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ABSTRACT 

In this paper, we give a new vanishing point detection 

algorithm, called the normalized unit sphere. By normalizing 

homogeneous coordinates in the original image space, we 

transform image points onto a normalized unit sphere. Further, 

we transform straight lines in image space into circles on 

normalized unit sphere. As a result, the vanishing point 

detection is implemented by searching the intersections of 

circles on the normalized unit sphere. This algorithm not only 

bounds the search space but treats the finite vanishing points 

and the vanishing points at infinity with the same way. The 

experimental results on synthetic and real data show good 

performance of this algorithm.   
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1. Introduction 
As we know that the parallel lines with the same direction, in 

scene space, will intersect in one common point in image space 

through perspective transformation. This point is called 

vanishing point. The vanishing point is possible at infinity as 

the image projections of parallel lines in scene space are still 

parallel. Vanishing points provide much useful information for 

3D structure of a scene [4, 6, 7, 9, 11]. The vanishing points 

have been successfully applied to compute the internal 

parameters of a camera [2, 10]. We can also make affine 

rectification using vanishing points [3]. Two vanishing points 

define a line, which is called vanishing line. The affine 

rectification is realized by projecting the finite vanishing line 

into infinity.  

There are two typical works on vanishing point detection. The 

classical work on vanishing point detection is from Barnard [1]. 

He introduced a Gaussian sphere, which is a unit sphere 

centering at the optical center of the camera. A straight line in 

the image becomes a great circle on the Gaussian sphere. The 

intersections of those great circles correspond to the 

intersections of straight lines in the image space. The 

intersections with mostly hittings would be detected as 

vanishing points. The original vanishing points in the image 

space can be recovered by triangle similarity transformation. 

The Gaussian sphere transforms the unbounded search space 

into a limited unit sphere. Finite vanishing points and vanishing 

points at infinity lie on the Gaussian sphere without difference. 

Secondly, given the assumption of the zero-mean Gaussian 

measurement noises, Liebowitz [5] introduced the maximum 

likelihood estimate (MLE) on the vanishing point detection.  

The MLE of the vanishing point is to minimize the sum of 

squared orthogonal distances between the fitted lines and the 

measured lines’ end points. The solution can be achieved using 

the Levenberg-Marquart numerical algorithm [8]. 

There are two important problems for vanishing point detection. 

One is how to limit search space since vanishing points may be 

at infinity. The other is how to treat the vanishing points at 

infinity. Here, we introduce a normalization process on 

homogeneous coordinates such that the search space is bounded 

and the original vanishing points are very easy to be recovered. 

2. Method Description 
Those intersection points, where many straight lines meet, will 

be regarded as potential vanishing points. In general, the 

vanishing point detection consists of two steps: accumulation 

step and search step. In our accumulation step, we transform the 

homogeneous coordinates from infinite original image space 

into a limited unit sphere, called the normalized unit sphere. 

During the search of vanishing points, the K-means method will 

be applied to cluster the points on the normalized unit sphere. 

The clustering property from the original space is empirically 

preserved on the unit sphere. In our research, we cluster data on 

the normalized unit sphere based on Euclidean distance 

measure.     

2.1. Line representation and their intersections  

       and grouping 
The non-homogeneous coordinate for an image point is 
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such that wxu   and wyv  . 

A line l  in homogeneous coordinate is T][ cbal  so that 

a point x  lying on it only if its homogeneous coordinate x  

satisfies  
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If there are two lines T

1111 ][ cbal  and T

2222 ][ cbal , 

then their intersection point is 
21 llp  , where   is the cross 

product between two vectors. If 
1l  and 

2l  are parallel, then the 

third element of intersection point 
21 llp   is zero. This 
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means that the intersection point p  between 
1l  and 

2l  is at 

infinity. 

In our work, we apply the least squares method to fit straight 

lines to discrete edge points, and represent straight lines using 

homogeneous coordinates. The intersection points are then 

found by cross products of lines in homogeneous coordinates. 

2.2. Unit normalization on homogeneous points 
We normalize the homogeneous coordinates of points so 

that they become unit vectors in 3-space. A homogeneous point 

 Twyxx  is normalized to 
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where 222 wyxr  . 

Through this transformation, the original image points will 

be transformed onto a unit sphere, which we call the normalized 

unit sphere. The desirable property of our unit sphere is that it 

preserves the transformation from the original homogeneous 

coordinates to non-homogeneous coordinates. After vanishing 

points are found on this unit sphere, they can be mapped to the 

image plane by dividing the third element into the first two, 

which is the usual transformation from homogeneous 

coordinates to non-homogeneous coordinates. If the third 

element is 0, then the vanishing point is at infinity and the first 

two elements give a unit direction vector for those parallel lines 

generating the vanishing point. In Gaussian sphere, in order to 

recover the original vanishing points, we need to know focal 

length and do triangle similarity transformation. 

Through unit normalization, the intersection points of line 

pairs are on the unit sphere. Hence, we can limit the search 

space on the unit sphere similar to the Gaussian sphere. In 

addition, we treat the finite vanishing points and the vanishing 

points at infinity in the same manner. 

2.3. Search method 
We use the K-means method to search the vanishing point 

on the normalized unit sphere. The means of clusters are 

detected as vanishing points.  

In general, we adapt the K-means clustering to our search 

along the following principles. 

1. The clusters should be compact within a small circle. 

This helps to remove outliers and improve the 

accuracy of detection. To do this, we compute the 

mean update as 
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where k

nu  is the update mean for cluster k. k

ou  is the 

current mean for cluster k.   is the limit of the 

search area. 
kN  is the number of points within the 

search area for cluster k. That is, we only use the 

nearby points of the current means to compute new 

means.  

2.  The clusters should be dense. We reject the sparse 

clusters, which are always false vanishing points. In 

order to check whether a cluster is dense, we simply 

define the cluster acceptance probability as 

N

N kk  , where N  is the total number of points. If 

this probability is small, we reject this cluster and 

restart another guess. 

3. Properties of the Normalized Unit Sphere 
Here, let us discuss two properties of the normalized unit 

sphere. The first property for our unit sphere is that it still 

preserves the transformation from the original homogeneous 

coordinates to the non-homogeneous coordinates. The second 

property is that there exists a one-to-one point mapping between 

the original image space and the normalized unit sphere.    

Proposition 1. The transformation from the original 

homogeneous coordinates to non-homogeneous coordinates is 

preserved for the normalized unit sphere.   

Proof. Given a non-homogeneous point  Tvux  in the 

original space and its corresponding homogeneous point is 

 Twyxx , where wxu   and wyv  . Then, the 

corresponding point on the normalized sphere is 

 Twyx x , where |x|xx  , |x|yy  , 

|x|ww  , and |x|  is the length of vector x . We have 
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That is, the recovery of non-homogeneous coordinates from 

the original homogeneous coordinates is preserved for the 

normalized unit sphere. If we want to recover the detected 

vanishing points from the normalized unit sphere to the original 

image space, we just do it such like the transformation from a 

homogeneous coordinate to its non-homogeneous coordinate.    

Next, let us see what a line T][ cbal  in the original 

image space is transformed into on the normalized unit sphere. 

We have  


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
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222

T
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where  Tzyxx  is homogeneous coordinate. If we 

consider the equation 0T  czbyaxlx  with regard to x , 

y , z  as free parameters, then T][ cbal  defines a plane 

on the normalized unit sphere. This plane passes through the 

origin of the normalized unit sphere coordinate system. The 

intersection between this plane and the unit sphere is a circle, 

which is the original line transformed on the normalized unit 

sphere. The potential vanishing points will be those intersection 

points of many circles. In Gaussian sphere, the original lines are 

transformed into great circles and the potential vanishing points 

will be those intersection points of many great circles. However, 

Gaussian sphere is centered at the camera center. In order to 

recover the original vanishing points in image space, we need to 

know focal length and do triangle similarity transformation. In 

the normalized unit sphere, our original vanishing points can be 

easily recovered by dividing the third element to get back to the 

original image space. In addition, if the vanishing point is at 

infinity, then the third element is 0. The first two elements stand 

for a unit direction vector for those parallel lines generating the 

vanishing points. 

Using this unit normalization, we can limit the search space 

on the unit sphere like Gaussian sphere. In addition, there is no 

difference between finite vanishing points and infinite 

vanishing points on the normalized unit sphere. That is, the 
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normalized unit sphere treats the finite vanishing points and the 

vanishing points at infinity with the same way.  

In order to see that our normalized unit sphere works, we 

also need to show that the uniqueness of point transformation 

exists between the original image space and the normalized unit 

sphere. That is, two different points from non-homogeneous 

coordinates are still two different points after they are 

transformed onto the normalized unit sphere.  Vice versa.  

Proposition 2. The uniqueness of point transformation (one-to-

one mapping) exists between the original image space and the 

normalized unit sphere. 

Proof. Given two non-homogeneous points  T
111 vux  and 

 T
222 vux  in the original image space and their 

corresponding homogeneous points are  T
1111 wyxx  and 

 T
2222 wyxx , where 

111 wxu  , 
111 wyv  , 

222 wxu  , and 
222 wyv  . The corresponding points on the 

normalized unit sphere is  T
1111 wyx x  and 

 T
2222 wyx x , where |x111 |xx  , |x111 |yy  , 

|x111 |ww  , |x222 |xx  , |x222 |yy  , |x222 |ww  , 

and |x1|  and |x2|  are the lengths of vectors 
1x  and 

2x , 

respectively.  

Assume that 
21 xx  , we want to show that 

21 xx  .  

By contradiction, assume that 
21 xx  . Then from the above 

Proposition 1 that the transformation from the original 

homogeneous coordinates to non-homogeneous coordinates is 

preserved for the normalized unit sphere, we can obtain that 

21 xx  . This is not true. So 
21 xx  .     

Assume that 
21 xx  , we want to show that 

21 xx  . 

By contradiction, assume that 
21 xx  . We keep the elements in 

extra dimension of homogeneous coordinates are always 

nonnegative. Then we set the corresponding homogeneous 

coordinates of 
1x  and 

2x  as T

1111 ][ ww xx   and 

T

2222 ][ ww xx   with 01 w  and 02 w . Obviously, 

21 xx  . This is not true. So 
21 xx  .  

Based on one-to-one mapping, every line intersection point 

in the original image space corresponds to one point on the 

normalized unit sphere. However, on the Gaussian sphere, every 

line intersection point in the original image space corresponds 

to two points, where these two points define a diameter. The 

number of clusters, on the Gaussian sphere, is doubled. Our 

method removes this redundancy.  

4. Vanishing Point Detection Algorithm by 

the Normalized Unit Sphere 
Our algorithm to detect vanishing points consists of the 

following steps: 

(1). Compute the edge maps for given images using Canny 

edge detectors.  

(2). Fit straight lines in the edge maps through least-square 

method and build a line set consisting of all lines 
1l , 

2l ,…, 
Ml , where M  is the number of lines.  

(3). Build a line intersection set from all cross products 

between two lines, that is, ji ll   for all ji  . 

(4). Rectify all line intersections such that all intersections 

from the same vanishing point will converge into one 

cluster on the normalized unit sphere.   

(5). Normalize all line intersections such that all points lie 

on the normalized unit sphere.   

(6). Cluster points on the normalized unit sphere. The 

dense clusters will be detected as potential vanishing 

points.  

(7). Compute the cluster means as vanishing points.  

The intersection of two lines 
il  and 

jl  for ji  , equals to 

ji ll   or 
ij ll  . The terms 

ji ll   or 
ij ll   are two 

homogeneous points and negative to each other. They are 

equivalent in homogeneous coordinate. However, their 

corresponding points, on the normalized unit sphere, are 

opposite with regard to the origin. So those intersections, 

generating the same vanishing points, may converge into two 

clusters, opposite each other corresponding to the origin of the 

normalized unit sphere. In order to remove this malfunction, for 

any intersection homogenous point  Twyxx , we force 

0w . That is, if 0w , we multiply -1 to the homogenous 

point. If 0w , we force 0y  such like what we do on w . If 

0y , we force 0x . Through this rectification on all 

homogenous points of line intersections, we guarantee that all 

intersections, generating the same vanishing points, will 

converge into one cluster on the normalized unit sphere. 

5. Experimental Results 
The test will be implemented on synthetic data and real data. 

The synthetic data are with known vanishing points and with 

real imagery data. The synthetic data are generated under ideal 

projective transformation such that all parallel lines from the 

same direction intersect at a single vanishing point. The real 

data includes a field track picture and a brick wall picture. 

Because of the difference of fitted lines and true lines in real 

data, straight-line pairs intersect around the true vanishing point 

instead of hitting in the true vanishing point.  

Test on synthetic data 

The synthetic data are lines with three orthogonal directions. 

There are 20 lines in each direction, so there are 

190
2

1920

2

20












 intersection pairs for each true vanishing 

point. Even in this ideal condition, the clustering algorithm 

must deal with the 1200)2020(3   cross points between 

pairs of lines with different directions. 

Figure 1 shows that the line intersection points on the 

normalized unit sphere and in the original image space for noise 

free synthetic data. Note that the parallel lines in one direction 

intersect at one point, the vanishing point in that direction. That 

is, there is a very strong cluster in each vanishing point. For 

noise free data, 190 intersections hit in one vanishing point in 

each direction. As a result, the K-means method can detect 

vanishing points very accurately. Table 1 and 2 show the true 

and estimated vanishing points and corresponding root mean 

square errors (RMSE). If the vanishing points are far from the 

cross points of lines, the estimated vanishing points equal the 

true ones. Or else, the estimated vanishing points agree well 

with the true ones.   
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Table 1. Vanishing Point Detection on Normalized Unit 

Sphere (for noise free synthetic data) 

 TRUE ESTIMATED RMSE 

VP 1 

















4695.0

1229.0

8744.0
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4695.0

1229.0

8744.0

 

0 

VP 2 

















2581.0

9279.0

2690.0

 



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








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2581.0
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2690.0
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VP 3 





















8444.0

3520.0

4039.0

 





















8441.0

3524.0

4041.0

 

0.0005 

Table 2. Vanishing Point Detection in Original Image Space 

(for noise free synthetic data) 

 TRUE ESTIMATED RMSE 

VP 1 

















0000.1

2617.0

8624.1
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







0000.1

2617.0

8624.1
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VP 2 

















0000.1

5944.3

0421.1
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









0000.1

5944.3

0421.1

 

0 

VP 3 





















0000.1

4169.0

4783.0

 





















0000.1

4175.0

4788.0

 

0.0008 

 

 
(a) 

 
(b) 

Figure 1.  Vanishing point detection for noise free synthetic 

data. (a). on the normalized unit sphere (b). in the image space. 

The red ‘+’ is the true position of vanishing point. The blue ‘x’ 

is the estimated position of vanishing point. 

 

Figure 2 shows that the line intersection points on the 

normalized unit sphere and in the original image space for noisy 

synthetic data. Here, we add Gaussian noises to synthetic data. 

Note that the intersections of parallel lines in one direction 

(straight lines in image space) distribute around the vanishing 

point in that direction. There still exists a very strong cluster in 

each vanishing point. The K-means method can detect 

vanishing points well. Table 3 and 4 show the true and 

estimated vanishing points. We can see that the estimated 

vanishing points agree well with the true ones.   

 
Table 3. Vanishing Point Detection on Normalized Unit 

Sphere (for noisy synthetic data) 

 TRUE ESTIMATED RMSE 

VP 1 

















4695.0

1229.0

8744.0

 

 

















4697.0

1227.0

8742.0

 

0.0003 

VP 2 

















2581.0

9279.0

2690.0

 

















2572.0

9281.0

2692.0

 

0.0009 

VP 3 





















8444.0

3520.0

4039.0

 





















8434.0

3530.0

4049.0

 

0.0017 

 

 
Table 4. Vanishing Point Detection in Original Image Space 

(for noisy synthetic data) 

 TRUE ESTIMATED RMSE 

VP 1 

















0000.1

2617.0

8624.1

 

 

















0000.1

2611.0

8612.1

 

0.0013 

VP 2 

















0000.1

5944.3

0421.1

 

















0000.1

6090.3

0467.1

 

0.0153 

VP 3 





















0000.1

4169.0

4783.0

 





















0000.1

4185.0

4801.0

 

0.0024 
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(a) 

    
(b) 

Figure 2.  Vanishing point detection for noisy synthetic data. 

(a). on the normalized unit sphere (b). in the image space. The 

red ‘+’ is the true position of vanishing point. The blue ‘x’ is 

the estimated position of vanishing point. 

Test on real data 

First, Canny edges are extracted on original images for 

further detecting straight lines. Then for each edge, we link 

continuous edge points into chains. The least square method is 

used to detect and fit straight lines on every linked edge point 

list. We define the average fitting error as the average 

perpendicular distance for each edge point to the fitted line. If 

the average fitting error is less than 0.4, we regard the edge as a 

straight line. In practice, we reject short lines. If its length is 

less than 20 pixels, we do not think that this line is meaningful. 

For the K-means method, the number of components is a 

difficult model selection problem, which is not considered here. 

In our experiments, we choose the number manually. 

Fortunately, under most cases for architectural buildings, there 

are only three clusters corresponding to three mutually 

orthogonal directions. 

In order to compare with the estimates, we compute the true 

position of a vanishing point as the intersection of two parallel 

lines, where two points, manually selected, define each line. 

Test on real data 1: the field track picture 

In the field track picture, only the vertical parallel lines are 

clearly extracted using Canny edge detection, so the vanishing 

point exists in the vertical direction. We calculate edge linking 

on the Canny edges. Then the straight lines are fitted using the 

least square method on those linked points. Figure 3 shows the 

original picture, the detected Canny edges, and the fitted 

straight lines. Figure 4. shows the intersection points on the 

normalized unit sphere. We can see that the clustering property 

is still preserved. Therefore, We directly use Euclidean distance 

as similarity measure to cluster the points. There is only one 

cluster for the K-means. The detected vanishing points on the 

normalized unit sphere and in the original image space, agree 

well with the true vanishing points.   

In this experiment, the number of fitted straight lines is 14. 

Hence, the number of intersection points is 91
2

1314

2

14












. 

The estimated position of the vanishing point on the normalized 

unit sphere is  T0.00640.2952-0.9554 . The true position is 

 T0.00640.2957-0.9553 . The estimated position of the 

vanishing point in the original image space is just the estimate 

in the normalized unit sphere divided by its third element, 

which is  T1.000046.1250-149.2813 . The true position in 

the original image space is  T0000.146.0701-148.8293 . 

 

 

(a) 

 
(b) 

 
(c) 

Figure 3.  Test on field track picture. (a). original image   (b). 

Canny edges  (c). fitted straight lines (red lines) using least 

square method 

 
(a) 

 
(b) 

Figure 4.  Vanishing point detection for field track picture. (a). 

on the normalized unit sphere (b). in the image space. The red 

‘+’ is the true position of vanishing point. The blue ‘x’ is the 

estimated position of vanishing point.
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Test on real data 2: the brick wall data 

In the brick wall picture, only the horizontal parallel lines 

are clearly extracted using Canny edge detection. So we only 

estimate the vanishing point in the horizontal direction. We 

calculate edge linking on the Canny edges. Then the straight 

lines are fitted using the least square method on those linked 

points. Figure 5 shows the original picture, the detected Canny 

edges, and the fitted straight lines. Figure 6 shows that the line 

intersections on the normalized unit sphere and in the original 

image space. There is only one cluster for the K-means. Figure 

6(a) shows that the detected vanishing point agrees well with 

the true vanishing point on the normalized unit sphere. Figure 

6(b) shows the line intersection points in the original image 

space. The true vanishing point and the recovered estimated 

vanishing point from the unit sphere agree well.  

In this experiment, the number of fitted straight lines is 59. 

Hence, the number of intersection points is 

1711
2

5859

2

59












. The estimated position of the vanishing 

point on the normalized unit sphere is 

 T0037.00024.09972.0 . The true position is 

 T0036.00154.09999.0  . The estimated position of the 

vanishing point in the original image space is just the estimate 

on the normalized unit sphere divided by its third element, 

which is  T0000.16340.0 269.0146- . The true position in 

the original image space is  T0000.12909.41455.279  . 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.  Test on brick wall picture. (a). original image   (b). 

Canny edges  (c). fitted straight lines (red lines) using least 

square method 

  

       
(a) 

 
(b) 

Figure 6.  Vanishing point detection for brick wall picture. (a). 

on the normalized unit sphere. (b). in the image space. The red 

‘+’ is the true position of vanishing point. The blue ‘x’ is the 

estimated position of vanishing point. 

 
In comparison with the field track picture, we obtain much 

more accurate estimation results on the field track picture than 

those obtained from the brick wall picture. This is because we 

have much more accurate straight-line extraction on the field 

track image. Recall that the vanishing point is the intersection 

of straight lines. 

The amazing property of the normalized unit sphere is that 

the clustering in the original image space is still preserved. In 

practice, the experimental accuracy depends on the edge and 

straight-line detection, straight line fitting, and clustering 

measure.   

6. Conclusions 
In this paper, we describe a general method for vanishing 

point detection and demonstrate its efficacy experimentally. In 

comparison with Gaussian sphere, our method transforms the 

non-homogeneous space into a normalized homogeneous space. 

In the normalized homogeneous space, finite points and points 

at infinity are treated equally. 

From our results, we note that the transformation from the 

original infinite space into the limited space of a unit sphere can 

make a large-valued data to become small. Conversely, small 

estimate errors on the unit sphere may result in large estimate 

errors in the original space. Therefore, accurate edge detection 

and straight line extraction are very important. Nevertheless, the 

advantage of the normalized unit sphere is that the clustering in 

the original image space is preserved.  
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