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ABSTRACT 
In this paper, we present and discuss an algorithm for the 

numerical solution of system of the initial value problems of 

the form  ,,vtfuD   ,,utgvD    ,0 0uu   

  ,0 0vv  ,1,0   where uD
is the derivate of 

u of order , vD
 is the derivative of v of order  in the 

sense of Caputo. The algorithm is based on the fractional 

       s                                                     

                 s method. 
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1. INTRODUCTION 
 In this we introduce an algorithm for the numerical solution 

of initial value problems 

 of the form  

 ,,vtfuD   ,,utgvD 
   ,0 0uu 

  ,0 0vv  .1,0         (1) 

Where uD
, vD

denote the Caputo fractional 

differential operators. 

Fractional order differential equations are generalizations of 

classical integer order differential equation These are 

increasingly used to model problems in the 

fluid flow, mechanics, viscoelasticity, biology, physics, 

engineering and other applications. Brownian motion and 

fractional diffusion-wave equations and many physical 

phenomena [1-5]. 

Most nonlinear fractional differential equations do not have 

analytic solutions, so approximations and numerical 

techniques must be used [9-12 ]. The decomposition method 

[13-18 ] and vartional iteration method [16-18] are relatively 

new approaches to provide an analytical approximation 

solution to linear and non linear problems. A comparison 

between the variational iteration method and Adomian 

decomposition method for solving fractional differential 

equations is given in [13]. The fact that the variational 

iteration method solves non linear equations without using 

Adomian polynomials can be considered as an advantage of 

this metho over Adomian decomposition method. 
A few numerical methods for fractional differential equations 

have been presented in the literature [8-12 ]. In this paper. We 

begin by introducing some necessary definitions and 

mathematical preliminaries of the fractional calculus theory 

which are required for establishing our results. In sections 3 

and 4, we introduce the modified trapezoidal rule and a new 

                                                      

derivatives, respectively. In section 5, we derive the fractional 

                                                            s 

method for the numerical solution of ordinary differential 

equations. The algorithm itself is presented in details in 

section 6. In section 7, we present three examples to show the 

efficiency and the simplicify of the algorithm. 

2. Basic definitions 

Definition 2.1 

A real function  ,xf ,0x is said to be in the space 

,C  R  if there exists a real number p , such 

that    ,1 xfxxf p where    ,,01 Cxf and it is 

said to be in the space
mC  iff 

 
Cf m  , .Nm  

Definition 2.2 

The Riemann-Liouville fractional integral operator of order  

,0  of  a function ,Cf  ,1  is defined as 
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Definition 2.3 

The fractional derivative of ( ) in the Caputo sense is 

defined as 
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Definition 2.4 

A two-parameter function of the Mittag-Leffer type is 

defined by the series expansion 
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Definition 2.5 

The Laplace transform of the function f(t) is defined by: 
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Definition 2.6 
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Lemma 2.7 

If mm  1 , Nm , mCf 1 , 1 , 
then 

   xfxfJD                               (2) 
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3 Results and Theorems 

3.1 Modified trapezoidal rule : 

We present a review of the modified trapezoidal rule, which is 

introduced in [20]. This is used to approximate the fractional 

integral  tfJ 
 by a weighted sum of function values at 

specified points. Suppose that the interval  a,0  

is subdivided into k subintervals  1, jj tt  of equal width 

k

a
h   by using the nodes jht j  ,  for  

j=0,1,……,k .                                
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(4) 

 is an approximation to the fractional integral  

        ,,,, hfEhfTatfJ T , 0a , 

0 .                                                                                        

(5) 

Furthermore, if     aCtf ,02 . There is a constant 
C  

depending only on   so that the error term  ,,hfET
 

(6) 

3.2 Generalized Taylor's rule  

In this section we introduce a new generalization of Taylor's 

formula that involves Caputo fractional derivative. This 

generalization is presented in [20]. We begin by the 

generalized mean value theorem.  

Theorem (Generalized mean value 

theorem) 

Suppose that     aCxf ,0  and    aCxfD ,0
, 

for 10  . Then we have  

    
 

    


xfDfxf 



1

0            (7) 

with  x 0 ,  ax ,0 . 

Proof:  in [20]. 

Theorem : 

Suppose that   xfDn ,      aCxfD n ,01   , 

for  10  . Then we have  
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             (8) 

where
 DDDDn  (n-times). 

Proof : 

The proof can be obtained by using the properties of the 

Riemann-Liouville fractional integral operator and the Caputo 

fractional derivative operator and the relation : 

        

       xfDDJxfDJ

xfDJxfDJ

nnn

nnnn







  11

 

  .0 fDJ nn   

Theorem: ( Generalized Taylor's rule) 

Suppose that    aCxfDk ,0  for 1,,1,0  nk 

, where 10  . Then we have  

   22,, hohafChfET 
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with  x0  ,  ax ,0 .                           (9) 

Proof : From (7 ), we have  
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that is,  
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Applying the integral mean value theorem to ( 12 ) yields 
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3.3 The algorithm for one equation: In this 

section we shall derive the fundamental algorithm for the 

numerical solution of  the initial value problem  

    tytftyD , ,   ,0 0yy  10   

.0t                                                   (13) 

The new algorithm is based on the modified trapezoidal rule 

and the fractional Euler's method. Our approach depends on 

the analytical property that the initial value problem (13 ) is 

equivalent to the integral equation  

      .0, ytytfJty  
                             (14) 

Let  a,0  be the interval over which we want to find the 

approximation the solution. Suppose that the  a,0  is 

subdivided into k subintervals  1, jj tt  of 

equal width 
k

a
h   by using the nodes jht j  , for 

kj ,,1,0   . To obtain the solution point   11, tyt , 

we substitute 1tt   into (14 ) and we get  

        0, 11 yttytfJty                      (15) 

Now if the modified trapezoidal rule (4 ) is used to 

approximate     1, ttytfJ  with step size 

01 tth  , then the result is  
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(16) 

Notice that the formula on the right-hand side of ( 16 ) 

involves the term  1ty . So, we use an estimate for  1ty . 

Fractional Euler's method will suffice for this purpose. 

From  
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into ( 16 ) yields 
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(17) 

The process is repeated to generate a sequence of points that 

approximate the solution   ty . The general formula for 

our algorithm is: 
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3.4 The algorithm for system of  two 

equations: 

In this paper we get a numerical solution of system of  

fractional differential equations:  

 vtfuD ,
 

 utfvD , ,     0000 , vtvutu   

1,0    

We will use the same way to obtain the algorithm for this 

system the we have 
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3.5 Results: 

Example  

The homogeneous linear system : 

vuD 95.  

 

  ,194.1. 0  uu   17.11. 0  vv  

where 1.0 t  

The exact solution  

   85.1

9,.85.1

1. tEttu  ,    85.1

85.1,85.1

85. tEttv   

from definition (4) 

 
 










0

85.85.1

85.185.1k

k

k

t
tu ,  

 









0

1.85.1

9.85.1k

k

k

t
tv  

Table 1. Numerical values for example  with h=.1, 1.0 t  

t 
Approu  

exactu  Approv  
exactv  

.2 0.37967 0.27236314 1.429247 1.136372 

.3 0.4520032 0.3894135 1.300924 1.132096 

.4 0.5786627 0.50580609 1.354413 1.153449 

.5 0.7209318 0.62435337 1.425796 1.194041 

.6 0.8703125 0.74715702 1.513180 1.251261 

 

Example  

The homogeneous linear system : 

vuD 99.  

uvD 98.  

  10848.1. 0  uu   0347.11. 0  vv  where 

1.0 t  

The exact solution 

   97.1

97.1,97.1

97 tEttu   ,    97.1

98,.97.1

02. tEttv   

and we have 
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97.97.1
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k

k

t
tu , 
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k

k

t
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Table 2. Numerical values for example  with h=.1, 1.0 t  

t 
Approu  

exactu  Approv  
exactv  

.2 0.3256916 0.21409327 1.058076 1.0432 

.3 0.3271078 0.32015133 1.138966 1.06272 

.4 0.4466322 0.4285283 1.1719626 1.095433 

.5 0.5663590 0.5406025 1.2242022 1.14057 

.6 0.6921711 0.6576661 1.2885656 1.198047 

 

Example: 

vuD 99.  

uvD 991.  

  1053023.1. 0  uu , 

  015581.11. 0  vv  where 1.0 t  

uvD 9.
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The exact solution  

   981.1

981.1,981.1

981 tEttu  ,    97.1

991,.981.1

009. tEttv   

then  
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k
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t
tv  

Table 3. Numerical values for example  with h=.1, 1.0 t  

t 
Approu  

exactu  Approv  
exactv  

.2 0.31848807 0.20933559 1.0376338 1.0307319 

.3 0.32068403 0.31434498 1.1165844 1.053726 

.4 0.43783472 0.42194125 1.1488661 1.0884054 

.5 0.5551949 0.53338573 1.1995302 1.1346551 

.6 0.67843837 0.64990082 1.2620044 1.1926908 
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