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ABSTRACT 

The Diffraction coefficient for electromagnetic waves 

incident obliquely incident on a curved edge formed by 

perfectly conducting plane surfaces. This diffraction 

coefficient remains valid in the transition region 

adjacent to shadow and reflection boundaries where the 

diffraction coefficients of Keller’s original theory fail. 

Our method is proposed on Keller’s method of the 

canonical problem, which in this case is the perfectly 

conducting wedge illuminated by plane, cylindrical, 

conical, and spherical waves. The expressions for the 

acoustic wedge diffraction coefficients contain Fresnel 

integral, which ensure that the total field is continuous 

at shadow and reflection boundaries. Since the 

diffraction is a local phenomenon, and locally the 

curved edge structure is wedge shaped, this result is 

readily extended to the curved wedge. It is interesting 

that even though the polarizations and the wavefront 

curvature of the incident, reflected, and diffracted 

waves are markedly different, the total field calculated 

from this high frequency solution for the curved wedge 

is continuous at shadow and reflection boundaries. The 

Jacoby polynomial series method, which has been 

demonstrated to provide an efficient means for 

evaluating the radiation integral of symmetric 

paraboloid. The analysis leading to the series formula is 

also useful for deriving an analytic expression for the 

optimum scan plane for the displacement of the feed. 

Representative numerical results illustrating the 

application of the method and the properties of the 

offset paraboloid are presented. 

Keywords 
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1. INTRODUCTION 
This paper deals with the construction of high-

frequency solution for the diffraction of an 

electromagnetic wave obliquely incident on a smooth 

curved perfectly conducting surface surrounded by an 

isotropic homogenous medium. The surface normal is 

discontinuous at the edge and the two surfaces forming 

the edge may be convex, concave, or plane. The 

solution is developed within the context of Keller’s 

geometrical theory of diffraction (GTD) [1]-[3] so the 

dyadic diffraction coefficient is of interest. Particular 

emphasis is placed on finding a compact accurate form 

of the diffraction coefficient valid in the transition  

regions adjacent to shadow and reflection boundaries 

and useful in practical applications. According to the 

GTD, a high frequency electromagnetic wave incident 

on an edge in a curved surface gives rise to a reflected 

wave, an edge diffracted wave, and an edge excited 

wave which propagates along a surface ray. Such 

surface ray fields may also be excited at shadow 

boundaries of the curved surface. 

 

 

Fig.1 Illustrative view of Incident, Reflected, and 

Diffracted rays. 

Fig.1 shows a plane perpendicular to the edge at the 

point of diffraction QE. The pertinent rays and 

boundaries are projected onto this plane. To simplify 

the discussion of the reflected field, we have assumed 

that the local interior wedge angle is ≤ π. According to 

Keller’s generalized Fermat’s principle, the ray incident 

on the edge QE produces edge diffracted rays ed and 

surface diffracted rays sr. In the case of convex 

surfaces, the surface ray sheds a surface diffracted ray 

sd from each point Q on its path. ES is the boundary 

between the edge diffracted rays and the surface 

diffracted rays; it is tangent to the surface at QE. SB is 

the Shadow Boundary of the reflected fields, referred 

to, henceforth, simply as the reflection boundary.   In 

present analysis it is assumed that the sources and field 

point are sufficiently removed from the surface and the 

boundary ES so that the contributions from the surface 

ray field can be neglected. The total electric field may 

then be represented as  

          E=E
i
 u

i
 + E

r
 u

r 
+E

d
                            (1) 

In which E
i
 is the electric field of the source in the 

absence of the surface, E
r
 is the electric field reflected 
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from the surface with the edge ignored, and Ed is the 

edge diffracted electric field. The functions u
i
 and u

r
 are 

unit step functions which are equal to one in the regions 

illuminated by the incident and reflected fields and to 

zero in their shadow regions. The extent of these 

regions is determined by geometrical optics. The step 

functions are shown explicitly in (1) to emphasize the 

discontinuity in the incident and reflected fields at the 

shadow and reflection boundaries, respectively. They 

are not included in subsequent equations for reasons of 

notational economy. 

2. Analysis of Edge Diffracted Field 

 
 
                                  Fig. 2a   

 

 
 

 

Fig. 2b  Describes the Diffraction at a curved edge. 

 

According to Keller’s theory [3], the diffraction 

coefficient for a curved edge may be deduced from a 

two-dimensional canonical problem involving a straight 

edge, where the cylindrical surfaces which form the 

edge are defined by the boundary curves depicted in 

fig.2.(b).  In the present discussion the edge may be an 

ordinary edge formed by a discontinuity in the unit 

normal vector, an edge formed by a discontinuity in 

surface curvature, or an edge formed by a discontinuity 

in some higher order derivative of the surface. Consider 

the z components of the electric and magnetic fields in 

the presence of this surface with an edge 

 
1 r d

z z z zE E E E                            (2a) 

1 r d

z z z zH H H H                                    (2b)   

They satisfy  

   z2 2

z

E
k 0

H

 
   

 
                         (3)  

Together with the soft (Dirichlet) or hard (Neumann) 

bound any conditions 

   zE 0                                                                  (4) 

   Or  zH
0

n





                               (5) 

respectively, on the boundary curve and the radiation 

condition at infinity.  The zH
0

n




  

is the derivative 

along the normal to the boundary curve. Starting with 

the high frequency solutions for the z components of 

the diffracted field, substituting these into (3) and 

employing the methods described earlier, the 

asymptotic solutions may be put into the form 

                            
d 1

z z s

d i

z z h

E E D
~ exp( jks)

s ( s)H H D

  
 

 
         (6) 

in which Ds, is referred to as the soft scalar diffraction, 

coefficient obtained when the soft boundary condition 

is used, and Dh is referred to as the hard scalar 

diffraction coefficient obtained when the hard boundary 

condition is used. Since 

1
0

1 1

z 0E E sin


     (7a) 

    
1 1

z C 0H Y E .sin          (7b) 

and similarly for the z components of the diffracted 

field, it follows from (6) and (7)  that 

1
0 0

1

1d
s

d 1

h

E DE
exp( jks)

s ( s)E E D

 

 

  
   

  

      (8) 

Consequently, the dyadic diffraction coefficient for an 

ordinary (or higher order) edge in a perfectly 

conducting surface can be expressed simply as the sum 

of two dyads 

                                                      
1 1

s h0 0D D D                                (9)                                                   

to first order, since Ds, and Dh, are the ordinary scalar 

diffraction coefficients which occur in the diffraction of 

acoustic waves which encounter soft or hard 

boundaries, we see the close connection between 

electromagnetic and acoustics at high frequencies. The 

balance of this paper is concerned with finding 

expressions for Ds, and Dh, which can be used in the 

transition regions adjacent to shadow and reflection 

boundaries in the case of diffraction by an ordinary 



International Journal of Computer Applications (0975 – 8887)  

Volume 65– No.11, March 2013 

22 

edge. Recently, Keller and Kaminetzky [4] and Senior 

[5] have obtained expressions for scalar diffraction 

coefficients n the case of diffraction by an edge formed 

by a discontinuity in surface curvature, and senior [6] 

has given the dyadic diffraction coefficient in an edge-

fixed coordinate system. 

 

3. Analysis of the Wedge 
 

The Bessel and Henkel functions in the Eigen function 

series are replaced by their integral representations and 

the series are then summed leaving the integral 

representations.  Integral representations for the other 

field components in the edge fixed coordinate system 

are then found from the z (or edge) components, except 

in the case of the incident spherical wave, where the 

integral representations of the field components are 

obtained from the z components of the vector 

potentials, these integrals are approximated 

asymptotically by the Pauli-Clemmow method of 

steepest descent [7], and the leading terms are retained. 

If the field point is not close to a shadow or reflection 

boundary.  

1

s,h 0

0

exp[ j( / 4)] sin / n
D ( , ; )

n 2 k sin

  
   

 
 

                      

1 1

1 1
.

cos / n cos[( ) / n cos / n cos[( ) / n]

 
 

      
    (10) 

 

Grazing incidence, where Φ’=o or nπ must be 

considered separately.  In this case Ds =0, and the 

expression for Dh given by (10) must be multiplied by a 

factor of ½ .  The need for the factor of ½ may be seen 

by considering grazing incidence to be the limit of 

oblique incidence.  At grazing incidence the incident 

and reflected fields merge, so that one half the total 

field propagating along the face of the wedge toward 

the edge is the incident field and the other half is the 

reflected field.  Nevertheless in this case it is clearly 

more convenient to regard the total field as the 

“incident” field.  The factor of ½  is also apparent if the 

analysis is carried out with Φ’=0 or nπ.To simplify the 

discussion, the wedge angle has been restricted so that 

1< n ≤2; however, the solution for the diffracted field 

may be applied to an interior wedge where 0 < n< 1. 

The diffraction coefficient vanishes where sin π/n =0; 

hence for n=1, the entire plane, n =1/2, the interior right 

angle, n=1/M, M=3,4,5,…., interior acute angles, the 

boundary value problem can be solved exactly in terms 

of the incident field and a finite number of reflected 

fields, which may be determined from image theory, 

moreover as n –> 0, even with the presence of a non-

vanishing diffracted field, the phenomenon is 

increasingly dominated by the incident and reflected 

fields.  In the transition regions the magnitude of the 

diffracted field is comparable with the incident or 

reflected field, and since these fields are discontinuous 

at their boundaries, the diffracted fields must be 

discontinuous at shadow and reflection boundaries for 

the total field to be continuous there. An expression for 

the dyadic diffraction coefficient of a perfectly 

conducting wedge which is valid both within and 

outside the transition regions [8] is provided by (9) with 

(10) 

1

s,h 0

0

exp[ j( / 4)]
D ( , ; )

2n 2 k sin

  
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 
 

1
1( )
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2n


   

  
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1
~ 1( )
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2n

  
  

 
 

 1

1cot F(kLa ( )]
2n


   

   
   

 

1
~ 1(

cot F(kLa ( )]
2n

   
   

              

(11) 

Where  

 
2

x

F(X) 2j X exp( jX) exp( jr )dr



     (12) 

 
 

Fig. 3 Transition function 

 

in which one takes the principal (positive) branch of the 

square root and 

                                            

2
2 2 2n N ( )

a ( ) 2cos
2

   
   

 
             (13) 

In which N
±
 are the integers which most nearly   

equations. 

2 nN ( )                                  (14a) 

And                    

2 nN ( )                     (14b) 
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With    

 
1                (15) 

It is apparent that N
+
, N

-
 each has to values. 

 

The preceding expression for the soft (s) and hard (h) 

diffraction coefficients contains a transition function F 

fined by (12) where it is seen that F(X) involves a 

integral.  The magnitude and phase of F(X) are shown 

in fig. 3 where X=kLa.  When X is small 

                    

  22
F X X 2Xexp j X exp i .exp i X

4 3 4 4

          
            

       
 (16) 

And When X is large    

2 3 4

1 3 1 15 1 75 1
F(X)~ 1 j j

2x 4 x 8 X 16 X

 
    

 
  (17) 

If the arguments of the four transition functions in (11) 

exceed 10 it follows from the above equation that the 

transitions functions can be replaced by unity and (11) 

reduces to (10). L is a distance parameter, which was 

determined for se types of illumination.  It was found 

that 

2

0

1

11

1
2

01

ssin

rr
L

r r

ss
sin

s s


 











                         (18) 

 

The first response is for plane wave incidence, second 

for cylindrical – wave incidence, and the third for 

conical and spherical wave incidences. Where the 

cylindrical wave of radius r’ is normally incident the 

edge, and r is the perpendicular distance of the field 

point from the edge. 

4. Computation of Radiation Integral for 

the Offset Parabolic Reflector 
 

The geometry of an offset reflector together with the 

location of the feed is shown. In Fig.4. The normalized 

radiation integral in terms of the induced current J on 

the surface of the reflector can be written as 

0 ds

^ ^ ^
Jk (p' p.R )

0 0E(0, ) (I R R ) . Je
 



            (19) 

Where the optical phase of J has been factored 

out explicitly relative to an ideal phase center located at 

  (see Fig. 4). We also note that this integral is defined 

on the surface of the reflector. Often a ray-optical 

“approximation” is used to derive an alternative form 

for the radiation integral which requires the Fourier 

transformation of the truncated tangential fields on the 

projected aperture of the reflector, rather than on the 

reflector surface itself. However, as mentioned earlier, 

this introduces errors in the secondary pattern 

calculation at observation angles away from the main 

beam direction and is inaccurate for large beam 

displacements. We can, nevertheless, derive a 

mathematically exact form of (19) which is an 

integration over cylindrical coordinates which can be 

interpreted as projected aperture coordinates. This 

procedure is demonstrated in the following. Radiation 

integral (19) can be rewritten in terms of cylindrical 

coordinates  r,   of the “projected aperture” of the 

parent parabolic (see Fig. 4). We obtain for a typical 

scalar component of E, say  F ,  , integrals of the 

type 

      (20) 

 

 

 
 

        Three dimensional view.   

 

 
Projection on x-y plane. 

Fig. 4. Geometry of offset paraboloid reflector 

antenna.
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5. Result 
 
The present approach is very well-suited for computing 

radiation patterns of large reflectors, even thousands of 

wavelengths in size. In fact, the relative advantages of 

the series method become even more evident when 

dealing with large reflector antennas, because the p 

series becomes more rapidly convergent as D/η is 

increased. Furthermore, the final result can be 

expressed in a scaled form, in terms of (ka1η1,α1) such 

that the results for the pattern are relatively universal 

and independent of  . These added features are quite 

useful when computing and displaying the radiation 

patterns. To demonstrate some representative results we 

consider a large offset paraboloid illuminated by 

displaced feeds. The geometry in shown in Fig. 4, and 

the reflector dimensions are  

 

1D / 4533.33 D / 1866.67 f / D 1.            (21) 

 

Note that D. = parent paraboloid diameter, and 

1f / D 2 .These dimensions were chosen because of 

an interest at the Jet Propulsion Laboratory in 

computing the scan capabilities of large reflector 

antennas that may be erected in space in future 

applications. Furthermore, such a choice helps illustrate 

the computational efficiency and usefulness of the 

present approach even when the reflector size is very 

large. We have employed the Gauss-quadrature double 

integration scheme, as discussed in [9], to evaluate the 

integral. The required number of integration points are 

determined from the behavior of the function 1g , 

cosn   and the modified Jacobi polynomials. For 

most cases studied in this work are quite well behaved, 

and Fig. 6. (a)  clearly demonstrates that only 576 

integration points suffice to yield accurate results. This 

is evident from the plots in Fig. 6. (a) which show that 

the results with 576 and 900 integration points are 

almost identical. Not unexpectedly, the required number 

of integration points increases with increasing M and N. 

For instance, for 8 < (M or N) < 14 one has to use at 

least 900 integration points in order to obtain accurate 

results.  

 
 

 

 
 

Fig. 5.(a) Amplitude of y component of far-field 

pattern in x-z plane for different P, N and M 

Reflector dimensions are given in (21). (b) Phase of y 

component of far-field pattern in x-z plane.  
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Fig.6. (a) Amplitude of y component of far-field 

pattern in x-z plane for different numbers of 

integration points (M=N=6, P=3). (b) Amplitude of y 

component (copolar) of far-field in x-z1-and y-z1- 

planes and amplitude of x component (cross polar) 

of far field in y-z1 plane (ka1 sinθ1=110). Reflector 

dimensions are given in (21). 

 

 
 

 

Fig. 7. (a) Amplitude of Y component (copular) of 

far field in X-Z – or Y-Z- planes, and amplitude of X 

component (cross polar) of far field in Y-Z- plane. 

|Ex| in x-z- plane and |Ez| in x-z and y-z-planes are 

negligible. Reflector dimensions are given in (21). (b) 

Phase of y component (copolar) of far field in x-z-or 

y-z-planes, and phase of x component (cross polar) 

of far field in y-z-plane. 

 

6. CONCLUSION 
 

It is interesting that even though the polarizations and 

the wavefront curvatures of the incident, reflected, and 

diffracted waves are markedly different, the total field 

calculated from this high-frequency solution for the 

curved wedge is continuous at shadow and reflection 

boundaries. Representative numerical results illustrating 

the application of the method and the properties of the 

offset paraboloid are present. Results obtained from the 

above assumptions would only be good for small f/D 

ratios and small beam width scans. New formulations 

for the offset geometry are an important subject for 

future study. For the sake of completeness we have used 

our general purpose computer program and generated 

most of the results reported in [10]. Our results 

compared very favorably with those given in [10], and 

in most cases considerably less computer time was 

needed in comparison with other techniques. 
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