Odd Graceful Labeling of the Revised Friendship Graphs

E. M. Badr
Department of scientific computing, Faculty of Computers \& Information, Benha University, Benha, Egypt,

Abstract

The aim of this paper is to present some odd graceful graphs. In particular we show that the revised friendship graphs $F\left(k C_{4}\right), F\left(k C_{8}\right), F\left(k C_{12}\right), F\left(k C_{16}\right)$ and $F\left(k C_{20}\right)$ are odd graceful where k is any positive integer. Finally, we introduce a new conjecture " The revised friendship graph $F\left(k C_{n}\right)$ is odd graceful where k is any positive integer and $n=0(\bmod 4)$.

Keywords

Graph Theory, odd graceful labeling, friendship graphs.

1. INTRODUCTION

A graph G of size q is odd-graceful, if there is an injection ϕ from $V(G)$ to $\{0,1,2, \ldots, 2 q-1\}$ such that, when each edge $x y$ is assigned the label or weight $|\phi(x)-\phi(y)|$, the resulting edge labels are $\{1,3,5, \ldots, 2 q-1\}$. This definition was introduced in 1991 by Gnanajothi [1] who proved that the class of odd graceful graphs lies between the class of graphs with α-labelings and the class of bipartite graphs. Gnanajothi [1] proved that every cycle C_{n} is odd graceful if n is even. It is known that the graphs which contain odd cycles are not odd graceful so Badr [2] used the subdivision notation for odd cycle in order to prove that the subdivision of linear triangular snakes are odd graceful. Badr et al [3] proved that the subdivision of ladders $S\left(L_{n}\right)$ is odd graceful.

Rosa [4] proved that the cycle C_{n} is graceful if and only if $n \equiv$ 0 or $3(\bmod 4)$. Solairaju and Muruganantham [5] proved that the revised friendship graphs $F\left(k C_{3}\right), F\left(k C_{5}\right)$ and $F\left(2 k C_{3}\right)$ are all even vertex graceful, where k is any positive integer.

Definition 1.1: A revised friendship graph $F\left(k C_{n}\right), n \geq 3$ is defined as a connected graph containing k copies of C_{n} with a vertex in common.

Example 1.2:

Figure 1: the revised friendship graphs $F\left(4 C_{4}\right) \& F\left(2 C_{8}\right)$

In this paper we show that the revised friendship graphs $F\left(k C_{4}\right), F\left(k C_{8}\right), F\left(k C_{12}\right), F\left(k C_{16}\right)$ and $F\left(k C_{20}\right)$ are odd graceful where k is any positive integer. Finally, we introduce a new conjecture " The revised friendship graph $F\left(k C_{n}\right)$ is odd graceful where k is any positive integer and $n=0(\bmod 4)$.

2. THE MAIN RESULTS

Theorem 2.1: The revised friendship graph $F\left(k C_{4}\right)$ is odd graceful, where k is any positive integer.

Proof:

Let $G=F\left(k C_{4}\right)$ has q edges and p vertices. The graph G consists of the vertices $u, u_{1} u_{2} u_{3} \ldots u_{2 k}$ and $v_{1} v_{2} v_{3} \ldots v_{k}$, where the graph G consisting k copies of C_{4} with a vertex u in common, such that u_{i} is put between u and v_{j} where $i=1,2$, $3 . .2 k$ and $j=1,2,3 \ldots k$. The graph G has $q=4 k$ and $p=3 k+$ 1, as shown in Figure 2.

Figure 2: the revised friendship graph $F\left(k C_{4}\right)$
Define $\phi: V(G) \rightarrow\{0,1,2 \ldots 2 q-1\}$ as following:

$$
\phi(u)=0
$$

$\phi\left(u_{i}\right)=2 q-2 i+1 \quad, i=1,2,3 \ldots 2 k$
$\phi\left(v_{i}\right)=2 q-8 i+4 \quad, i=1,2,3 \ldots k$
a) $\operatorname{Max}_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \phi(\mathrm{v})=\max \left\{0, \max _{1 \leq i \leq 2 \mathrm{k}} 2 \mathrm{q}-2 \mathrm{i}+1, \max _{1 \leq \iota \leq \mathrm{k}}(2 \mathrm{q}-8 \mathrm{i}+4)\right\}$

$$
=2 q-1, \text { the maximum value of all odds }
$$

Hence, $\phi(v) \in\{0,1,2 \ldots 2 q-1\}$
b) Clearly, The function ϕ is one-to-one mapping from the vertex set of G to the set $\{0,1,2 \ldots 2 q-1\}$
c) It remains to show that the labels of the edges of G are all the odd integers of the interval [1,2q-1] The range of $\mid \phi\left(u_{i}\right)$ $\phi(u) \mid=\{2 q-2 i+1: i=1,2 \ldots 2 k\}$

$$
=\{2 q-1,2 q-3 \ldots 2 q-4 k+1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(u_{2 i-1}\right)\right|=\{4 i-1 \quad: i=1,2 \ldots k\}$

$$
=\{3,7 \ldots 4 k-1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(u_{2 i}\right)\right|=\{4 i-3 \quad: i=1,2 \ldots k\}$

$$
=\{1,5 \ldots 4 k-3\}
$$

Hence, $\{|\phi(u)-\phi(v)|: u v \in \mathrm{E}(\mathrm{G})\}=\{1,3,5 \ldots 2 q-1\}$.
So the revised friendship graph $F\left(k C_{4}\right)$ is odd graceful.

Example 2.2

Figure 3: the odd graceful labeling of the revised friendship graph $F\left(5 C_{4}\right)$.

Theorem 2.3: The revised friendship graph $F\left(k C_{6}\right)$ is odd graceful, where k is any positive integer.

Proof:

Let $G=\mathrm{F}\left(k C_{6}\right)$ has q edges and p vertices. The graph G consists of the vertices $u, u_{1} u_{2} u_{3} \ldots u_{2 k}, x_{1} x_{2} x_{3} \ldots x_{2 k}$ and $v_{1} v_{2} v_{3} \ldots v_{k}$, where the graph G consisting k copies of C_{6} with a vertex u in common, such that the vertex u is the common vertex, x_{i} is put between u and v_{j}, u_{i} is put between u and x_{i}, such that $i=1,2,3 . .2 k, j=1,2,3 \ldots k$. The graph G has $q=6 k$ and $p=5 k+1$, as shown in Figure 4 .

Figure 4: the revised friendship graph $\mathrm{F}\left(\boldsymbol{k} C_{6}\right)$
Define $\phi: V(G) \rightarrow\{0,1,2 \ldots 2 q-1\}$ as following:

$$
\begin{array}{ll}
\phi(u)=0 & \\
\phi\left(u_{i}\right)=2 q-2 i+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(x_{i}\right)=(4 / 3) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(v_{i}\right)=(2 / 3) q-4 i+3 & , i-\operatorname{odd}(i=1,3,5 \ldots) \\
\phi\left(v_{i}\right)=(2 / 3) q-4 i+1 & , i-\operatorname{even}(i=2,4,6 \ldots)
\end{array}
$$

a)
$\operatorname{Max}_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \phi(\mathrm{v})=\max \left\{0, \max _{1 \leq i \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((4 / 3) \mathrm{q}-4 \mathrm{i}+2)\right.$,

$$
\begin{aligned}
& \prod_{i=1,3, \ldots, k}^{\mathrm{i} \text {-odd }}((2 / 3) \mathrm{q}-4 \mathrm{i}+3),{\underset{i=2,4, \ldots, k}{\mathrm{i}-\mathrm{even}}((2 / 3) \mathrm{q}-4 \mathrm{i}+1)\}}^{=2 q-1, \text { the maximum value of all odds }}
\end{aligned}
$$

Hence, $\phi(v) \in\{0,1,2 \ldots 2 q-1\}$
b) Clearly, The function ϕ is one-to-one mapping from the vertex set of G to the set $\{0,1,2 \ldots 2 q-1\}$
c) It remains to show that the labels of the edges of G are all the odd integers of the interval [1,2q-1] and that's as following:
The range of $\left|\phi\left(u_{i}\right)-\phi(u)\right|=\{2 q-2 i+1 \quad, i=1,2 \ldots 2 k\}$

$$
=\{2 q-1,2 q-3 \ldots 2 q-4 k+1\}
$$

The range of $\left|\phi\left(u_{i}\right)-\phi\left(x_{i}\right)\right|=\{(2 / 3) q+2 i-1, i=1,2 \ldots 2 k\}$

$$
=\{(2 / 3) q+1,(2 / 3) q+3 \ldots(2 / 3) q+4 k-1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(x_{2 i-1}\right)\right|=\{(2 / 3) q-4 i+3, i$-odd $(i=1$, $3,5 \ldots, k\}$

$$
=\{(2 / 3) q-1,(2 / 3) q-9 \ldots\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(x_{2 i}\right)\right|=\{(2 / 3) q-4 i-1, i$-odd $(i=1,3$, $5 \ldots, k)\}$

$$
=\{(2 / 3) q-5,(2 / 3) q-13 \ldots\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(x_{2 i-1}\right)\right|=\{(2 / 3) q-4 i+5, i$-even $(i=$ $2,4,6 \ldots, k-1)\}$

$$
=\{(2 / 3) q-3,(2 / 3) q-11 \ldots\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(x_{2 i}\right)\right|=\{(2 / 3) q-4 i+1, i$-even $(i=2$, $4,6 \ldots, k-1)\}$

$$
=\{(2 / 3) q-7,(2 / 3) q-15 \ldots\}
$$

Hence, $\{|\phi(u)-\phi(v)|: u v \in E(G)\}=\{1,3,5 \ldots 2 q-1\}$.
So the revised friendship graph $F\left(k C_{6}\right)$ is odd graceful.
Theorem 2.4: The revised friendship graph $F\left(k C_{8}\right)$ is odd graceful, where k is any positive integer.

Proof:

Let $G=\mathrm{F}\left(k C_{8}\right)$ has q edges and p vertices. The graph G consists of the vertices $u, u_{1} u_{2} u_{3} \ldots u_{2 k}, x_{1} x_{2} x_{3} \ldots x_{2 k}, h_{1} h_{2} h_{3} \ldots h_{2 k}$ and $v_{1} v_{2} v_{3} \ldots v_{k}$, where the graph G consisting k copies of C_{8} with a vertex u in common, such that the vertex u is the common vertex, h_{i} is put between u and v_{j}, x_{i} is put between u and h_{i}, u_{i} is put between u and x_{i} such that $i=1,2,3 . .2 k$ and $j=$ $1,2,3 \ldots k$. The graph G has $q=8 k$ and $p=7 k+1$, as shown in the next figure.

Figure 5: the revised friendship graph $F\left(k C_{8}\right)$
Define $\phi: V(G) \rightarrow\{0,1,2 \ldots 2 q-1\}$ as following:

$$
\begin{array}{ll}
\phi(u)=0 & , i=1,2,3 \ldots 2 k \\
\phi\left(u_{i}\right)=2 q-2 i+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(x_{i}\right)=q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(h_{i}\right)=2 q-2 i-4 k+1 \\
\phi\left(v_{i}\right)=2 q-8 i+4 & , i=1,2,3 \ldots k
\end{array}
$$

a)
$\operatorname{Max}_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \phi(\mathrm{v})=\max \left\{0, \max _{1 \leq i \leq 2 k}(2 \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq 2 k}(\mathrm{q}-4 \mathrm{i}+2)\right.$, $\left.\max _{1 \leq i \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}-4 \mathrm{k}+1), \max _{1 \leq l \leq \mathrm{k}}(2 \mathrm{q}-8 \mathrm{i}+4)\right\}$
$=2 q-1$, the maximum value of all odds
Hence, $\phi(v) \in\{0,1,2 \ldots 2 q-1\}$
b) Clearly, The function ϕ is one-to-one mapping from the vertex set of G to the set $\{0,1,2 \ldots 2 q-1\}$
c) It remains to show that the labels of the edges of G are all the odd integers of the interval [$1,2 q-1]$ and that's as following:
The range of $\left|\phi\left(u_{i}\right)-\phi(u)\right|=\{2 q-2 i+1 \quad, i=1,2 \ldots 2 k\}$

$$
=\{2 q-1,2 q-3 \ldots 2 q-4 k+1\}
$$

The range of $\left|\phi\left(u_{i}\right)-\phi\left(x_{i}\right)\right|=\{q+2 i-1, i=1,2 \ldots 2 k\}$

$$
=\{q+1, q+3 \ldots q+4 k-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(x_{i}\right)\right|=\{q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{q-4 k+1, q-4 k+3 \ldots q-1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(h_{2 i-1}\right)\right|=\{4 k-4 i+1, i=1,2,3 \ldots k\}$

$$
=\{4 k-3,4 k-7 \ldots 1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(h_{2 i}\right)\right|=\{4 k-4 i+3, i=1,2,3 \ldots k\}$

$$
=\{4 k-1,4 k-5 \ldots 3\}
$$

Hence, $\{|\phi(u)-\phi(v)|: u v \in E(G)\}=\{1,3,5 \ldots 2 q-1\}$.
So the revised friendship graph $\mathrm{F}\left(k C_{8}\right)$ is odd graceful.

Theorem 2.5: The revised friendship graph $F\left(k C_{12}\right)$ is odd graceful, where k is any positive integer.

Proof:

Let $G=F\left(k C_{12}\right)$ has q edges and p vertices. The graph G consists of the vertices $u, u_{1} u_{2} u_{3} \ldots u_{2 k}, x_{1} x_{2} x_{3} \ldots x_{2 k}$, $h_{1} h_{2} h_{3} \ldots h_{2 k}, a_{1} a_{2} a_{3} \ldots a_{2 k}, b_{1} b_{2} b_{3} \ldots b_{2 k}$ and $v_{1} v_{2} v_{3} \ldots v_{k}$, where the graph G consisting k copies of C_{12} with a vertex u in common, such that the vertex u is the common vertex, b_{i} is put between u and v_{j}, a_{i} is put between u and b_{i}, h_{i} is put between u and a_{i}, x_{i} is put between u and h_{i}, u_{i} is put between u and x_{i} where $i=1,2,3 \ldots 2 k$ and $j=1,2,3 \ldots k$. The graph G has $q=$ $12 k$ and $p=11 k+1$, as shown in the next figure.

Figure 6: the revised friendship graph $F\left(k C_{12}\right)$
Define $\phi: V(G) \rightarrow\{0,1,2 \ldots 2 q-1\}$ as following:
$\phi(u)=0$
$\phi\left(u_{i}\right)=2 q-2 i+1$
, $i=1,2,3 \ldots 2 k$
$\phi\left(x_{i}\right)=(4 / 6) q-4 i+2$
, $i=1,2,3 \ldots 2 k$
$\phi\left(h_{i}\right)=2 q-2 i-4 k+1$
$, i=1,2,3 \ldots 2 k$
$\phi\left(a_{i}\right)=(8 / 6) q-4 i+2$
$, i=1,2,3 \ldots 2 k$
$\phi\left(b_{i}\right)=(2 / 6) q-2 i+1$
, $i=1,2,3 \ldots 2 k$
$\phi\left(v_{i}\right)=(4 / 6) q-8 i+4 \quad, i=1,2,3 \ldots k$
a)
$\operatorname{Max}_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \phi(\mathrm{v})=\max \left\{0, \max _{1 \leq \mathrm{i} \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((4 / 6) \mathrm{q}-4 \mathrm{i}+2)\right.$,
$\max _{1 \leq i \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}-4 \mathrm{k}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((8 / 6) \mathrm{q}-4 \mathrm{i}+2)$,
$\left.\max _{1 \leq i \leq 2 \mathrm{k}}((2 / 6) \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq l \leq \mathrm{k}}((4 / 6) \mathrm{q}-8 \mathrm{i}+4)\right\}$
$=2 q-1$, the maximum value of all odds
Hence, $\phi(v) \in\{0,1,2 \ldots 2 q-1\}$
b) Clearly, The function ϕ is one-to-one mapping from the vertex set of G to the set $\{0,1,2 \ldots 2 q-1\}$
c) It remains to show that the labels of the edges of G are all the odd integers of the interval [$1,2 q-1$] and that's as following:
The range of $\left|\phi\left(u_{i}\right)-\phi(u)\right|=\{2 q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{2 q-1,2 q-3 \ldots 2 q-4 k+1\}
$$

The range of $\left|\phi\left(u_{i}\right)-\phi\left(x_{i}\right)\right|=\{(4 / 3) q+2 i-1, i=1,2 \ldots 2 k\}$

$$
=\{(4 / 3) q+1,(4 / 3) q+3 \ldots(4 / 3) q+4 k-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(x_{i}\right)\right|=\{(4 / 3) q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(4 / 3) q-4 k+1,(4 / 3) q-4 k+3 \ldots(4 / 3) q-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(a_{i}\right)\right|=\{(2 / 3) q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(2 / 3) q-4 k+1,(2 / 3) q-4 k+3, \ldots(2 / 3) q-1\}
$$

The range of $\left|\phi\left(a_{i}\right)-\phi\left(b_{i}\right)\right|=\{q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{q-1, q-3 \ldots q-4 k+1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(b_{2 i-1}\right)\right|=\{(1 / 3) q-4 i+1, i=1,2,3 \ldots k\}$

$$
=\{(1 / 3) q-3,(1 / 3) q-7 \ldots 1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(b_{2 i}\right)\right|=\{(1 / 3) q-4 i+3, i=1,2,3 \ldots k\}$

$$
=\{(1 / 3) q-1,(1 / 3) q-5 \ldots 3\}
$$

Hence, $\{|\phi(u)-\phi(v)|: \mathrm{u} v \in \mathrm{E}(\mathrm{G})\}=\{1,3,5 \ldots 2 q-1\}$.
So the revised friendship graph $\mathrm{F}\left(k C_{12}\right)$ is odd graceful.
Theorem 2.6: The revised friendship graph $F\left(k C_{16}\right)$ is odd graceful, where k is any positive integer.

Proof:

Let $G=\mathrm{F}\left(k C_{16}\right)$ has q edges and p vertices. The graph G consists of the vertices $u, u_{1} u_{2} u_{3} \ldots u_{2 k}, x_{1} x_{2} x_{3} \ldots x_{2 k}$, $h_{1} h_{2} h_{3} \ldots h_{2 k}, a_{1} a_{2} a_{3} \ldots a_{2 k}, b_{1} b_{2} b_{3} \ldots b_{2 k}, c_{1} c_{2} c_{3} \ldots c_{2 k}, d_{1} d_{2} d_{3} \ldots d_{2 k}$ and $v_{1} v_{2} v_{3} \ldots v_{k}$, where the graph G consisting k copies of C_{16} with a vertex u in common, such that the vertex u is the common vertex, d_{i} is put between $u \& v_{j}, c_{i}$ is put between u and d_{i}, b_{i} is put between u and c_{i}, a_{i} is put between u and b_{i}, h_{i} is put between u and a_{i}, x_{i} is put between u and h_{i}, u_{i} is put between u and x_{i} where $i=1,2,3 . .2 k$ and $j=1,2,3 \ldots k$. The graph G has $q=16 k$ and $p=15 k+1$, as shown in the next figure.

Figure 7: the revised friendship graph $\mathbf{F}\left(\boldsymbol{k} C_{16}\right)$
Define $\phi: V(G) \rightarrow\{0,1,2 \ldots 2 q-1\}$ as following:

$$
\begin{aligned}
& \phi(u)=0 \\
& \phi\left(u_{i}\right)=2 q-2 i+1 \quad, i=1,2,3 \ldots 2 k
\end{aligned}
$$

$$
\begin{array}{ll}
\phi\left(x_{i}\right)=(1 / 2) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(h_{i}\right)=2 q-2 i-4 k+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(a_{i}\right)=q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(b_{i}\right)=(1 / 4) q-2 i+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(c_{i}\right)=(3 / 2) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(d_{i}\right)=q-2 i+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(v_{i}\right)=(5 / 4) q-8 i+4 & , i=1,2,3 \ldots k
\end{array}
$$

a)

$$
\begin{aligned}
\operatorname{Max}_{\mathrm{v} \in \mathrm{~V}(\mathrm{G})} \phi(\mathrm{v})= & \max \left\{0, \max _{1 \leq \mathrm{i} \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((1 / 2) \mathrm{q}-4 \mathrm{i}+2),\right. \\
& \max _{1 \leq i \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}-4 \mathrm{k}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}(\mathrm{q}-4 \mathrm{i}+2), \\
& \max _{1 \leq \mathrm{i} \leq 2 \mathrm{k}}((1 / 4) \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq u \leq 2 \mathrm{k}}((3 / 2) \mathrm{q}-4 \mathrm{i}+2), \\
& \left.\max _{1 \leq \mathrm{i} \leq 2 \mathrm{k}}(\mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq u \leq \mathrm{k}}((5 / 4) \mathrm{q}-8 \mathrm{i}+4)\right\} \\
= & 2 q-1, \text { the maximum value of all odds }
\end{aligned}
$$

Hence, $\phi(v) \in\{0,1,2 \ldots 2 q-1\}$
b) Clearly, The function ϕ is one-to-one mapping from the vertex set of G to the set $\{0,1,2 \ldots 2 q-1\}$
c) It remains to show that the labels of the edges of G are all the odd integers of the interval [1,2q-1] and that's as following:
The range of $\left|\phi\left(u_{i}\right)-\phi(u)\right|=\{2 q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{2 q-1,2 q-3 \ldots 2 q-4 k+1\}
$$

The range of $\left|\phi\left(u_{i}\right)-\phi\left(x_{i}\right)\right|=\{(3 / 2) q+2 i-1, i=1,2 \ldots 2 k\}$

$$
=\{(3 / 2) q+1,(3 / 2) q+3 \ldots(3 / 2) q+4 k-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(x_{i}\right)\right|=\{(3 / 2) q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(3 / 2) q-4 k+1,(3 / 2) q-4 k+3 \ldots(3 / 2) q-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(a_{i}\right)\right|=\{q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{q-4 k+1, q-4 k+3 \ldots q-1\}
$$

The range of $\left|\phi\left(a_{i}\right)-\phi\left(b_{i}\right)\right|=\{(3 / 4) q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{(3 / 4) q-1,(3 / 4) q-3 \ldots(3 / 4) q-4 k+1\}
$$

The range of $\left|\phi\left(c_{i}\right)-\phi\left(b_{i}\right)\right|=\{(5 / 4) q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{(5 / 4) q-1,(5 / 4) q-3 \ldots(5 / 4) q-4 k+1\}
$$

The range of $\left|\phi\left(c_{i}\right)-\phi\left(d_{i}\right)\right|=\{(1 / 2) q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{(1 / 2) q-1,(1 / 2) q-3 \ldots(1 / 2) q-4 k+1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(d_{2 i-1}\right)\right|=\{(1 / 4) q-4 i+1, i=1,2,3 \ldots k\}$

$$
=\{(1 / 4) q-3,(1 / 4) q-7 \ldots(1 / 4) q-4 k+1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(d_{2 i}\right)\right|=\{(1 / 4) q-4 i+3, i=1,2,3 \ldots k\}$

$$
=\{(1 / 4) q-1,(1 / 4) q-5 \ldots(1 / 4) q-4 k+3\}
$$

Hence, $\{|\phi(u)-\phi(v)|: u v \in E(G)\}=\{1,3,5 \ldots 2 q-1\}$.
So the revised friendship graph $F\left(k C_{16}\right)$ is odd graceful.
Theorem 2.7: The revised friendship graph $F\left(k C_{20}\right)$ is odd graceful, where k is any positive integer.

Proof:

Let $G=\mathrm{F}\left(k C_{20}\right)$ has q edges and p vertices. The graph G consists of the vertices $u, u_{1} u_{2} u_{3} \ldots u_{2 k}, x_{1} x_{2} x_{3} \ldots x_{2 k}$, $h_{1} h_{2} h_{3} \ldots h_{2 k}, \quad a_{1} a_{2} a_{3} \ldots a_{2 k}, \quad b_{1} b_{2} b_{3} \ldots b_{2 k}, \quad c_{1} c_{2} c_{3} \ldots c_{2 k}$, $d_{1} d_{2} d_{3} \ldots d_{2 k}, z_{1} z_{2} z_{3} \ldots z_{2 k}, g_{1} g_{2} g_{3} \ldots g_{2 k}$ and $v_{1} v_{2} v_{3} \ldots v_{k}$, where the graph G consisting k copies of C_{20} with a vertex u in common, such that the vertex u is the common vertex, g_{i} is put between u and v_{j}, z_{i} is put between u and g_{i}, d_{i} is put between u and z_{i}, c_{i} is put between u and d_{i}, b_{i} is put between u and c_{i}, a_{i} is put between u and b_{i}, h_{i} is put between u and a_{i}, x_{i} is put between u and h_{i}, u_{i} is put between u and x_{i} where $i=1,2,3 . .2 k$ and $\quad j=1,2,3 \ldots k$. The graph G has $q=20 k$ and $p=19 k+$ 1 , as shown in the next figure.

Figure 8: the revised friendship graph $F\left(\boldsymbol{k} C_{20}\right)$
Define $\phi: V(G) \rightarrow\{0,1,2 \ldots 2 q-1\}$ as following:

$$
\begin{array}{ll}
\phi(u)=0 & , i=1,2,3 \ldots 2 k \\
\phi\left(u_{i}\right)=2 q-2 i+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(x_{i}\right)=(2 / 5) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(h_{i}\right)=2 q-2 i-4 k+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(a_{i}\right)=(4 / 5) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(b_{i}\right)=2 q-2 i-8 k+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(c_{i}\right)=(6 / 5) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(d_{i}\right)=(7 / 5) q-2 i+1 & , i=1,2,3 \ldots 2 k \\
\phi\left(z_{i}\right)=(8 / 5) q-4 i+2 & , i=1,2,3 \ldots 2 k \\
\phi\left(g_{i}\right)=(1 / 5) q-2 i+1 & , 2,3 \ldots k
\end{array}
$$

a)
$\operatorname{Max}_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \phi(\mathrm{v})=\max \left\{0, \max _{1 \leq \mathrm{i} \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((2 / 5) \mathrm{q}-4 \mathrm{i}+2)\right.$,

$$
\begin{aligned}
& \max _{1 \leq i \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}-4 \mathrm{k}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((4 / 5) \mathrm{q}-4 \mathrm{i}+2), \\
& \max _{1 \leq i \leq 2 \mathrm{k}}(2 \mathrm{q}-2 \mathrm{i}-8 \mathrm{k}+1), \max _{1 \leq I \leq 2 \mathrm{k}}((6 / 5) \mathrm{q}-4 \mathrm{i}+2), \\
& \max _{1 \leq i \leq 2 \mathrm{k}}((7 / 5) \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq \leq 2 \mathrm{k}}((8 / 5) \mathrm{q}-4 \mathrm{i}+2) \\
& \left.\max _{1 \leq i \leq 2 \mathrm{k}}((1 / 5) \mathrm{q}-2 \mathrm{i}+1), \max _{1 \leq \leq \leq \mathrm{k}}(\mathrm{q}-8 \mathrm{i}+4)\right\}
\end{aligned}
$$

$=2 q-1$, the maximum value of all odds
Hence, $\phi(v) \in\{0,1,2 \ldots 2 q-1\}$
b) Clearly, The function ϕ is one-to-one mapping from the vertex set of G to the set $\{0,1,2 \ldots 2 q-1\}$
c) It remains to show that the labels of the edges of G are all the odd integers of the interval [1,2q-1] and that's as following:
The range of $\left|\phi\left(u_{i}\right)-\phi(u)\right|=\{2 q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{2 q-1,2 q-3 \ldots 2 q-4 k+1\}
$$

The range of $\left|\phi\left(u_{i}\right)-\phi\left(x_{i}\right)\right|=\{(8 / 5) q+2 i-1, i=1,2 \ldots 2 k\}$

$$
=\{(8 / 5) q+1,(8 / 5) q+3 \ldots(8 / 5) q+4 k-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(x_{i}\right)\right|=\{(8 / 5) q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(8 / 5) q-4 k+1,(8 / 5) q-4 k+3 \ldots(8 / 5) q-1\}
$$

The range of $\left|\phi\left(h_{i}\right)-\phi\left(a_{i}\right)\right|=\{(6 / 5) q+2 i-4 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(6 / 5) q-4 k+1,(6 / 5) q-4 k+3 \ldots(6 / 5) q-1\}
$$

The range of $\left|\phi\left(a_{i}\right)-\phi\left(b_{i}\right)\right|=\{(6 / 5) q+2 i-8 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(6 / 5) q-8 k+1,(6 / 5) q-8 k+3 \ldots(6 / 5) q-4 k-1\}
$$

The range of $\left|\phi\left(c_{i}\right)-\phi\left(b_{i}\right)\right|=\{(4 / 5) q+2 i-8 k-1, i=1,2 \ldots 2 k\}$

$$
=\{(4 / 5) q-8 k+1,(4 / 5) q-8 k+3 \ldots(4 / 5) q-4 k-1\}
$$

The range of $\left|\phi\left(c_{i}\right)-\phi\left(d_{i}\right)\right|=\{(1 / 5) q+2 i-1, i=1,2 \ldots 2 k\}$

$$
=\{(1 / 5) q+1,(1 / 5) q+3 \ldots(1 / 5) q+4 k-1\}
$$

The range of $\left|\phi\left(d_{i}\right)-\phi\left(z_{i}\right)\right|=\{(1 / 5) q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{(1 / 5) q-1,(1 / 5) q-3 \ldots 1\}
$$

The range of $\left|\phi\left(z_{i}\right)-\phi\left(g_{i}\right)\right|=\{(7 / 5) q-2 i+1, i=1,2 \ldots 2 k\}$

$$
=\{(7 / 5) q-1,(7 / 5) q-3 \ldots(7 / 5) q-4 k+1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(g_{2 i-1}\right)\right|=\{(4 / 5) q-4 i+1, i=1,2,3 \ldots k\}$

$$
=\{(4 / 5) q-3,(4 / 5) q-7 \ldots(4 / 5) q-4 k+1\}
$$

The range of $\left|\phi\left(v_{i}\right)-\phi\left(g_{2 i}\right)\right|=\{(4 / 5) q-4 i+3, i=1,2,3 \ldots k\}$

$$
=\{(4 / 5) q-1,(4 / 5) q-5 \ldots(4 / 5) q-4 k+3\}
$$

Hence, $\{|\phi(u)-\phi(v)|: \mathrm{u} v \in \mathrm{E}(\mathrm{G})\}=\{1,3,5 \ldots 2 q-1\}$.

So the revised friendship graph $F\left(k C_{20}\right)$ is odd graceful.
Now, we introduce a new conjecture and that's as shown.
Conjecture 2.8: The revised friendship graph $F\left(k C_{n}\right)$ is odd graceful where k is any positive integer and $n=0(\bmod 4)$ ".

3. Conclusion

Graceful and odd gracefulness of a graph are two entirely different concepts. A graph may posses one or both of these or neither. In this paper we introduced the odd graceful labeling of the revised friendship graphs $F\left(k C_{4}\right), F\left(k C_{8}\right), F\left(k C_{12}\right)$, $F\left(k C_{16}\right)$ and $F\left(k C_{20}\right)$ where k is any positive integer. Finally, we introduced a new conjecture " The revised friendship graph $F\left(k C_{n}\right)$ is odd graceful where k is any positive integer and $n=0(\bmod 4)$.

4. References

[1] R.B. Gnanajothi, Topics in graph theory, Ph.D. thesis, Madurai Kamaraj University, India, 1991.
[2] E. M. Badr, On the Odd Gracefulness of Cyclic Snakes With Pendant Edges, International journal on applications of graph theory in wireless ad hoc networks and sensor networks (GRAPH-HOC) Vol.4, No.4, December 2012.
[3] E. M. Badr, M. I. Moussa \& K. Kathiresan (2011): Crown graphs and subdivision of ladders are odd graceful, International Journal of Computer Mathematics, 88:17, 3570-3576.
[4] A. Rosa, On certain valuation of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, New York and Dunod Paris (1967) 349-355.
[5] A. Solairaju \& P. Muruganantham, Even Vertex Gracefulness of Fan Graph, International Journal of Computer Applications, Volume 8-No.8, October 2010.

