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ABSTRACT

A feasible green light assignment is an assignment of time period
to each traffic stream so that only compatible traffic streams are al-
lowed to recieve overlapping time period. In case of an intersection,
it is almost always possible to find several feasible green light as-
signments. We usually have some goal such as to minimise the total
waiting time, to maximise the volume of flow etc., to be achieved.
In this paper we will try to find an optimal feasible green light as-
signment which minimises the waiting time at the same time max-
imises the volume of flow, using intersection graph.
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1. INTRODUCTION

The requirement of phasing traffic lights is to move traffic safely
and efficiently. With increasing concern about time and energy
use, the latter goal is becoming of incresed importance. Con-
sider a traffic intersection at which we wish to install a new traf-
fic light. Various traffic streams are approaching the traffic inter-
section. Certain traffic streams are judged to be compatible with
each other, in the sense that they can be moving at same time
without conflict. The decision about compatibility can be made
ahead of time and may be based on estimated volume of traffic in
a stream as well as traffic pattern. The compatibility relation can
be represented by a graph known as compatibility graph,whose
vertices are the traffic streams, and two streams are joined by an
edge if they are judged to be compatible. In traffic light phas-
ing, we wish to assign a period of time to each stream during
which it recieves a green light, and to do it in such a way that
only compatible traffic streams can get green lights at the same
time. So there is a cycle of green and red lights, and it keeps on
repeating again and again. We may think of time during the cy-
cles as being kept on a large clock and the time during which
a given traffic stream gets a green light corresponds to an arc
on the circumference of the clock circle. Then a feasible green
light assignment consists of an assignment of an arc of the cir-
cle to each traffic stream so that only compatible traffic streams
are allowed to recieve overlapping arcs. In terms of compatibil-
ity graph, only vertices joined by an edge are allowed to recieve
overlaping arcs. Suppose X = {A4;, As, ..., A, } is a family of
sets, we can associate a graph with X, called the infersection
graph of X [I7]], as follows: the vertices of this graph are the sets
in X, and there is an edge between two sets A; and A; if and
only if they have a nonempty intersection. The intersection graph
of a family of intervals on the real line is called an interval graph.
So, an intersection graph corresponding to a feasible green light
assignment will be a subgraph of the compatibility graph and it
must be a circular arc graph. If we require that no green light
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time period overlap the starting time i.e. a cycle begins with all
red lights, then the intersection graph corresponding to a feasible
green light assignment is a spanning subgraph of the compatibil-
ity graph which is an interval graph.

2. COMPATIBILITY GRAPH OF A TRAFFIC
INTERSECTION

Before introducing compatibility, let us define conflictness rela-
tion of traffic streams. Also, it is necessary to know the trajec-
tory, the path used by a traffic stream to traverse the intersection
to the conflict area. Usually some pairs of traffic streams use,
along a part of their trajectories, the same space on the intersec-
tion. These are the streams whose trajectories cross or merge. A
conflict exists between such streams.

The set of all pairs of traffic streams that creates a conflict be-
tween elements of the pair represents the conflictness relation.
Thus, the conflictness relation, C, can be defined as C; C 7 X T,
where 7 is the set of traffic streams,

Cy1 = {(0i,0;)| the trajectories of o; and o; cross or merge,
0,05 €T }.

Hence, the nonconflict relation is the set of all pairs of traffic
streams that are not mutually in conflict, i.e. C, = (7 x 7) \ Cj.
Also, there is a set of traffic stream pairs, which comprise con-
ditionally compatible streams i.e. trajectories cross or merge but
can simultaneously get the right-of-way, can be defined as [4]:
C% = {(04,0;) € Cy| streams o; and o; can simulataneously
get the right-of-way}.

Now the compatibility relation of traffic stream pairs whose ele-
ments can simultanously get the right-of-way is: C; = C5 U CY.
Again, if the set of streams that passes through the intersection
without any conflict is denoted by 7/, where 7/ C 7, then the set
of pairs of traffic streams that can simultaneously get the right-
of-way is defined by [4]

C3 = Cy\{(04,05)|(0;,0;) € Cy, (00105 €T') }.
Hence, the compatibility relation can be defined as [4]]
C.=0C5UAg
where
Ags ={(04,0;)|0; € T}

The relation C'. is symmetric and reflexive.
The compatibility graph of traffic streams is defined as the set of
traffic streams, 7, and compatibility relation C. [4], [9]:

G.=(1,C.)

Since set 7 is finite, and relation C. symmetric and reflexive,
graph G, is a finite, nonoriented graph with a loop at each
node(may be omitted, if there is no confusion).



3. INTERVAL GRAPH: PROPERTIES AND
CHARACTERISATION

Interval graphs arose from purely mathematical considera-
tions (Hajos(1957)) and independently, from a problem of
genetics[1]]. It is also easy to see that if GG is an interval graph,
then every generated subgraph[5] must also be an interval
graph. A generated subgraph means a subgraph generated by a
subset of the vertex set. However, this is not the case for every
subgraph[[7]. Thus, if G is an interval graph, it has the property
that no graph Z,,, n > 4, is a generated subgraph. A graph G
with this property is called a rigid circuit graph or a triangulated
graph [7)]. But every rigid circuit graph is not an interval graph.
The following theorem due to Lekkerkerker and Boland gives an
if and only if condition which involves the concept of asteroidal
triple [[1]. Three vertices form an asteroidal triple in a graph G
if for each two, there exists a path containing those two but no
neighbour of the third. [10]

Theorem 3.1 A graph is an interval graph if and only
if it is a rigid circuit graph and it has no asteroidal triple [3]] [6].
There is yet a second characterisation of interval graphs, which
is due to Gilmore and Hoffman and it needs the ideas of
complement of a graph and transitively orientable graph [9].

Theorem 3.2 A graph G is an interval graph if and
only if Z4 is not a generated subgraph and G€¢ is transitively
orientable [3].

There is another nice characterisation of interval graphs, which
is due to Fulkerson and Gross. It requires the concepts of
dominant clique vetex incidence matrix and consecutive 1’s
property of a matrix. If G is any graph then its dominant
clique-vertex incidence matrix is defined as the matrix whose
rows correspond to the dominant cliques(A clique is called
dominant if it is maximal), and the columns to the vertices. The
(i,7)t" entry is 1 if the j*" vertex belongs to the i** dominant
clique, and it is O otherwise [7]. Again, A matrix A of 0’s and
1’s has the consecutive 1’s property if it is posssible to permute
the rows such that the 1’s in each column appear consecutively
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Theorem 3.3 A graph is an interval graph if and only
if its dominant clique-vertex incidence matrix has the cosecutive
1’s property [2].

Since the identification of largest clique of a graph is itself an
NP-hard problem, so it is not generally easy to identify the
collection of dominant cliques of a graph.

4. PHASING THE TRAFFIC LIGHTS

Interval graphs and circular arc graphs have wider application
in phasing the traffic lights. The traffic light phasing helps the
traffic to move safely and at the same time efficiently. The sense
of efficiency may be less waiting time(total amount of red light
time in a circle), increased the volume of flow, less traffic jam
etc. Now if we think about safety then we have to sacrifice effi-
ciency, in some sense(more waiting time) or on the other hand if
we think only about efficiency then there may be some danger-
ous consequences. So we have to choose a feasible green light as-
signment which is best suited for a given intersection. Now, what
makes one feasible green light assignment better than the other
? We usually have some preferences depending on the intersec-
tion. For example we may wish to minimise the total amount of
waiting time, or to minimise a weighted sum of red light times
by weighting more heavily the red light time for heavily trav-
elled traffic streams, or as Stoffers [§] points out, we might have
some information about expected arrival times of different traf-
fic streams, and we might wish to penalise starting time being
far from the traffic stream’s expected arrival time and minimise
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the penalties. Different procedure may be adopted for finding an
optimal green light assignment for a given criterion.

5. APROBLEM

Let us try to find an optimal feasible green light assignment
which will minimise the waiting time at the same time maximise
the flow of traffic. To find such an optimal feasible green light
assignment, we must identify each interval graph(or circular arc
graph) which is a spanning subgraph of the compatibility graph.
For each of these interval graphs, find all the different consecu-
tive ordering of dominant cliques and for each such ordering we
must find an optimal solution of pahse durations. Then consider
all these together to find an optimal solution for the entire graph.
Let us illustrate this by considering the following intersection:

Fig 1. An Intersection

The corresponding compatibility graph G is as follows:

And some of the corresponding intersection graphs are:
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Fig 2. Some Intersection Graphs

Now, let us consider the first intersection graph in Fig. 2(a). A
feasible green light assignment corresponding to this intersection
graph is shown in Fig. 3:

Fig 3. A feasible green light assignment

For concreteness, we handle the interval graph case. And by
consecutiveness of the ordering, K1 = {e, b}, K5 = {b,a,d},
K; = {d,c}, K4 = {c, f} is one consecutive ordering of
dominant cliques. Thus there are four phases. In phase 1, traffic
streams e and b get green lights, then in pahse 2, streams b, a, d
get green lights and so on. Suppose to each clique K;, we assign
a duration d;. Now our aim is to find the values of these d;’s so
that total red light times is as minimum as possible at the same
time the flow of traffic is as maximum as possible. Let v1, va,
V3, V4, Us, Vg be the volumes(pcu/s)[4] of steams a, b, ¢, d, e, f
respectively. The answer is obtained by observing the following:
a gets red light during phases K7, K3 and K4, so a’s total red
light time is dy + d3 + dy4. Similarly b’s, ¢’s, d’s, e’s and f’s red
llght times are d3 + d4, d1 + dg, dl + d4, d2 + dg + d4 and
dy + do + d3 respectively. And the volumes(pcu/s) of traffic that
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will be blocked during these red light times are vy + vo + vy,
V1 + V2 + Vg + Vs, U3 + Vg + Vg, V1 + V2 + VU3 + Vg, V2 + U5
and vs + vg respectively. (When the stream a is blocked, all the
phases i.e. K;’s containing a will be showing red light and so
on.) So, we have to minimise

Z = (di +ds + da)(v1 +v2 + va) + (d3 + da)(v1 + v2 +
V4 + Us) + (dl + dg)(1)3 + vy + ’UG) + (dl + d4)(’1)1 + vo +
v +v4) + (d2 + ds + dy) (V2 4+ vs) + (dy + da + d3)(vs + v6)
Here, all the values of v;’s are expected to be known. We also
have to make the assumptions that

(1) green light time duration for each stream is of some mini-
mum length, say .

(2) The duration of a complete cycle is fixed, say 7.

Since a’s total red light time is dy + d3 + d4, so a’s total green
light time is ds and so on. So, the problem reduces to minimise
Z subject to

dy > t,
di +dy > t,
ds +dy > t,
dy +ds > t,
dy >t,
dy > t,
dy+dy+ds+dy =T,

and obviously each d; > lb where [b is some fixed lower bound
of the time duration. Since all the values of v;, t and T are
known, so it won’t be difficult to find the optimal solution of this
LPP. Similarly for a different feasible green light assignment,
we can construct a similar LPP and get another solution. From
all these solution we can have an optimal feasible green light
assignmnt. Then putting all these optimal solutions for different
possible interval graphs of G which arises from different con-
secutive orderings of their dominant cliques, together to find an
optimal solution i.e. optimal feasible green light assignment for
the entire graph GG and that will be the best suited green light as-
signment for the intersection shown in Fig. 1 satisfying our goal.

6. CONCLUSION

For relatively small graphs, this procedure seems to be very vi-
tal as it reduces a somewhat critical optimisation problem to a
simple LPP. In case of larger graphs this process will also work
but it will be costly as far as the time is concerned, as even iden-
tifying all the dominant cliques invloves a lengthy computation
for larger graphs. However, in most of the real cases the graphs
are relatively small(i.e. less number of streams). In this paper we
consider a problem to find an optimal feasible green light assign-
ment which will minimise the waiting time as well as maximise
the flow of traffic. Since Z is a function of d;’s with the weights
v;’s, for different purpose we may suitably choose the weights
and a similar formulation of LPP can be obtained whose solu-
tion will give the required optimal assignment for that purpose.
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