usefulness of new metric. This paper considered

Chidamber and Kemerer (CK) and Li’s inheritance metrics for

study and present a comparative study between existing and

propose metrics and the focus is on, how propose metric is

correlated with the existing one. The rest of the paper is

organized as follows: Section 2 presents the Weyuker’s

properties. Section 3 presents the brief description of existing

OO metrics. Section 4 presents Results (which contains

description of proposed metric, Analytical evaluation,

empirical validation and their interpretation). Section 5

presents conclusion and future scope respectively.

2. WEYUKER’S PROPERTY
All The basic nine properties proposed by Weyuker [24] are

listed below. The notations used are as follows: P, Q, and R

denote combination of classes P and Q, µ denotes the chosen

metrics, µ (P) denotes the value of the metric for class P, and

P≡Q (P is equivalent to Q) means that two class designs, P

and Q, provide the same functionality. The definition of

combination of two classes is taken here to be same as

suggested by [1], i.e., the combination of two classes results in

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

45

another class whose properties are union of the properties of

the component classes. Also, combination stands for

Weyuker’s notion of “concatenation”.

Property 1. Non-coarseness: Given a class P and a metric µ,

another class Q can always be found such that, µ(P)≠ µ(Q).

Property 2. Granularity: There are a finite number of cases

having same metric value. This property will be met by any

metric measured at class level.

Property 3. Non-uniqueness (notion of equivalence): There

can exist distinct classes P and Q such that, µ(P)= µ(Q).

Property 4. Design details are important: For two class

designs, P and Q, which provide the same functionality it does

not imply that the metric values for P and Q will be same.

Property 5. Monotonicity: For classes P and Q the following

must hold: µ (P) ≤ µ (P+Q) and µ (Q) ≤ (P+Q) where P+Q

imply combination of P and Q.

Property 6. Non-equivalence of interaction: ƎP, ƎQ, ƎR such

that, µ (P) = µ (Q) does not imply µ (P+R) = µ (Q+R).

Property 7. Permutation of elements within the item being

measured can change the metric value.

Property 8. When the name of the measured entity changes,

the metric should remain unchanged.

Property 9. Interaction increases complexity: ƎP and ƎQ such

that: µ (P) + µ (Q) < µ (P+Q).

Weyuker’s list the properties has been criticized by some

researchers; however, it is widely known formal approach and

serves as an important measure to evaluate metrics. In the

above list however, property 2 and 8 will trivially satisfied by

any metric that is defined for a class. Weyuker’s second

property “granularity” only requires that there be a finite

number of cases having the same metric value. This metric

will be met by any metric measured at the class level.

Property 8 will also be satisfied by all metrics measured at the

class level since they will not be affected by the names of

class or the methods and instance variables. Property 7

requires that permutation of program statements can change

the metric value. This metric is meaningful in traditional

program design where the ordering of if-then-else blocks

could alter the program logic and hence the metric. In OOD

(Object-Oriented Design) a class is an abstraction of a real

world problem and the ordering of the statements within the

class will have no effect in eventual execution. Hence, it has

been suggested that property 7 is not appropriate for OOD

metrics.

Analytical evaluation is required so as to mathematically

validate the correctness of a measure as an acceptable metric.

For example, Properties 1, 2, and 3 namely Non-Coarseness,

Granularity, and Non-Uniqueness are general properties to be

satisfied by any metric. By evaluating the metric against any

property one can analyze the nature of the metric. For

example, property 9 of Weyuker will not normally be satisfied

by any metric for which high values are an indicator of bad

design measured at the class level. In case it does, this would

imply that it is a case of bad composition, and the classes, if

combined, need to be restructured. Having analytically

evaluated a metric, one can proceed to validate it against data.

Assumptions. Some basic assumptions used in section 4.2

under section 4 have been taken from Chidamber and

Kemerer [26] regarding the distribution of methods and

instance variables in the discussions for the metric properties.

Assumption 1:

Let Xi= the number of methods in a given class i

Yi= the number of methods called from a given method i

Zi= the number of instance variables used by a method i

Xi, Yi, Zi are discrete random variables each characterized by

some general distribution functions. Further, all the Xi’s are

independent and identically distributed. The same is true for

all Yi’s and Zi’s. This suggests that the number of methods

and variables follow a statistical distribution that is not

apparent to an observer of the system. Further, that observer

cannot predict the variables and methods of one class based

on the knowledge of the variables and methods of another

class in the system.

Assumption 2: In general, two classes can have a finite

number of “identical” methods in the sense that a

combination of the two classes into one class would result in

one class’s version of the identical methods becoming

redundant. For example, a class “foo_one” has a method

“draw” that is responsible for drawing an icon on a screen;

another class “foo_two” also has a “draw” method. Now a

designer decides to have a single class “foo” and combine the

two classes. Instead of having two different “draw” methods

the designer can decide to just have one “draw” method.

Assumption 3: the inheritance tree is “full”, i.e. there is a root,

intermediate nodes and leaves. This assumption merely states

that an application does not consist only of standalone classes;

there is some use of sub classing.

3. EXISTING OBJECT-ORIENTED

METRIC FOR STUDY
The brief description of existing OO metrics are presented in

Table 1.

Table 1. Existing OO Metrics

OO Metrics Description

Depth of

Inheritance Tree

(DIT)

The depth of inheritance tree will be the

maximum length from the node to the root

of the tree[7]

Number of

Children (NOC)

Number of immediate subclasses

subordinated to a class in the class

inheritance tree is the NOC for that class

[7].

Number of

Ancestor class

(NAC)

The NAC measures the total number of

ancestor classes from which a class

inherits in the class inheritance tree [9].

Number of

Descendent class

(NDC)

The NDC measures the total number of

descendent classes of a class [9].

4. RESULT

4.1 Class Inheritance Tree (CIT) Metric
CIT is used to measure the class inheritance tree. The primary

purpose of this metric is to measure how class is inherited by

multiple classes and how class inherits multiple classes at any

level in the inheritance tree. CIT is defined as follows:

 Where Ci is the classes at the ith level in the inheritance tree.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

46

CIN (Ci) = 1 if Ci is inherits multiple classes in the

inheritance tree.

 0, otherwise.

COUT(Ci) = 1 if Ci is inherited by multiple classes in the

inheritance tree.

 0, otherwise.

Intuitive Ideas for CIT

 Deeper the class in the class inheritance tree, more

possibilities of classes inherits multiple classes and

classes inherited by multiple classes, making it

difficult to predict the behavior of classes in

inheritance tree.

 Deeper inheritance tree constitutes more depth,

greater design complexity, since more classes

involved.

 Since a class inherits multiple classes, so deeper a

particular class in the inheritance tree, greater the

possibilities of reuse (since inheritance is a form of

reuse).

4.2 Analytical evaluation of CIT against

Weyuker’s Properties
Since the inheritance tree has a root and leaves. There may be

a situation where classes at the leaf node inherit multiple

classes and the root node is inherited by multiple classes.

Also, since every tree has at least some nodes with siblings;

there will always exist at least two classes with same CIT.

Suppose class P and Class R be leaves and class Q is the root,

therefore there may be a situation where CIT (P) =CIT(R) and

CIT (Q) ≠CIT(R) or CIT (P). So, property 1 (Non-coarseness)

and property 3(Non-uniqueness) is satisfied.

Property 2 (Granularity) is satisfied because there is finite

number of cases where CIT of classes may have the same

values at any level in the inheritance tree.

Generally design of classes involves choosing what properties

the class must inherit in order to perform its operation and

also it involves decision on the scope of the methods declared

within the class i.e. the sub classing for the class. The number

of subclasses is therefore dependent upon the design

implementation of the class. In other words CIT is design

implementation dependent. Hence, property 4 (Design details

are important) is satisfied.

When any two classes (say classes P and Q) are combined in

the inheritance tree then there are three possible cases:

Case 1: When class P and class Q are at same level in the

inheritance tree.

Fig. 1 Before and After combination of Class P and Q

From Fig. 1, CIT (P) =n, CIT (Q) =n, and CIT (P+Q) =n

So, CIT (P) ≤CIT (P+Q) and CIT (Q) ≤CIT (P+Q). Hence,

property 5 is satisfied.

Case 2: When class Q is not a child of class P and is at the

different level in the inheritance tree (see Fig 2).

If class P+Q is located as the immediate ancestor to B and C

(P’s location in the inheritance tree, the combine class cannot

inherit method from X, however if P+Q is located as an

immediate child of X (Q’s location) the combined class can

still inherits method from all the ancestors of P and Q,

therefore, P+Q will be located Q’s location.

Fig. 2 Before and After combination of Class P and Q

From Fig. 2, CIT (P) =x, CIT (Q) =y and y>x.

CIT (P+Q) =y

CIT (P) ≤CIT (P+Q)

CIT (Q) ≤CIT (P+Q)

Hence, property 5 is satisfied.

Case 3: When one is child of another

Fig. 3 Before and After the combination of Class P and Q.

From Fig. 3, CIT (P) =n, CIT (Q) =n+1

CIT (P+Q) =n

So, CIT (Q) is not ≤ CIT (P+Q). Hence, property 5 is not

satisfied.

Suppose there exist three classes P, Q’, R where P, Q’ are at

same level (as siblings) and R is the child of P.

Fig. 4 Before and After combination of class P and R.

A A

E D C

P+R Q’ P

E D R C

Q’

A A

D E C B

P+Q

Q

P

D E

C B

A A

C B

Z

X

P+Q

X P

Q Z C B

A A

F E D C

P+Q Q P

F E D C

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

47

From Fig. 4, CIT (P) =n, CIT (P+R) =n, CIT (Q’) =n.

So, CIT (P) =CIT (Q’) and CIT (P+R) =n.

After combining Q’+R

Fig. 5 After combination of class Q’ and R.

From Fig 5, CIT (P) =n, CIT (Q’+R) =n+1.

CIT (P) =CIT (Q) and CIT (P+R) ≠CIT (Q’+R)

Hence property 6 is satisfied.

For any two classes P and Q

CIT (P+Q) =CIT (P) or CIT (Q)

Or given any two classes P and Q with XP and XQ children

respectively, the following relationship hold

CIT (P) =XP and CIT (Q) =XQ

CIT (P+Q) =XP+XQ-δ

Where δ is the number of common children.

CIT (P+Q) ≤CIT (P) + CIT (Q)

Hence, property 9 is not satisfied.

4.3 Discussion
Data Collection. Data has been collected from undergoing

academic projects Library System and Hostel Management

[27]. These projects are developed by experienced PG

students. These are small projects and two versions are

developed. Version 1.0 has 20 inheritance classes and in

Version 1.1 some of these 20 classes are updated and 10 more

classes are added.

Empirical Data. The Bar Diagrams, summary statistics and

Correlation coefficients for different existing and propose

inheritance metrics for both version (version1.0 and version

1.1) are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11,

Fig. 12, Fig. 13, Fig. 14, Fig. 15 and Table 2, Table 3, Table

4, and Table 5.

Table 2. Summary Statistics for data set version 1.0

OO Metric Min Max Mean

DIT 0 3
1.2105

NOC 0 5
0.8596

NAC 0 4
1.2544

NDC 0 13
1.2895

CIT 0 1
0.3333

Table 3. Summary Statistics for data set version 1.1

OO Metric Min Max Mean

DIT 0 8
2.4401

NOC 0 10
0.9499

NAC 0 8
2.5209

NDC 0 47
2.4847

CIT 0 2
0.2758

Table 4. Correlation Coefficient for the data set version1.0

Correlation

coefficient
DIT NOC NAC NDC CIT

DIT 1.0000 -0.685 0.959 -0.648
-0.489

NOC -0.685 1.0000 -0.670 0.819
0.750

NAC 0.959 -0.670 1.000 -0.632
-0.406

NDC -0.648 0.819 -0.632 1.000
0.644

CIT -0.489 0.750 -0.406 0.644 1.000

Table 5. Correlation Coefficient for the data set version1.1

Correlation

coefficient
DIT NOC NAC NDC CIT

DIT 1.0000 -0.378 0.966 -0.466
-0.390

NOC -0.378 1.0000 -0.382 0.685
0.700

NAC 0.966 -0.382 1.000 -0.438
-0.366

NDC -0.446 0.685 -0.438 1.000
0.452

CIT -0.390 0.700 -0.366 0.452 1.000

Fig. 6 Bar chart for Version 1.0 for DIT Metric

A

E D

C Q’+R

P

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

48

Fig. 7 Bar chart for Version 1.1 for DIT Metric

Fig. 8 Bar chart for Version 1.0 for NOC Metric

Fig. 9 Bar chart for Version 1.1 for NOC Metric

Fig. 10 Bar chart for Version 1.0 for NAC Metric

Fig. 11 Bar chart for Version 1.1 for NAC Metric

Fig. 12 Bar chart for Version 1.0 for NDC Metric

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

49

Fig.13 Bar chart for Version 1.1 for NDC Metric

Fig. 14 Bar chart for Version 1.0 for CIT Metric

Fig. 15 Bar chart for Version 1.1 for CIT Metric

4.4 Interpretation of Result
From Table 2 and Table 3, it is observed that in both version

(version 1.0 and version1.1) have low value for DIT, NOC,

NAC, NDC, and CIT metric. This suggests that most of the

classes in an application tend to close the root in the

inheritance tree. By observing the DIT, NOC, and NAC

metric value in both versions, a designer can determine

whether the design is too many classes near the root or many

classes near the bottom of the inheritance tree. By observing

CIT metric value whose maximum value is 2 in version 1.1

and also has less mean value 0.2758 as compare to version 1.0

whose maximum value is 1 with mean value 0.3333. This

suggests that, designer is not taking the advantage of

inheritance classes in the inheritance tree.

By observing NDC metric value whose maximum value is 13

in version 1.0 and 47 in version 1.1. This suggests that

designer tends to keep the number of levels of abstraction to a

manageable number in order to facilitate comprehensibility in

the overall architecture of the system. Designers may be for

shaking reusability through inheritance for simplicity of

understanding.

From Table 4 and Table 5, it is observed that CIT is correlated

very well with NOC and NDC in both versions (version 1.0

and version 1.1) especially CIT has a highest correlation with

NOC in version 1.1 (0.700). The negative correlation of CIT

with DIT and NAC in both versions because of may be less

reuse and most of the classes are top heavy (too many classes

are near the root of the tree).

From Fig 14 and Fig 15, a Bar Chart for CIT. It is observed

that 65% of classes whose CIT is 0 and 35% of classes whose

CIT is 1 in version 1.0 (this indicates classes are less inherited

by subclasses and classes inherits less classes in the

inheritance tree) and in version 1.1, 75% of classes whose CIT

is 0, 23% of classes whose CIT is 1 and 2% with CIT 2. This

suggests that designer is not taken the advantage of inherited

classes in the inheritance tree with CIT 0. It is observed that

both versions are top heavy (many classes are used near the

root).

5. CONCLUSION AND FUTURE WORK
In this paper an attempt has been made to define a new metric

for inheritance tree Class Inherited Tree (CIT) for measuring

the inheritance tree of the system which is based on how the

class is inherited by multiple classes and how class inherits

multiple classes in the inheritance tree.

As seen from Table 4 and Table 5 it is observed that CIT is

correlated very well with NOC and NDC metric in both

versions (version 1.0 and version 1.1) especially with NOC,

CIT has highest correlation. Through CIT one can easily find

the inherited classes (both super and subclasses) in the

inheritance tree.

As seen from Fig. 14 and Fig. 15 it is observed that in both

versions CIT has very high percentages of values 0 and 1, this

indicates a less reuse of inheritance from super class to

subclasses and vice versa. Since CIT may be considered as a

good measure for the inheritance tree because in some

situation if designer will get most percentages of classes with

CIT is 2, that indicates more classes are inherited from super

class to subclasses and vice versa hence, reusability is high.

The future scope includes the following fundamental issues:

(1) The validation of proposed metric is done on small data

sets, so, in the next stage we perform validation of CIT with

all other existing metrics on large systems which in turn to

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.12, March 2013

50

improve the quality of classes.

(2) Try to find the impact of CIT on inheritance tree on

different versions of data sets.

ACKNOWLEDGEMENT
Our sincere thanks to Birla Institute of Technology, Mesra,

Ranchi, India for encouraging us to do this work.

6. REFERENCES
[1] G.Booch, “object-oriented Design and Application”,

Benjamin/Cummings, Mento Park, CA, 1991.

[2] N.I. Churcher and M. Sheppered, “Comments on “A

Metric Suite for Object-Oriented Design”, IEEE Trans.

on Software Engineering, 21 (1995), pp. 263-265.

[3] B. Henderson-Sellers and J. M. Edwards, “Books Two of

Object-Oriented Knowledge: The Working Object”,

Prentice Hall, Sydney, 1994.

[4] M. Hitz and B. Montazeri, Correspondence, Chidamber

and Kemmerer’s Metrics Suite: “A Measurement Theory

Perspective”, IEEE Trans. on Software Engineering, 22,

4(1996), pp.267-271.

[5] M.Lorenz and J. Kidd, “Object-Oriented Software

Metrics”: A Practical Guide, 1994.

[6] S. R. Chidamber and C. F. Kemerer, “Towards a Metric

Suite for Object-Oriented Design”, in Proc. Sixth

OOPSLA Conf., (1991), pp.197-211.

[7] S. R. Chidamber and C. F. Kemerer, “A Metric Suite for

Object-Oriented Design”, IEEE Trans. on Software

Engineering, 20, 6(1994), pp.476-493.

[8] M. Alshayeb and W. Li, “An Empirical Validation of

Object-Oriented Metrics in Two Different Iterative

Software Processes”, IEEE Trans. on Software

Engineering, 29, 11 (2003), pp.1043-1049.

[9] W. Li,”Another metric suite for object-oriented

programming”, The Journal of Systems and Software

1998; 44(2): pp.155-162.

[10] K. Rajnish and V. Bhattacherjee, “Maintenance of

Metrics through class Inheritance hierarchy”,

proceedings of International conference on Challenges

and Opportunities in IT Industry”, PCTE, Ludhiana,

2005, pp.83.

[11] K. Rajnish and V. Bhattacherjee,” A New Metric for

Class Inheritance Hierarchy: An Illustration”,

proceedings of National Conference on Emerging

Principles and Practices of Computer Science &

Information Technology”, GNDEC, Ludhiana, 2006, pp

321-325.

[12] E.J.Weyuker. “Evaluating Software Complexity

Measures”, IEEE Trans. on Software Engineering, 14,

1998, 1357-1365.

[13] P. K. Mahanti, K. Rajnish and V. Bhattacherjee,

“Measuring Class Cohesion: An Empirical Approach”,

Proceedings of ISCA 19th International Conference on

Computer Applications in Industry and Engineering

(CAINE-2006), November 13-15, Las Vegas, Nevada,

USA, pp. 193-198.

[14] K. Rajnish and V. Bhattacherjee, “Class Inheritance

Metrics and development Time: A Study”, International

Journal Titled as “PCTE Journal of Computer Science,

Vol.2, Issue 2, July-Dec-06, pp. 22-28.

[15] K. Rajnish and V. Bhattacherjee, “Applicability of

Weyuker Property 9 to Object- Oriented Inheritance Tree

Metric-A Discussion”, proceedings of IEEE 10th

International Conference on Information Technology

(ICIT-2007), published by IEEE Computer Society Press,

pp. 234-236, December-2007

[16] K. Rajnish and V. Bhattacherjee, “Class Inheritance

Metrics-An Analytical and Empirical Approach”,

INFOCOMP-Journal of Computer Science, Federal

University of Lavras, Brazil, Vol. 7 No.3, pp. 25-34,

2008.

[17] G. Roy, “On the Applicability of Weyuker Property Nine

to Object-Oriented Structural Inheritance Complexity

Metrics, M. Tech. Minor Project Report, Faculty of Eng,.

Dayalbagh Educational Inst., Agra.

[18] Gurusaran and G.roy, “On the applicability of Weyuker

Property Nine to Object- Oriented Structural Inheritance

Complexity Metrics, IEEE Transaction on Software

Engineering, Vol.27, no.4, 2001, 361-364.

[19] L. Zhang and D. Xie, “Comments on „On the

applicability of Weyuker Property Nine to Object-

Oriented Structural Inheritance Complexity Metrics,

IEEE Transaction on Software Engineering, Vol.28,

no.5, 526-527.

[20] K. Rajnish, V. Bhattacherjee and S. K. Singh, “An

Empirical Approach to Inheritance Tree Metric”,

proceedings of National Level Technical Conf. (Techno

Vision-2007), Sri Shankaracharya college of Engineering

and Technology, Department of MCA, Bhillai, 2007, pp.

145-150.

[21] K. Rajnish, A. K. Choudhary, A. M. Agrawal,

“Inheritance Metrics for Object-Oriented Design”,

IJCSIT, Vol. 2 No.6, December 2010, pp.13-26.

[22] Basili. VR, Briand. L. C and Melo. WL, “A validation of

object-oriented design metrics as quality indicators”,

Technical report, University of Maryland, Department of

Computer Science, 1995; 1-24.

[23] Fenton. NE, Neil. M, “Software metrics: Successes,

failures and new directions”, The Journal of Systems and

Software 1999; 47(2-3):149-157.

[24] Harrison. R, Counsell. SJ, Nithi. RV, “An evaluation of

the MOOD set of object-oriented software metrics”.

IEEE Trans. On Software Engineering 1998; 24(6):491-

496.

[25] Daly. J, Brooks. A, Miller. J, Roper. M, Wood. M,

“Evaluation inheritance depth on the maintainability of

object-oriented software”, Empirical Software

Engineering 1996; 1(2): 109-132.

[26] H. Kabaili, R. K. Keller and F. Lustman, “Cohesion as

Changeability Indicator in Object-Oriented System”, in

Proc. Fifth European Conf. Software Maintenance and

Reengineering, 2001.

[27] Internal reports, Department of Computer Science &

Engineering, Birla Institute of Technology, Ranchi.

