Odd Graceful Labeling of the Revised Friendship Graphs

E. M. Badr Department of scientific computing, Faculty of Computers & Information, Benha University, Benha, Egypt,

ABSTRACT

The aim of this paper is to present some odd graceful graphs. In particular we show that the revised friendship graphs $F(kC_4)$, $F(kC_8)$, $F(kC_{12})$, $F(kC_{16})$ and $F(kC_{20})$ are odd graceful where *k* is any positive integer. Finally, we introduce a new conjecture " The revised friendship graph $F(kC_n)$ is odd graceful where *k* is any positive integer and $n = 0 \pmod{4}$.

Keywords

Graph Theory, odd graceful labeling, friendship graphs.

1. INTRODUCTION

A graph *G* of size *q* is odd-graceful, if there is an injection ϕ from *V*(*G*) to {0, 1, 2, ..., 2*q*-1} such that, when each edge *xy* is assigned the label or weight $|\phi(x) - \phi(y)|$, the resulting edge labels are {1, 3, 5, ..., 2*q*-1}. This definition was introduced in 1991 by Gnanajothi [1] who proved that the class of odd graceful graphs lies between the class of graphs with α -labelings and the class of bipartite graphs. Gnanajothi [1] proved that every cycle C_n is odd graceful if *n* is even. It is known that the graphs which contain odd cycles are not odd graceful so Badr [2] used the subdivision notation for odd cycle in order to prove that the subdivision of linear triangular snakes are odd graceful. Badr et al [3] proved that the subdivision of ladders $S(L_n)$ is odd graceful.

Rosa [4] proved that the cycle C_n is graceful if and only if $n \equiv 0$ or 3 (mod 4). Solairaju and Muruganantham [5] proved that the revised friendship graphs $F(kC_3)$, $F(kC_5)$ and $F(2kC_3)$ are all even vertex graceful, where *k* is any positive integer.

Definition 1.1: A revised friendship graph $F(kC_n)$, $n \ge 3$ is defined as a connected graph containing *k* copies of C_n with a vertex in common.

Example 1.2:

Figure 1: the revised friendship graphs $F(4C_4)$ & $F(2C_8)$

In this paper we show that the revised friendship graphs $F(kC_4)$, $F(kC_8)$, $F(kC_{12})$, $F(kC_{16})$ and $F(kC_{20})$ are odd graceful where *k* is any positive integer. Finally, we introduce a new conjecture " The revised friendship graph $F(kC_n)$ is odd graceful where *k* is any positive integer and $n = 0 \pmod{4}$.

2. THE MAIN RESULTS

Theorem 2.1: The revised friendship graph $F(kC_4)$ is odd graceful, where k is any positive integer.

Proof:

Let $G = F(kC_4)$ has q edges and p vertices. The graph G consists of the vertices u, $u_1u_2u_3...u_{2k}$ and $v_1v_2v_3...v_k$, where the graph G consisting k copies of C_4 with a vertex u in common, such that u_i is put between u and v_j where i = 1, 2, 3...2k and j = 1, 2, 3...k. The graph G has q = 4k and p = 3k + 1, as shown in Figure 2.

Figure 2: the revised friendship graph $F(kC_4)$

Define $\phi: V(G) \rightarrow \{0, 1, 2..., 2q-1\}$ as following:

 $\phi(u)=0$

$$\phi(u_i) = 2q - 2i + 1$$
, $i = 1, 2, 3... 2k$

 $\phi(v_i) = 2q - 8i + 4$, i = 1, 2, 3... k

a) $\max_{v \in V(G)} \phi(v) = \max\{0, \max_{1 \le i \le 2k} 2q - 2i + 1, \max_{1 \le i \le k} (2q - 8i + 4)\}$

=2q-1, the maximum value of all odds

Hence, $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

b) Clearly, The function ϕ is one-to-one mapping from the

vertex set of *G* to the set $\{0, 1, 2... 2q - 1\}$

c) It remains to show that the labels of the edges of *G* are all the odd integers of the interval [1,2q-1] The range of $|\phi(u_i) - \phi(u)| = \{2q - 2i + 1 : i = 1, 2 \dots 2k\}$

International Journal of Computer Applications (0975 – 8887) Volume 65– No.11, March 2013

$$= \{2q - 1, 2q - 3 \dots 2q - 4k + 1\}$$

The range of $|\phi(v_i) - \phi(u_{2i-1})| = \{4i - 1 : i = 1, 2 \dots k\}$ = $\{3, 7 \dots 4k - 1\}$

The range of $|\phi(v_i) - \phi(u_{2i})| = \{4i - 3 : i = 1, 2 \dots k\}$

$$= \{1, 5 \dots 4k - 3\}$$

Hence, $\{ | \phi(u) - \phi(v) | : u v \in E(G) \} = \{1, 3, 5 \dots 2q - 1 \}.$

So the revised friendship graph $F(kC_4)$ is odd graceful.

Example 2.2

Figure 3: the odd graceful labeling of the revised friendship graph $F(5C_4)$.

Theorem 2.3: The revised friendship graph $F(kC_6)$ is odd graceful, where *k* is any positive integer.

Proof:

Let $G = F(kC_6)$ has q edges and p vertices. The graph G consists of the vertices u, $u_1u_2u_3...u_{2k}$, $x_1x_2x_3...x_{2k}$ and $v_1v_2v_3...v_k$, where the graph G consisting k copies of C_6 with a vertex u in common, such that the vertex u is the common vertex, x_i is put between u and v_j , u_i is put between u and x_i , such that i = 1,2,3..2k, j = 1, 2, 3...k. The graph G has q = 6k and p = 5k + 1, as shown in Figure 4.

Figure 4: the revised friendship graph $F(kC_6)$

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u) = 0$$

$\phi(u_i) = 2q - 2i + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(x_i) = (4/3) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(v_i) = (2/3) q - 4i + 3$, <i>i</i> -odd ($i = 1, 3, 5$)
$\phi(v_i) = (2/3) q - 4i + 1$, <i>i</i> -even ($i = 2, 4, 6$)

a)

$$\begin{aligned} \underset{v \in V(G)}{\text{Max}} \phi(v) &= \max\{0, \max_{1 \le i \le 2k} (2q - 2i + 1), \max_{1 \le t \le 2k} ((4/3) \ q - 4i + 2), \\ \underset{i=1,3,\dots,k}{\overset{i \text{-odd}}{\text{max}}} ((2/3) \ q - 4i + 3), \ \underset{i=2,4,\dots,k}{\overset{i \text{-even}}{\text{max}}} ((2/3) \ q - 4i + 1) \end{aligned} \end{aligned}$$

= 2q - 1, the maximum value of all odds

Hence, $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

b) Clearly, The function ϕ is one-to-one mapping from the

vertex set of G to the set $\{0,1,2...2q-1\}$

c) It remains to show that the labels of the edges of *G* are all the odd integers of the interval [1,2q-1] and that's as following:

The range of $|\phi(u_i) - \phi(u)| = \{2q - 2i + 1, i = 1, 2 \dots 2k\}$

$$= \{2q - 1, 2q - 3 \dots 2q - 4k + 1\}$$

The range of $|\phi(u_i) - \phi(x_i)| = \{(2/3) q + 2i - 1, i = 1, 2 \dots 2k\}$

 $= \{ (2/3) q + 1, (2/3) q + 3 \dots (2/3) q + 4k - 1 \}$

The range of $| \phi(v_i) - \phi(x_{2i \cdot 1}) | = \{ (2/3) \ q - 4i + 3 \ , i \text{-odd} \ (i = 1, 3, 5..., k \ \}$

$$= \{ (2/3) q - 1, (2/3) q - 9 \dots \}$$

The range of $|\phi(v_i) - \phi(x_{2i})| = \{(2/3) \ q - 4i - 1, i \text{-odd} \ (i = 1, 3, 5..., k)\}$

 $= \{ (2/3) q - 5, (2/3) q - 13 \dots \}$

The range of $|\phi(v_i) - \phi(x_{2i-1})| = \{(2/3) \ q - 4i + 5, i \text{-even} \ (i = 2, 4, 6..., k-1)\}$

$$= \{ (2/3) q - 3, (2/3) q - 11 \dots \}$$

The range of $|\phi(v_i) - \phi(x_{2i})| = \{(2/3) \ q - 4i + 1, i \text{-even} \ (i = 2, 4, 6..., k-1)\}$

 $= \{ (2/3) q - 7, (2/3) q - 15 \dots \}$

Hence, $\{ | \phi(u) - \phi(v) | : uv \in E(G) \} = \{1, 3, 5 \dots 2q - 1 \}.$

So the revised friendship graph $F(kC_6)$ is odd graceful.

Theorem 2.4: The revised friendship graph $F(kC_8)$ is odd graceful, where k is any positive integer.

Proof:

Let $G = F(kC_8)$ has q edges and p vertices. The graph G consists of the vertices $u, u_1u_2u_3...u_{2k}, x_1x_2x_3...x_{2k}, h_1h_2h_3...h_{2k}$ and $v_1v_2v_3...v_k$, where the graph G consisting k copies of C_8 with a vertex u in common, such that the vertex u is the common vertex, h_i is put between u and v_j , x_i is put between u and h_i , u_i is put between u and x_i such that i = 1,2,3..2k and j = 1, 2, 3...k. The graph G has q = 8k and p = 7k + 1, as shown in the next figure.

Figure 5: the revised friendship graph $F(kC_8)$

,		č
$\phi(u)=0$		
$\phi\left(u_{i}\right)=2q-2i+1$	$, i = 1, 2, 3 \dots 2k$	
$\phi(x_i) = q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$	
$\phi(h_i) = 2q - 2i - 4k + 1$, $i = 1, 2, 3 2k$	
$\phi(v_i) = 2q - 8i + 4$, i = 1, 2, 3 k	
a)		

Define $\phi: V(G) \rightarrow \{0, 1, 2..., 2q-1\}$ as following:

$$\begin{split} \underset{v \in V(G)}{\text{Max}} \phi(v) &= \max\{0, \max_{1 \le i \le 2k} (2q - 2i + 1), \max_{1 \le i \le 2k} (q - 4i + 2), \\ \max_{1 \le i \le 2k} (2q - 2i - 4k + 1), \max_{1 \le i \le k} (2q - 8i + 4) \} \end{split}$$

= 2q - 1, the maximum value of all odds

Hence, $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

b) Clearly, The function ϕ is one-to-one mapping from the vertex set of *G* to the set $\{0,1,2...2q-1\}$

c) It remains to show that the labels of the edges of G are all the odd integers of the interval [1,2q-1] and that's as following:

The range of $|\phi(u_i) - \phi(u)| = \{2q - 2i + 1 , i = 1, 2 \dots 2k\}$

 $= \{2q - 1, 2q - 3 \dots 2q - 4k + 1\}$

The range of $|\phi(u_i) - \phi(x_i)| = \{q + 2i - 1, i = 1, 2 \dots 2k\}$

$$\{q+1, q+3 \dots q+4k-1\}$$

The range of $|\phi(h_i) - \phi(x_i)| = \{q + 2i - 4k - 1, i = 1, 2 \dots 2k\}$

$$= \{q - 4k + 1, q - 4k + 3 \dots q - 1\}$$

The range of $| \phi(v_i) - \phi(h_{2i-1}) | = \{4k - 4i + 1, i = 1, 2, 3 \dots k\}$

$$= \{4k - 3, 4k - 7 \dots 1\}$$

The range of $|\phi(v_i) - \phi(h_{2i})| = \{4k - 4i + 3, i = 1, 2, 3 \dots k\}$ = $\{4k - 1, 4k - 5 \dots 3\}$

Hence, $\{ | \phi(u) - \phi(v) | : uv \in E(G) \} = \{1, 3, 5 \dots 2q - 1 \}.$

So the revised friendship graph $F(kC_8)$ is odd graceful.

Theorem 2.5: The revised friendship graph $F(kC_{12})$ is odd graceful, where k is any positive integer.

Proof:

Let $G = F(kC_{12})$ has q edges and p vertices. The graph G consists of the vertices u, $u_1u_2u_3...u_{2k}$, $x_1x_2x_3...x_{2k}$, $h_1h_2h_3...h_{2k}$, $a_1a_2a_3...a_{2k}$, $b_1b_2b_3...b_{2k}$ and $v_1v_2v_3...v_k$, where the graph G consisting k copies of C_{12} with a vertex u in common, such that the vertex u is the common vertex, b_i is put between u and v_j , a_i is put between u and b_i , h_i is put between u and x_i where i = 1, 2, 3...2k and j = 1, 2, 3...k. The graph G has q = 12k and p = 11k + 1, as shown in the next figure.

Figure 6: the revised friendship graph $F(kC_{12})$

Define $\phi: V(G) \rightarrow \{0, 1, 2..., 2q-1\}$ as following:

$$\phi(u_i) = 2q - 2i + 1 , i = 1, 2, 3... 2k$$

$$\phi(x_i) = (4/6) q - 4i + 2 , i = 1, 2, 3... 2k$$

$$\phi(h_i) = 2q - 2i - 4k + 1 , i = 1, 2, 3... 2k$$

$$\phi(a_i) = (8/6) q - 4i + 2 , i = 1, 2, 3... 2k$$

$$\phi(b_i) = (2/6) q - 2i + 1 , i = 1, 2, 3... 2k$$

$$\phi(v_i) = (4/6) q - 8i + 4 , i = 1, 2, 3... k$$

a)

 $\phi(u)=0$

$$\begin{split} \max_{v \in V(G)} \phi(v) &= \max\{0, \max_{1 \le i \le 2k} (2q - 2i + 1), \max_{1 \le r \le 2k} ((4/6) q - 4i + 2), \\ \max_{1 \le i \le 2k} (2q - 2i - 4k + 1), \max_{1 \le r \le 2k} ((8/6) q - 4i + 2), \\ \max_{1 \le i \le 2k} ((2/6) q - 2i + 1), \max_{1 \le r \le k} ((4/6) q - 8i + 4) \} \end{split}$$

= 2q - 1, the maximum value of all odds

Hence, $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

b) Clearly, The function ϕ is one-to-one mapping from the vertex set of *G* to the set $\{0,1,2...2q - 1\}$

c) It remains to show that the labels of the edges of *G* are all the odd integers of the interval [1,2q-1] and that's as following:

The range of $|\phi(u_i) - \phi(u)| = \{2q - 2i + 1, i = 1, 2 \dots 2k\}$

$= \{2q - 1, 2q - 3 \dots 2q - 4k + 1\}$
The range of $ \phi(u_i) - \phi(x_i) = \{(4/3) q + 2i - 1, i = 1, 2 \dots 2k\}$
$= \{(4/3) q + 1, (4/3) q + 3 \dots (4/3) q + 4k - 1\}$
The range of $ \phi(h_i) - \phi(x_i) = \{(4/3)q + 2i - 4k - 1, i = 1, 2, 2k\}$
$= \{ (4/3) q - 4k + 1, (4/3) q - 4k + 3 \dots (4/3) q - 1 \}$
The range of $ \phi(h_i) - \phi(a_i) = \{(2/3)q + 2i - 4k - 1, i = 1, 2, 2k\}$
$= \{ (2/3) q - 4k + 1, (2/3) q - 4k + 3, \dots (2/3) q - 1 \}$
The range of $ \phi(a_i) - \phi(b_i) = \{q - 2i + 1, i = 1, 2 \dots 2k\}$
$= \{q - 1, q - 3 \dots q - 4k + 1\}$
The range of $ \phi(v_i) - \phi(b_{2i-1}) = \{(1/3) \ q - 4i + 1, i = 1, 2, 3 \dots k\}$
$= \{(1/3) \ q - 3, (1/3) \ q - 7 \dots 1\}$
The range of $ \phi(v_i) - \phi(b_{2i}) = \{(1/3) q - 4i + 3, i = 1, 2, 3 \dots k\}$

 $= \{ (1/3) q - 1, (1/3) q - 5 \dots 3 \}$

Hence, $\{ | \phi(u) - \phi(v) | : u v \in E(G) \} = \{1, 3, 5 \dots 2q - 1 \}.$

So the revised friendship graph $F(kC_{12})$ is odd graceful.

Theorem 2.6: The revised friendship graph $F(kC_{16})$ is odd graceful, where k is any positive integer.

Proof:

Let $G = F(kC_{16})$ has q edges and p vertices. The graph G consists of the vertices u, $u_1u_2u_3...u_{2k}$, $x_1x_2x_3...x_{2k}$, $h_1h_2h_3...h_{2k}$, $a_1a_2a_3...a_{2k}$, $b_1b_2b_3...b_{2k}$, $c_1c_2c_3...c_{2k}$, $d_1d_2d_3...d_{2k}$ and $v_1v_2v_3...v_k$, where the graph G consisting k copies of C_{16} with a vertex u in common, such that the vertex u is the common vertex, d_i is put between u & v_j , c_i is put between u and b_i , h_i is put between u and c_i , a_i is put between u and b_i , h_i is put between u and a_i , x_i is put between u and h_i , u_i is put between u and a_i , x_i is put between u and h_i , u_i is put between u and x_i where i = 1,2,3..2k and j = 1, 2, 3...k. The graph G has q = 16k and p = 15k + 1, as shown in the next figure.

Figure 7: the revised friendship graph $F(kC_{16})$

Define $\phi: V(G) \rightarrow \{0, 1, 2..., 2q-1\}$ as following:

 $\phi(u) = 0$

$$\phi(u_i) = 2q - 2i + 1$$
, $i = 1, 2, 3... 2k$

$\phi(x_i) = (1/2) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(h_i) = 2q - 2i - 4k + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi\left(a_{i}\right)=q-4i+2$	$, i = 1, 2, 3 \dots 2k$
$\phi(b_i) = (1/4) q - 2i + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(c_i) = (3/2) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(d_i) = q - 2i + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(v_i) = (5/4) q - 8i + 4$, i = 1, 2, 3 k

a)

$$\begin{split} \max_{v \in V(G)} \phi(v) &= \max\{0, \max_{1 \le i \le 2k} (2q - 2i + 1), \max_{1 \le i \le 2k} ((1/2) q - 4i + 2), \\ \max_{1 \le i \le 2k} (2q - 2i - 4k + 1), \max_{1 \le i \le 2k} (q - 4i + 2), \\ \max_{1 \le i \le 2k} ((1/4) q - 2i + 1), \max_{1 \le i \le 2k} ((3/2) q - 4i + 2), \\ \max_{1 \le i \le 2k} (q - 2i + 1), \max_{1 \le i \le k} ((5/4) q - 8i + 4) \} \end{split}$$

= 2q - 1, the maximum value of all odds

Hence, $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

b) Clearly, The function ϕ is one-to-one mapping from the

vertex set of *G* to the set $\{0, 1, 2... 2q - 1\}$

c) It remains to show that the labels of the edges of *G* are all the odd integers of the interval [1,2q-1] and that's as following:

The range of $|\phi(u_i) - \phi(u)| = \{2q - 2i + 1, i = 1, 2 \dots 2k\}$

$$= \{2q - 1, 2q - 3 \dots 2q - 4k + 1\}$$

The range of $|\phi(u_i) - \phi(x_i)| = \{(3/2) \ q + 2i - 1, i = 1, 2 \dots 2k\}$

 $= \{ (3/2) q + 1, (3/2) q + 3 \dots (3/2) q + 4k - 1 \}$

The range of $|\phi(h_i) - \phi(x_i)| = \{(3/2) q + 2i - 4k - 1, i = 1, 2... 2k\}$

 $= \{ (3/2) q - 4k + 1, (3/2) q - 4k + 3 \dots (3/2) q - 1 \}$

The range of $|\phi(h_i) - \phi(a_i)| = \{q + 2i - 4k - 1, i = 1, 2 \dots 2k\}$

$$= \{q - 4k + 1, q - 4k + 3 \dots q - 1\}$$

The range of $|\phi(a_i) - \phi(b_i)| = \{(3/4) \ q - 2i + 1, i = 1, 2 \dots 2k\}$

$$= \{ (3/4) q - 1, (3/4) q - 3 \dots (3/4) q - 4k + 1 \}$$

The range of $|\phi(c_i) - \phi(b_i)| = \{(5/4) \ q - 2i + 1, i = 1, 2 \dots 2k\}$

$$= \{ (5/4) q - 1, (5/4) q - 3 \dots (5/4) q - 4k + 1 \}$$

The range of $|\phi(c_i) - \phi(d_i)| = \{(1/2) \ q - 2i + 1, i = 1, 2 \dots 2k\}$

 $= \{ (1/2) q - 1, (1/2) q - 3 \dots (1/2) q - 4k + 1 \}$

The range of $|\phi(v_i) - \phi(d_{2i-1})| = \{(1/4) q - 4i + 1, i = 1, 2, 3... k\}$

 $= \{ (1/4) q - 3, (1/4) q - 7 \dots (1/4) q - 4k + 1 \}$

The range of $|\phi(v_i) - \phi(d_{2i})| = \{(1/4) \ q - 4i + 3, i = 1, 2, 3 \dots k\}$

$$= \{ (1/4) q - 1, (1/4) q - 5 \dots (1/4) q - 4k + 3 \}$$

Hence, $\{ | \phi(u) - \phi(v) | : u v \in E(G) \} = \{1, 3, 5 \dots 2q - 1 \}.$

So the revised friendship graph $F(kC_{16})$ is odd graceful.

Theorem 2.7: The revised friendship graph $F(kC_{20})$ is odd graceful, where k is any positive integer.

Proof:

Let $G = F(kC_{20})$ has q edges and p vertices. The graph G consists of the vertices u, $u_1u_2u_3...u_{2k}$, $x_1x_2x_3...x_{2k}$, $h_1h_2h_3...h_{2k}$, $a_1a_2a_3...a_{2k}$, $b_1b_2b_3...b_{2k}$, $c_1c_2c_3...c_{2k}$, $d_1d_2d_3...d_{2k}$, $z_1z_2z_3...z_{2k}$, $g_1g_2g_3...g_{2k}$ and $v_1v_2v_3...v_k$, where the graph G consisting k copies of C_{20} with a vertex u in common, such that the vertex u is the common vertex, g_i is put between u and v_i , c_i is put between u and g_i , d_i is put between u and c_i , a_i is put between u and b_i , h_i is put between u and a_i , x_i is put between u and a_i , x_i is put between u and h_i , u_i is put between u and a_i , a_i shown in the next figure.

Figure 8: the revised friendship graph $F(kC_{20})$

Define $\phi: V(G) \rightarrow \{0, 1, 2..., 2q-1\}$ as following:

$$\phi(u) = 0$$

$\phi(u_i) = 2q - 2i + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(x_i) = (2/5) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(h_i) = 2q - 2i - 4k + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(a_i) = (4/5) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(b_i) = 2q - 2i - 8k + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(c_i) = (6/5) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(d_i) = (7/5) q - 2i + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(z_i) = (8/5) q - 4i + 2$	$, i = 1, 2, 3 \dots 2k$
$\phi(g_i) = (1/5) q - 2i + 1$	$, i = 1, 2, 3 \dots 2k$
$\phi(v_i) = q - 8i + 4$	$, i = 1, 2, 3 \dots k$

a)

$$\begin{split} \max_{v \in V(G)} \phi(v) &= \max\{0, \max_{1 \le i \le 2k} (2q - 2i + 1), \max_{1 \le i \le 2k} ((2/5) q - 4i + 2), \\ \max_{1 \le i \le 2k} (2q - 2i - 4k + 1), \max_{1 \le i \le 2k} ((4/5) q - 4i + 2), \\ \max_{1 \le i \le 2k} (2q - 2i - 8k + 1), \max_{1 \le i \le 2k} ((6/5) q - 4i + 2), \\ \max_{1 \le i \le 2k} ((7/5) q - 2i + 1), \max_{1 \le i \le 2k} ((8/5) q - 4i + 2) \\ \max_{1 \le i \le 2k} ((1/5) q - 2i + 1), \max_{1 \le i \le k} (q - 8i + 4) \} \end{split}$$

= 2q - 1, the maximum value of all odds

Hence, $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

b) Clearly, The function ϕ is one-to-one mapping from the vertex set of *G* to the set $\{0,1,2...2q - 1\}$

c) It remains to show that the labels of the edges of *G* are all the odd integers of the interval [1,2q-1] and that's as following:

The range of $|\phi(u_i) - \phi(u)| = \{2q - 2i + 1, i = 1, 2 \dots 2k\}$

$$= \{2q - 1, 2q - 3 \dots 2q - 4k + 1\}$$

The range of $|\phi(u_i) - \phi(x_i)| = \{(8/5) q + 2i - 1, i = 1, 2 \dots 2k\}$

$$= \{ (8/5) q + 1, (8/5) q + 3 \dots (8/5) q + 4k - 1 \}$$

The range of $|\phi(h_i) - \phi(x_i)| = \{(8/5) q + 2i - 4k - 1, i = 1, 2... 2k\}$

 $= \{ (8/5) q - 4k + 1, (8/5) q - 4k + 3 \dots (8/5) q - 1 \}$

The range of $|\phi(h_i) - \phi(a_i)| = \{(6/5) q + 2i - 4k - 1, i = 1, 2... 2k\}$

 $= \{ (6/5) q - 4k + 1, (6/5) q - 4k + 3 \dots (6/5) q - 1 \}$

The range of $|\phi(a_i) - \phi(b_i)| = \{(6/5) q + 2i - 8k - 1, i = 1, 2... 2k\}$

$$= \{ (6/5) q - 8k + 1, (6/5) q - 8k + 3 \dots (6/5) q - 4k - 1 \}$$

The range of
$$|\phi(c_i) - \phi(b_i)| = \{(4/5) \ q + 2i - 8k - 1, i = 1, 2... 2k\}$$

$$= \{ (4/5) q - 8k + 1, (4/5) q - 8k + 3 \dots (4/5) q - 4k - 1 \}$$

The range of
$$|\phi(c_i) - \phi(d_i)| = \{(1/5) q + 2i - 1, i = 1, 2 \dots 2k\}$$

$$= \{ (1/5) q + 1, (1/5) q + 3 \dots (1/5) q + 4k - 1 \}$$

The range of $|\phi(d_i) - \phi(z_i)| = \{(1/5) \ q - 2i + 1, i = 1, 2 \dots 2k\}$ = $\{(1/5) \ q - 1, (1/5) \ q - 3 \dots 1\}$

The range of
$$|\phi(z_i) - \phi(g_i)| = \{(7/5) \ q - 2i + 1, \ i = 1, 2 \dots 2k\}$$

$$= \{ (7/5) q - 1, (7/5) q - 3 \dots (7/5) q - 4k + 1 \}$$

The range of
$$|\phi(v_i) - \phi(g_{2i-1})| = \{(4/5) q - 4i + 1, i = 1, 2, 3... k\}$$

$$= \{ (4/5) q - 3, (4/5) q - 7 \dots (4/5) q - 4k + 1 \}$$

The range of $|\phi(v_i) - \phi(g_{2i})| = \{(4/5) q - 4i + 3, i = 1, 2, 3 \dots k\}$

 $= \{ (4/5) q - 1, (4/5) q - 5 \dots (4/5) q - 4k + 3 \}$

Hence, { $|\phi(u) - \phi(v)| : u v \in E(G)$ } = {1, 3, 5 ... 2q - 1}.

So the revised friendship graph $F(kC_{20})$ is odd graceful.

Now, we introduce a new conjecture and that's as shown.

Conjecture 2.8: The revised friendship graph $F(kC_n)$ is odd graceful where *k* is any positive integer and $n = 0 \pmod{4}$ ".

3. Conclusion

Graceful and odd gracefulness of a graph are two entirely different concepts. A graph may posses one or both of these or neither. In this paper we introduced the odd graceful labeling of the revised friendship graphs $F(kC_4)$, $F(kC_8)$, $F(kC_{12})$, $F(kC_{16})$ and $F(kC_{20})$ where *k* is any positive integer. Finally, we introduced a new conjecture " The revised friendship graph $F(kC_n)$ is odd graceful where *k* is any positive integer and $n = 0 \pmod{4}$.

4. References

- [1] R.B. Gnanajothi, Topics in graph theory, Ph.D. thesis, Madurai Kamaraj University, India, 1991.
- [2] E. M. Badr, On the Odd Gracefulness of Cyclic Snakes With Pendant Edges, International journal on applications of graph theory in wireless ad hoc networks and sensor networks (GRAPH-HOC) Vol.4, No.4, December 2012.
- [3] E. M. Badr, M. I. Moussa & K. Kathiresan (2011): Crown graphs and subdivision of ladders are odd graceful, International Journal of Computer Mathematics, 88:17, 3570-3576.
- [4] A. Rosa, On certain valuation of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, New York and Dunod Paris (1967) 349-355.
- [5] A. Solairaju & P. Muruganantham, Even Vertex Gracefulness of Fan Graph, International Journal of Computer Applications, Volume 8-No.8, October 2010.