
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.10, March 2013

1

A Memory Efficient and Faster Modification of Set

Partitioning In Hierarchical Trees (SPIHT) Algorithm

Abdur Rahman Bin Shahid

Software Engineer,
Samsung R&D Institute

Bangladesh,
Dhaka, Bangladesh

Shahriar Badsha
Department of Electrical

Engineering,
University of Malaya,

Kuala Lumpur, Malaysia

Md. Didarul Islam
Department of Electrical

Engineering,
University of Malaya,

Kuala Lumpur, Malaysia

ABSTRACT

The introduction of the zero-tree wavelet image coding

technique has leaded to the development of many new and

powerful coding algorithms based on its theory. Because of

simplicity and coding efficiency, Said and Pearlman’s Set

Partitioning In Hierarchical Trees (SPIHT) algorithm is

treated as one of the most significant among these algorithms.

However the high memory requirement and time-consuming

computation of its three linked lists are its major drawbacks

for hardware implementation. Moreover, in the presence of

noise it’s extremely sensitive to sign bit error. An error in sign

bit of a coefficient causes significant reduction to image

quality. In this paper a modification of SPIHT (LMFS) for

low memory implementation is proposed which replaces the

three linked lists of SPIHT with a state map saving memory

space and computation time. A sign map is also introduced to

deal with sign bit errors. Experimental results show that under

the same condition, LMFS maintains the quality of

reconstructed image almost same as SPIHT and is suitable for

real time and low memory implementation.

General Terms

Image compression, Algorithm complexity improvement.

Keywords

SPIHT, LMFS, Low Memory implementation, Reduced CPU

cycle.

1. INTRODUCTION
In recent years there has been a massive increase in the usage

of digital images. The high quality images produced by digital

cameras can be quite large and can take up expensive memory

space. In case of transmitting these large images through slow

networks requires much time resources. Image compression

plays a very vital role to deal with storage and transmission

issue. There has been numerous compression algorithms are

introduced and implemented to deal with the storage and

transmission issue. Among many methods of compression,

due to energy compaction nature, Discrete Wavelet Transform

(DWT) approach has become a popular technique. The

concept of zero-tree structure was first introduced by Lewis

and Knowles [1] for efficient representation of zero wavelet

coefficients after perceptual thresholding. Shapiro introduced

the concept of embedded zero-tree-wavelet [2] which

combines the zero-tree structure with bit-plane coding

scheme. Intensive efforts have been drawn into this research

field ever since and many zero-tree image coders are being

developed. In 1996, Said and Pearlman proposed the famous

set partitioning in hierarchical trees (SPIHT) algorithm [3]. It

uses three temporary lists to store the zero-tree structure in the

discrete wavelet transformed (DWT) image and makes itself

an efficient and simple coding method. SPIHT algorithm has

some outstanding advantages as follows. It deals with the

whole DWT image so as to avoid the “block artifacts”

prevalent in JPEG-coded images; the bit-rate can be precisely

controlled because the coding result is formed of single bits;

its high efficiency makes the subsequent entropy-coding such

as arithmetic coding unnecessary. However, these three lists

represent a major drawback for hardware implementation

because a large amount of memory is needed to maintain

these lists. A great number of operations to manipulate the

memory are also required in the codec scheme, which greatly

reduces the speed of coding procedure. On the other hand, in

case any error occurred in the sign bit of coefficients during

coding; it will lead to low quality of the reconstructed image.

Various attempts are made to improve the complexity of

SPIHT algorithm. Lin et al. have introduced the notion of

“listless zerotree” for images [4] and video [5]. Instead of

three linked lists, their proposed listless zerotree codec uses

fixed size state tables. The main drawback of the method is

that, in some cases their codec perform a depth first search of

the trees. The No List SPIHT (NLS) coder, introduced by

Fredrick et al.[6], uses a fixed size array equal to the size of

the image, with about four bits per coefficient. Win-Bin et al.

[7] proposed modified SPIHT algorithm which uses fixed size

tables to keep track of coefficient’s significance information.

The introduction of a new addressing method and

straightforward coding process made the compression system

efficient for VLSI implementation. Mustafa et al. [8]

projected a modified SPIHT algorithm which is based on

depth first search technique.

The goal of this paper is to introduce a memory efficient and

faster image coding algorithm and also to improve the error

resiliency. The proposed LMFS algorithm uses a single state

map to keep track of significant and insignificant sets instead

of three linked lists. The algorithm maintains a map of the

sign of coefficients, makes all the coefficients positive, and

thus the sign bit error is handled greatly. By introducing the

concept of number of error bits, the sorting pass and

refinement pass are merged, and reduces the computation

time. The number of error bit indicates the number of bits that

will be omitted from a coefficient, and when a coefficient is

found significant its error bit will be omitted and the rest of

bits will be outputted directly. A matrix is used to store the

maximum value coefficient of every zerotree sets, when a

zerotree set is going to be analyzed, the related value in the

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.10, March 2013

2

array is first compared with the scan threshold, if the value is

smaller than the threshold, directly pass this zerotree’s

analysis and go to next one, this greatly reduces the

comparing and judging times, especially in low bit rate

applications. The same execution path is followed by the

decoder.

The rest of the paper is organized as follows. In section II the

concept of discrete wavelet transform (DWT) and SPIHT

algorithm are introduced. The proposed LMFS is described in

section III. Section IV presents simulation results. The paper

is concluded in section V.

2. PRELIMINARIES

2.1 DWT
From its foundation, the Discrete Wavelet Transform (DWT)

has become very popular in image processing. Its multi-

resolution (MR) property infers an image into a hierarchical

framework, where an image is decomposed into a set of

resolutions. Because of this property features that are not

detected at one resolution may be easily detected at another.

DWT uses a scaling function to create approximations of an

image and a wavelet function to encode the information

difference between adjacent approximations. The

approximations are logarithmically spaced in frequency

domain. Two-dimensional wavelet transform can be treated as

a one-dimensional wavelet transform performed along the x

and y axis. When a 1-level DWT is applied, the image is

decomposed into four parts of high, middle and low

frequencies-LL1, HL1, LH1 and HH1 subbands. The

subbands labeled HL1, LH1 and HH1 represent the finer scale

wavelet coefficients. The LL1 subband contains the

approximate image. The LL1 subband is further decomposed

and critically sampled to obtain the next coarser level of

wavelet coefficients. This decomposition operation on the

approximate image forms the pyramidal image tree.

Fig 1: 2-level decomposition of DWT

A 3-level decomposition of 512×512 Lena image is shown in

Figure 2.

Fig 2: DWT decomposition of Lena image

2.2 SPIHT
There is a parent-child relationship between the wavelet

coefficients. Every coefficient at a given scale is related to a

set of coefficients at the next finer scale of similar orientation.

The coefficient at a coarse scale is called parent. Each parent

has four children at the next finer scale of similar orientation.

SPIHT is based on the theory of parent-child relationship

between the wavelet coefficients. The encoding process

consists of two quantization passes, the sorting pass and the

refinement pass. The data structure of the algorithm consists

of three linked lists, the LSP (list of significant pixels), the

LIP (list of insignificant pixels), and the LIS (list of

insignificant sets). These three lists are used to keep track of

the elements of image during encoding. During sorting pass

new significant entries in LIP and LIS are indentified and

their signs are coded. In each refinement pass each coefficient

in LSP except the ones added in the last sorting pass in

refined. The image is reconstructed by the quantization

process. The quantization step halves the threshold each time.

The encoding process stopped when a target bit rate or

threshold or quality requirement is reached.

The following sets of coordinates of coefficients are used to

represent set partitioning method in SPIHT. The location of a

coefficient is noted by (i,j), where i and j indicate row and

column indices, respectively.

H: Roots of the all spatial orientation trees.

O(i,j): Set of offspring of the coefficient (i,j)=

{(2i,2j),(2i,2j+1),(2i+1,2j),(2i+1,2j+1)}, except (i,j) is in LL;

when coefficient (i,j) is in LL subband, O(i,j) is defined as:

O(i,j) = {(i,j+wLL),(i+hLL,j),(i+hLL,j+wLL)}, where wLL and

hLL is the width and height of the LL subband, respectively.

D(i,j): Set of all descendants of the coefficient(i,j),

L(i,j): D(i,j) – O(i,j)

A significant function Sn(τ) which decides the significance of

the set of coordinates, τ, with respect to the threshold 2n is

defined by:



 


else

cif
S

n

jiji

n
,0

2|}{|max,1
)(,),( (1)

The algorithm maintains three linked list to keep track of the

significant and insignificant pixels and sets:

LSP: list of significant pixels.

LIP: list of insignificant pixels.

LIS: list of insignificant sets.

At the initialization step, LSP is an empty list. SPIHT

initializes LIP with all the coefficients in the highest level of

the wavelet pyramid i.e. LL subband. The LIS is initialized

with all the coefficients in the highest level of the wavelet

pyramid that have descendents. During the sorting pass, the

algorithm first traverses through the LIP, testing the

magnitude of its elements against the current threshold and

representing their significance by 0 or 1. Whenever a

coefficient is found significant, its sign is coded and it is

moved to LSP. The algorithm then examines the LIS and

performs a magnitude check on all coefficient of set. If a

particular tree/set is found to be significant, it is partitioned

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.10, March 2013

3

into its subsets (children and grandchildren) and tested for

significance. Otherwise a single bit is appended to the bit

stream to indicate an insignificant set (or zero-tree). After

each sorting pass SPIHT outputs refinement bits at the current

level of bit significance of those pixels which had been moved

to LSP at higher threshold, resulting in the refinement of

significant pixels with bits that reduce maximum error. This

process continues by decreasing current threshold by factor of

two until desired bit rate is achieved.

3. THE LOW MEMORY AND FASTER

SPIHT (LMFS)
The main deficiency of SPIHT algorithm for low memory

implementation is the use of three linked lists. They are very

memory consuming and insertion, depletion and resizing

operations during coding greatly increase the coding time. In

this paper a new modification of SPIHT (LMFS) algorithm is

proposed which makes it successful for low memory and real

time operations. LMFS uses a state map of coefficients, a

maximum value coefficient matrix and sign map of

coefficients.

3.1 State Map of Sets (SMS)
The map is used to keep track of the significant and

insignificant information of each set. Each entry of the map is

a bit, indicating either a set is significant or insignificant. A

bit ‘1’ expresses a set is significant and a bit ‘0’ is

insignificant. The size of SMS is one-fourth of the image.

3.2 Maximum Value Coefficient Matrix

(MVCM)
At the algorithm’s initialization period, SPIHT need to travel

all the wavelet coefficients to find the maximum value of the

coefficients. In LMFS, during the maximum value finding

process, maximum coefficient value of nodes’ descendents is

saved in a two-dimensional MVCM simultaneously. Through

using the MVCM, LMFS avoids repeated searching the

maximum coefficient value in coding process. This greatly

saves time in sorting pass, thereby enhances the algorithm’s

iteration efficiency effectively. The size of MVCM is a

quarter of the original image size.

3.3 Number of Error Bits (b)

During SPIHT coding; only the most significant bits of the

significant coefficients are outputted. Thus, for a given

threshold, the last several bits will be omitted. This leads to

the introduction of the concept of number of error bits (b)

which indicates the number of least significant bits that can be

omitted for a given threshold. So as long as a coefficient

found significant its most (n+1- b) are outputted directly.

And the coefficient is no longer stored in LIP or LSP. For

successive image coding methods, their coding process is a

gradual scanning procedure along with the decrease of

threshold. Experimental results proved, at same compression-

ratio, the ignored number of low bits is approximately same

[9]. b is a pre-defined number that indicates the number of

low bits will be omitted in the coding procedure. During

implementation, when a wavelet coefficient found to be

significant, its last error bits will be omitted and the rest of the

bit is outputted directly. Using this way, the MSPIHT

combines the sorting and refinement pass, accordingly the

information of significant coefficients’ position does not need

to be stored for further process. Besides memory saving, this

also reduces the scanning time, especially in low-bit rate

situations.

3.4 Sign Map of Coefficients (SMC)
This sign map stores the sign of the wavelet coefficients. Its

each entry is a bit expressing whether a coefficient is positive

or negative. A bit ‘1’ expresses the sign is ‘-’ and a bit ‘0’

expresses the sign is ‘+’. Thus it’s possible to retrieve the

original state of a sign bit from SMC and in this way the sign

bit error problem is dealt.

3.5 The Proposed Algorithm

3.5.1 Important definitions:
c(i,j): Wavelet coefficient at coordinate (i,j)

O(i,j): set of coordinates of all offspring of node (i,j)

SMS(i,j): the value of SMS at (i,j) position.

MVCM(i,j): the value of MVCM at (i,j) position.

SMC(i,j): the value of SMC at (i,j) position.

3.5.2 Initialization
1. Allocate SMC:

If sign (i,j)=’+’

SMC(i,j)=0

Else If sign (i,j)=’-’

SMC(i,j)=1

End If

2. Make all the coefficients positive.

3. Traverse through the wavelet transformed image and

allocate MVCM

4. Output  |}){|(maxlog ,),(2 jiji Cn 

5. Define b .

6. If (i,j) € H, output the first (n+1- b) of Ci,j

7. Allocate SMS:

If (i,j) € H

SMS(i,j) = 1,

Else

SMS (i,j) = 0.

End If

3.5.3 Sorting and refinement pass
For each (i,j) €SMS

 If SMS (i,j) = 1 and If MVCM(i,j) < 2n

 Output a bit ‘0’

 Else if SMS(i,j) = 1 and MVCM(i,j) ≥ 2n

Output a bit ‘1’

For each (k,l) €O(i,j)

 SMS(i,j) = 1

 If C(i,j) ≤ 2 b

 Output a bit ‘0’

 Else

Output a bit ‘1’ and

output the most significant

(n+1- b) bits of C(i,j)

 End If

 End for

 End If

End for

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.10, March 2013

4

3.5.4 Quantization
Update n = n-1.

If n ≤ b or the required bit rate is achieved, the algorithm

stops, else goes to step 3.5.3.

4. ANALYSIS

4.1 Memory Analysis
Let us consider,

NLIP = number of entries in LIP

NLSP = number of entries in LSP

NLIS = number of entries in LIS

C = number of bits required to store addressing information of

a coefficient [2×log2 (max (M, N))]

MSPIHT = total memory required in SPIHT (bits).

Then,

LISLSPLIPSPIHT cNNccNM )1((2)

Where each element in LIS requires (c-2) bits for addressing,

since it contains coefficients with descendents and an extra bit

is required for defining the ‘type’ of entries. In the worst case,

MNNN LSPLIP  (3)

In the worst case, coefficients with no descendents will never

enter into LIS. So,

NLIS = MN/4

Thus the maximum memory requirement of SPIHT is,

4
)15(max

MN
cM SPIHT  (4)

For example, consider 512×512 grayscale Lena image. c =

2×log2(512)=18 bits. If number of bytes used to store a

wavelet coefficient is 2 then,

SPIHTM max = 729088 Bytes = 712 Kbytes.

Now let’s consider for our proposed algorithm. The

calculation is straight forward as it uses static matrixes to

store information. For 512×512 grayscale Lena image

The size of SMS = 256×256

The size of MVCM = 256×256

The algorithm requires 18 bits per coefficient to store its

coordinates (9 bits for row and 9 bits for column). If the total

number of three list entries is approximately twice number of

image pixels, the total memory required in the SPIHT scheme

is about 512×512×2×18/(1024×1024×8)=1.125M bytes,

whereas in our algorithm the total memory required is only

about

(256×256×1+256×256×16+512×512×1)/(1024×8)=168Kbyte

s. That is,
LMFSM max = 168Kbytes.

Thus
SPIHTM max :

LMFSM max =712:168=4.24:1. It should be noted

that the proposed LMFS has reduced memory requirement by

factor of 4.24 in comparisons to original SPIHT algorithm.

4.2 Experimental results
In order to compare the performance of LMFS, experiments

are performed for 512×512 grayscale images-Lena, Barbara,

Pepper, Cameraman and Mandrill. 3 level wavelet transform

is performed on the test images. The comparison between the

original SPIHT and proposed LMFS is done in three criteria-

the PSNR value of reconstructed image, the coding time

(wavelet decomposition time is not included) and the memory

requirement. Table 1 shows the experiment results of LMFS

to encode a grayscale image which is compared with the

existing original SPIHT algorithm. It proves that better results

can be obtained.

Table 1. Performance comparison of SPIHT and LMFS in

various Bit Rates for different images

Image Bit rate

(bpp)

Coding

method

PSNR

(db)

Time

(ms)

Lena

0.25
SPIHT 33.61 284

LMFS 34.75 102

0.50
SPIHT 36.88 378

LMFS 37.56 175

0.75
SPIHT 38.53 458

LMFS 39.20 262

Pepper

0.25
SPIHT 33.70 278

LMFS 34.28 98

0.50
SPIHT 37.54 380

LMFS 38.12 170

0.75
SPIHT 39.23 453

LMFS 40.03 253

Barbara

0.25
SPIHT 34.23 283

LMFS 35.01 106

0.50
SPIHT 38.20 365

LMFS 38.86 177

0.75
SPIHT 40.13 462

LMFS 40.82 258

Cameraman

0.25
SPIHT 33.68 301

LMFS 34.23 113

0.50
SPIHT 36.39 385

LMFS 37.10 192

0.75
SPIHT 37.98 470

LMFS 38.62 275

Mandrill

0.25
SPIHT 35.33 280

LMFS 36.07 97

0.50
SPIHT 37.82 370

LMFS 38.44 172

0.75
SPIHT 39.23 455

LMFS 40.02 258

Fig 3: PSNR values comparison between SPIHT and

LMFS

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.10, March 2013

5

Fig 4: CPU time comparison between SPIHT and LMFS

Figure 2 shows the comparison between SPIHT and LMFS in

terms of the PSNR value of the reconstructed images by the

two algorithms respectively. From the figure, it is clear that

the quality of the reconstructed image by LMFS is better than

the image reconstructed by SPIHT. On the other hand, figure

3 shows the comparison between the two algorithms in terms

of CPU times to encode an images and it is clearly observed

that the proposed algorithm, LMFS, requires fewer time than

SPIHT.

5. CONCLUSION
In this paper a new modification to SPIHT algorithm is

introduced which is very much hardware implementation

compatible. The significances of the proposed algorithm are:

(1) it is able to encode image in very fewer time than SPIHT,

(2) the quality of reconstructed image is better than the SPIHT

and (3) more resilient to error than SPIHT. The proposed

algorithm is able to perform better because: (1) the three

linked lists of SPIHT are abolished and a state map of

coefficients and a maximum value coefficient matrix are

introduced which require less memory and increase speed of

the algorithm, (2) the use of sign map of coefficients makes it

more error resilient than SPIHT and (3) use of number of

error bits greatly enhances the algorithm’s iteration efficiency.

From the experimental results, it is clear that, the proposed

algorithm requires both less CPU time and memory the

reconstructed image quality is increased in various bit rates.

6. REFERENCES
[1] A. S. Lewis and G. Knowles, “Image compression using

the 2-D wavelet transform,” IEEE Trans. Image

Processing, vol. 1, pp. 244–250, Apr. 1992.

[2] J. M. Shapiro, “Embedded image coding using zerotrees

of wavelet coefficients,” IEEE Trans. Signal Processing,

vol. 41, pp. 3445–3462, Dec. 1993.

[3] A. Said and W. A. Pearlman, “A new, fast and efficient

image codec based on set partitioning in hierarchical

trees,” IEEE Trans. Circuits, Syst., Video Technol., vol.

6, pp. 243–250, June 1996.

[4] W. K. Lin and N. Burgess, “Listless zerotree coding for

color images”, in Proc. Of the 32th Asilomar Conf. on

Signals Systems and Computers, vol.1, pp. 231-235,

November 1998.

[5] W. K. Lin and N. Burgess, “3D listless zerotree coding

for low bit ratio video”, in Proc. Of the International

Conf. on Image Processing, October, 1999.

[6] F. W. Wheeler and W. A. Pearlman, “SPIHT image

compression without lists”, in Proc. Of IEEE

International Conf. on Acoustics, Speech, and Signal

Processing, vol.4, 2000.

[7] W. B. Huang, W. Y. SU. Alvin and Y. H. Kuo, “VLSI

implementation of a modified efficient SPIHT Encoder”,

IEICE Trans. Fundamentals, vol.E89-A, No.12,

December, 2006.

[8] M. Sakalli, W. A. Pearlman and M. Farshchian, “SPIHT

algorithm using depth first search algorithm with

minimum memory usage”, 40th Annual Conf. on

Information Science and Systems,pp. 1158-1163, 2006.

[9] Sun Yong, Zhang Hui, and Hu Guangshu, “Real-time

implementation of a new low-memory SPIHT image

coding algorithm using DSP chip,” IEEE Trans. Image

Processing, vol. 9, pp. 1112-1115, Nov, 2002.

