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ABSTRACT

In this paper, we present and discuss an algorithm for the
numerical solution of system of the initial value problems of

the form DU = f(t,v), Dv =g(t,u), u(0)=u,,
V(O): Vo, 0 <, B <1, where D“U is the derivate of

uoforderar, D”V is the derivative of v of order B Uin the

sense of Caputo. The algorithm is based on the fractional
EulerS method which can be seen as a generalization of the
classical Eulers method.
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1. INTRODUCTION

In this we introduce an algorithm for the numerical solution
of initial value problems
of the form

D“u = f(t,v), D’v=g(t,u),
v(0)=v,, 0<a, f<1. ()

Where D%u, D”vdenote the Caputo  fractional
differential operators.

Fractional order differential equations are generalizations of
classical integer order differential equation These are
increasingly used to model problems in the

fluid flow, mechanics, viscoelasticity, biology, physics,
engineering and other applications. Brownian motion and
fractional diffusion-wave equations and many physical
phenomena [1-5].

Most nonlinear fractional differential equations do not have
analytic solutions, so approximations and numerical
techniques must be used [9-12 ]. The decomposition method
[13-18 ] and vartional iteration method [16-18] are relatively
new approaches to provide an analytical approximation
solution to linear and non linear problems. A comparison
between the variational iteration method and Adomian
decomposition method for solving fractional differential
equations is given in [13]. The fact that the variational
iteration method solves non linear equations without using
Adomian polynomials can be considered as an advantage of

this metho over Adomian decomposition method.

A few numerical methods for fractional differential equations
have been presented in the literature [8-12 ]. In this paper. We
begin by introducing some necessary definitions and
mathematical preliminaries of the fractional calculus theory
which are required for establishing our results. In sections 3
and 4, we introduce the modified trapezoidal rule and a new
generalizing of taylors formula that involves Caputo

u(0)=u,,
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derivatives, respectively. In section 5, we derive the fractional
Eulers method that is generalizing of the classical Eulers
method for the numerical solution of ordinary differential
equations. The algorithm itself is presented in details in
section 6. In section 7, we present three examples to show the

efficiency and the simplicify of the algorithm.
2. Basic definitions

Definition 2.1

A real function f(X), X > 0,is said to be in the space
Cﬂ, L € R if there exists a real number P > £, such

that f(X) =x"f, (X), where f (X) € C[O OO) and it is
eC meN.

said to be in the space C;T ifr £ (™) o

Definition 2.2

The Riemann-Liouville fractional integral operator of order

a >0, of afunction f e Cy, > —1, is defined as

() f(t)dt, & >0, x>0,

Jof(x)= f(x)

Properties of the operator J *

9716)= L e
0

For feC,,u>-La fady>-1
(1) 32378 (x)= 37 £(x)
(2) 3237t (x)=J373f(x)

(3) J*x” __Tr+) G
o +y+1)

Definition 2.3

The fractional derivative of [111([]) in the Caputo sense is
defined as

D“f(x)=J"*D"f(x)

-1 )j‘(x —t)" T M (¢t

F(m—a 0

Form—l<a<mmeN,f eC".
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Definition 2.4

A two-parameter function of the Mittag-Leffer type is
defined by the series expansion

© Zk
E .(z)= , 0, 0
aﬁ( ) %r(ak IB) a> ﬁ>
Definition 2.5

The Laplace transform of the function f(t) is defined by:

o0

F(s)= L{f(thsh=[e f(t)dt,

0
Definition 2.6
1 s*#
T f{takw*l Efzk}; (i at” )} = Kl
k! (s“ Ta)
Lemma 2.7

If m-l<a<m, meN, feC", u=>-1,
then

D*J f(x)= f(x) ()
J°D“f(x)= f(x)—mz_1 f<k)(o+)"?kl @)

3 Results and Theorems
3.1 Modified trapezoidal rule :

We present a review of the modified trapezoidal rule, which is
introduced in [20]. This is used to approximate the fractional

integral J“ f (t) by a weighted sum of function values at
specified points. Suppose that the interval [O, a)

is subdivided into k subintervals |_tj ,tjﬂJ of equal width
h = a by using the nodes t; = jh, for
k
i=0,1,...... ,k . The modified trapezoidal rule

T(f.ha)=(k—-1)"""—(k —ax —1)k*~)

he f (0) h* f(a)
I'(ax+2) TI'(x+2)
S L\ Ao+l Lo\adl h“f(tj)
;((k—l+1) =2k j) " +(k-j-1) )m
4)

is an approximation to the fractional integral

(3f®)a)=T(f ,ha)-E.(f,ha), a>0,

a>0.
(5)
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Furthermore, if f (t) eC? [O, a]. There is a constant C
depending only on & so that the error term E_ (f . h, a)

(6)

E,(f,h,a)<C,|f"| a“h? =o(h?)
3.2 Generalized Taylor's rule
In this section we introduce a new generalization of Taylor's
formula that involves Caputo fractional derivative. This

generalization is presented in [20]. We begin by the
generalized mean value theorem.

Theorem
theorem)

(Generalized mean  value

Suppose that  f (x)e C[0,a] and D* f (X) IS C(O, a] ,
for O < & < 1. Then we have

f(x)= f(O+)+$(Dan§)-XQ ™

with 0<&<x, Vxe(0,a].
Proof: in [20].
Theorem :

Suppose that D"~ f (x), D™~ f (x) e C(0,a],
for O << & << 1. Then we have
(J ne yna f XX)_ (J (n+l)e D(n+1)a f XX) —

Fa 0" 0

(®)

where D" = DD - -- D% (n-times).
Proof :

The proof can be obtained by using the properties of the
Riemann-Liouville fractional integral operator and the Caputo

fractional derivative operator and the relation .

( Jrepne f )(X)_ ( 3 (Ml py(n+2)er )(X) -

37 (D™ £ ) x)- (37D D™ f ()
= 3" (D" f Y0 +).
Theorem: ( Generalized Taylor's rule)

Suppose that D** f (x) e C(0,a] for k =0,1,---,n+1
, Where 0 < o <1. Then we have
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:i | (D‘anO+) 1)) o

ST(ia+1) ((n+1)a+1)
with 0<E<x, vxe(0,a]. ©)

Proof : From (7 ), we have

3 (3D £ (x)— (30 Dl £ Y x) =
= (10)

iﬁ(f"”)@”

i=0

that is,

in

f(x)_(J(n+l n+lanX : n -X

= r(|a+1)(Dm tos) @9

Applying the integral mean value theorem to ( 12 ) yields

(hi1)er [ (n 1) N ( "*“‘er: (1)
(902D fxx)_—((n+l)a+1)j (x—t)"dt

fD(nﬂ)a f !f) (n+D)er

" T(n+1)x +1)
(12)

3.3 The algorithm for one equation: In this
section we shall derive the fundamental algorithm for the
numerical solution of the initial value problem

D y(t)= f(t, y(t)), y(0)=y, 0<a=1

t>0. (13)

The new algorithm is based on the modified trapezoidal rule
and the fractional Euler's method. Our approach depends on
the analytical property that the initial value problem (13) is
equivalent to the integral equation

y(t)=J3“f(t, y(t))+ y(0) (14)

Let [O, a] be the interval over which we want to find the
approximation the solution. Suppose that the [O, a] is

subdivided into k subintervals |_tJ, J+1J of
equal width |, _ & by using the nodes t,— = jh,for
k

j=0,1,---,k . Toobtain the solution point (t,, y(t,)).

we substitute { =t1 into (14 ) and we get

y(t,)=(37f (t. y©))t,)+ y(0) (15)
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Now if the modified trapezoidal rule (4 ) is used to
approximate (J “f(t, y(t))Xti) with step size

h= t, — 1, then the result is

y(t) =« h f (to, y(t )) h* f (t,, y(t, ))+y(0)

IN'a +2) N +2)

(16)

Notice that the formula on the right-hand side of ( 16 )

involves the term y(tl). So, we use an estimate for y(tl).
Fractional Euler's method will suffice for this purpose.

From

Y(t) Y(t )"' ( 1) f(thY(t ))

into ( 16 ) yields

h f (to, y(t))

T(x +2)

0t () + = v )

T(ex +1)
N +2)

y(tl) =

+ y(0)
(17)

The process is repeated to generate a sequence of points that
approximate the solution y(t) . The general formula for
our algorithm is:

ylt,) = (-0 — (- —1)i* )t (t, ¥t )+ y(0) +

e +2)
S (—is —2G =)+ (-i-2)
o, y(to)+

ha) f(tj ) +ha) H, vt jl))J

T +2 T +1

3.4 The algorithm for system of two
equations:

In this paper we get a numerical solution of system of
fractional differential equations:

D“u = f(t,v)
D/v = f(t,u), u(ty,)=u,, v(t,) =V,
O<a, <1

We will use the same way to obtain the algorithm for this
system the we have

29



U(tj)z

F(OH—Z)

g Sl 2l i et )
% f(tj Nﬁjl%% f(tjmv(tjl))j
and
r(;iz)g((i—i+1)”“—2(j—i)ﬂ“+(j—i—1)””)g(ti,u(ti))+

h”? h”
r(p+2)° [ ult; )+ lwg(tjl.u(tjl))J
3.5 Results:
Example

The homogeneous linear system :

D%y = v

D°v=u

u(l)=u, =.194, v(1)=v, =1.17
where t; =.1

The exact solution

U(t) = t_‘lEl.BS,B (tl‘gs)' v(t)=t* El.ss,l.ss(tl'gs)

from definition (4)

tl .85k+.85

D (-1 = (- -1 ) o vlt, ) +ult )+

(J _ﬂ_l)jﬁ)g(to’u(to))"‘v(to)"'

185k 1

;F185k+185 §r185k+ 9)

Table 1. Numerical values for example with h=.1, t; = A
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5 0.7209318 | 0.62435337 | 1.425796 1.194041
.6 0.8703125 | 0.74715702 | 1.513180 1.251261
Example

The homogeneous linear system :

D.99

u=v

D®v =u

u(.1)=

t, =

A

u, =.10848 v(.1)=v,

The exact solution

u(t) =t¥ Eior1e7 (t1-97) i v(t) —t-02 E1.97,,98(t1'97)

and we have
0 tl 97k+.97
t
u(t)= kzr(1 97k +1.97)
0 t1.97k -.02
vit)=>,

S T(1.97k +.98)

=1.0347 where

Table 2. Numerical values for example with h=.1, to =.1

t U appro Uexact V appro Vexact

2 0.37967 0.27236314 | 1.429247 1.136372
3 0.4520032 | 0.3894135 1.300924 1.132096
4 0.5786627 | 0.50580609 | 1.354413 1.153449

t
u Appro u exact VAppro Vexact

2 0.3256916 | 0.21409327 | 1.058076 | 1.0432
3 0.3271078 | 0.32015133 | 1.138966 | 1.06272
4 0.4466322 | 0.4285283 1.1719626 | 1.095433
.5 0.5663590 | 0.5406025 1.2242022 | 1.14057
.6 0.6921711 | 0.6576661 1.2885656 | 1.198047
Example:

D.99u =V

D% =u

u(.1)=u, =.1053023,
v(.1)=v, =1.015581 where t, —.1
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The exact solution

u(t)= t981E1.9811.981(t1'981)r v(t)= t7'009E1.981.991(tll97)

then

t1.98]k+.981

t)= .
u(t) kZ:():F(l.981k +1.981)

1.981k—.009
t

t =
V) kz(; '(1.981k +.991)

Table 3. Numerical values for example with h=.1, T, = A

t u u Vv Vv

Appro exact Appro exact

2 0.31848807 | 0.20933559 | 1.0376338 | 1.0307319

3 0.32068403 | 0.31434498 | 1.1165844 | 1.053726

A4 0.43783472 | 0.42194125 | 1.1488661 | 1.0884054

5 0.5551949 | 0.53338573 | 1.1995302 | 1.1346551

.6 0.67843837 | 0.64990082 | 1.2620044 | 1.1926908
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