
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

33

Risk-based Testing Techniques: A Perspective Study

Md. Mottahir Alam
(Research Scholar)

CMJ University, Shillong,
Meghalaya, India

Asif Irshad Khan
(CS Department)

FCIT, King Abdulaziz University,
Jeddah, Saudi Arabia

ABSTRACT

Doing more with less has become a mantra for IT

organization in today’s business environment. Nowadays,

there are more projects, more competitive pressures and

greater failure risk which needs to be managed with fewer

resources with tighter timelines. But with all these constraints,

there's simply no room for compromise on quality and

stability in today’s competitive world especially in case of

important business critical applications. So, instead of doing

more with less and risking late projects, increased costs or low

quality, we need to find ways to achieve better with less. The

focus of testing has to be placed on aspects of software that

matter most with an aim of reducing the risk of failure as well

as ensuring the quality and stability of the business

applications. This can be achieved by applying the principle

of Risk Based Prioritization of tests, known as Risk-based

testing (RBT). The aim of Risk Based testing approach is to

ensure that appropriate testing activities are identified and

prioritized based on risk. The primary role of risk-based

testing is to optimize available resources and time without

affecting the quality of the product. RBT approach reduces the

risk of failure to the business and increase customer

satisfaction. In this light, this paper presents the progress

different risk-based testing metrics to measure and control test

cases and test activities progress, efforts and costs.

IT organizations must adopt a focused approach and a

comprehensive methodology for end-to-end testing. Risk-

based testing helps quantify and mitigate risks in the lifecycle

of applications, and prioritize tests more effectively. Under

RBT, we create Optimized Regression Test Suite based on

Business Severity and Priority. The Success of testing team

will be the ability to identify high risk defects in software and

ensure they are fixed.

Keywords

Risk-based Testing, Value-based Testing, Value-based quality

analysis, Software testing and test case prioritization

1. INTRODUCTION

The main objective of software testing is to detect defects in a

code or in a module or in a program, in other words Process of

giving assurance to the client that, the software under test is

performing as intended (meeting the requirements). In

general, tests are performed in order to show a lack of quality

as discovered by defects, testing always involves comparing

between the product and the requirements. Both the

development organization and the system users may

encounter undesirable consequences if a defect is found in a

running /operated system. Software testing is a process that

should be done during the development process.

Testing is of different types and risk-based testing (RBT) is

considered as one testing which is used to optimize available

resources and time without affecting the quality of your

product. In RBT each test is intended to probe a specific risk

that was previously identified through risk analysis. A simple

example is that in Database applications, there is a risk of

injection attacks, where an attacker fools the server into

displaying results of arbitrary SQL queries. A risk-based test

might actually try to carry out an injection attack, or at least

provide evidence that such an attack is possible [1], Risk-

based testing helps address the rise in business and

technological complexity and the growing size of applications

by prioritizing test cases based on the defined criticality of a

function, encouraging impact assessment of an application

functionality failure and increasing testing effectiveness.

Despite these benefits, risk-based testing is still used or

deployed in a limited manner across organizations.

The paper is organized as follows: section 2 describes the

overview of risk-based software testing, its general process,

why RBT is needed, and some of its advantages and

disadvantages. Section 3 outlines some selected related work.

Section 4 presents comparison of some of the state of art of

risk-based software testing in terms of differences and issues.

Section 5 suggests some criteria for the selection of risk-based

software testing approaches and finally, section 6 describes

conclusion and future work.

2. OVERVIEW OF RISK-BASED

SOFTWARE TESTING

Before going into the details of risk based testing, we should

first discuss what Risk is and how it impacts software

projects. A risk which may not happened yet and it may never

happen in future, but it is a potential problem. In other words,

Risks are future uncertain events those may or may not occur.

Problems are events that are actually occurred.

Budget, Time and Requirements are the three limiting factors,

which are considered for defining success of a project in the

Software Development Process. If a software project satisfy

all user requirements within estimated time and budget it is

considered as a successful project.

Any uncertainty or possibility of loss may result in non

conformance of any of these key factors, leading to overtime /

over-budget or poor quality project. Software risks, which

impact above 3 key factors, can be broadly categorized as [2]:

 Requirement Risks: Requirements is unclear or poorly

defined requirements, missing requirement analysis,

requirements that are not in-line with customers’ needs,

inconsistent ambiguous requirements, inadequate

requirements, invalid or impossible requirements, unable

to measurable the requirements in terms of specific

values etc.

 Technical Risks: Continuous changing requirements,

Complexity of architecture or Product is complex to

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

34

implement, technology change, configuration change,

inadequate technical support/ knowledge or No advanced

technology available, lack of domain knowledge etc.

 Schedule Risks: Cost overruns, Wrong budget estimation

unrealistic time line, Failure to address priority conflicts,

No communication in team, inadequate skilled resources,

improper resource planning etc.

Risk need to be handled because if it happens then it may

cause very negative impact. The occurrence/or non-

occurrence of a risk can never be guaranteed beforehand but it

may be neutralized through pre-mediated action. For example,

let us assume that we are planning to play a cricket match on

the weekends. In this case, if it rains on weekends, our cricket

match is bound to be spoilt. But we cannot know for sure that

on weekend if it is going to rain. Hence, occurrence of rain is

a risk that we have to deal with. A test approach that takes

into account a risk is called risk-based testing.

Now, when we test a product with a limited number of testers

in a small amount of time, we have to curtail the amount of

testing that can be performed. This is where the concept of

Risk Based Testing comes in. Let us understand the concept

in detail.

2.1 Risk-Based Software Testing

Risk Based Testing is a method for prioritizing the tests based

on the risk of their failure because tester cannot test

everything within available resource, usually it starts early in

the project cycle. Idea is to organize testing efforts in such an

approach that it reduces the level of product risk at the time of

delivery.

 In other words in this approach, testing is prioritized in terms

of the probability that some feature of the program will fail

and the estimated cost of failure. The greater the probability

of an expensive failure, the more important it is to test that

feature as early as possible and as carefully as possible. [3]

In a project development where there is an enormous business

requirement, limited timelines and inadequate resources then

there is a must that the testing should cover the most critical

functions. So in risk-based testing, we focus on evaluating the

critical parts of a requirement on high priority basis for our

construction of business and test scenarios to provide the

greatest quality at the lowest cost [2].

The objective of Risk-based testing are: most feasible

coverage and effective usage of limited resources. Thus, in

RBT, we organize the testing processes in order to maximize

business value and resources. RBT perform the right level and

type of coverage on the right parts and at the right time.

2.2 Why Risk-Based Software Testing

needed

 As explained in the above section, risk can be termed as an

unwanted event that has unfavorable or negative

consequences. So, in order to negate these risks or make them

less severe, there is a need to identify various scenarios of

risks in the software and to build a testing approach based on

the concept of software risks. This gave rise to the need of

Risk Based Testing.

The main reason for adopting RBT can be the aggregated

impact of limited resources – time, budget and human. Since

testing generally comes in the last stage of the SDLC, the

project’s calendar doesn’t allow sufficient time for a thorough

testing of all functions. Furthermore, the project’s budget

limits the number of skilled human / software resources. In

such a situation, test coverage of all the minute detail of the

application would not be possible. In order to balance such

situations, more focus should be given on testing those areas

that represent the largest risk, if a fault occurred.

2.3 Risk Based testing general Process

The RBT process can be carried out through following

important steps [2]:

Step1 - Describe all requirements in terms of risk associated

to them also, looks at ways of establishing what the risks are

and where they are.

Step2 - Prioritize the requirements, based on risk assessment,

looks into the critical, complex and potential error prone

areas.

Step3 - According to requirement prioritization define and

plan tests also, look for risk Mitigation where tests are built to

mitigate the risk.

Step4 - Execute test according to prioritization and acceptance

criteria or Monitor / Report regarding the risks.

When deciding on what parts of testing to outsource, you will

have to look at it from different angles, mainly at the

dimensions of test levels, test types and test activities:

Test Levels: Low-level testing (Unit & Integration test) is

generally carried out by the developers themselves. If

development is outsourced, these activities are also

outsourced with it. System testing on the other hand should be

performed by an independent test team and is therefore an

excellent candidate for test outsourcing. Finally, Acceptance

testing requires business know how (for user acceptance) and

a production-like test environment. It is therefore difficult to

outsource.

Test Types: Generally speaking, all types of testing, both

functional and non-functional, can be outsourced. By its

nature, regression test is a good candidate for cost saving,

because it involves regular repetition and test automation.

Know-how intense test types like load & performance,

usability and security are best outsourced to a specialist

organization, on a case-by-case basis.

Test Activities: defining what activities within the test

process should be outsourced (e.g., test planning,

specification, execution and reporting) requires a strategic

decision on how much control and knowledge is given away.

It can range from test execution only, to performance of the

whole process.

2.4 Advantages of Risk Based Testing

The usage of RBT brings several advantages to the testing

organization. Some of them are listed below:

 Running the tests in risk order gives the highest

likelihood of discovering defects in severity order.

 Preventive activities can be started immediately as

problem areas are discovered early in RBT.

 With limited time, money and qualified resources, testing

concentrates on the most important matters first, thus

delivering the most optimal test, by selecting better

strategies and test objects/cases.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

35

 In RBT the focus is not only lies on the risk associated

with functionality of the information system but also, on

risks to the business.

 Since RBT provides a method to prioritize tests against

deadlines, Test cases can be reduced and focused on the

most critical areas in other words, because testing is

effectively prioritized against what is important to your

business - Testing becomes a much more targeted and

organized activity.

 During testing, communication (Test Reporting) takes

place in a language (risks) that all stakeholders

understand.

 It offers a negotiating instrument to client and test

manager alike when available means are limited.

 RBT provides clear information on test coverage. Using

this approach, we know what has/have not been tested

and how much business risks this mitigates.

 RBT provides Flexible Approach as the data,

information, and knowledge decision cycle adapts well to

change.

 Business Visibility - Risk-based reporting provides a

way of communicating with senior stakeholders in a

language they understand - effectively raising the value

of testing within your organization.

 Allocating test effort based on risk is the most efficient

way to minimize the residual quality risk upon release. In

other words, RBT associated with picking the right tests

out of the infinite cloud of possible tests.

 Measuring test results based on risk will allows the

organization to know the residual level of quality risk

during test execution, and to make smart release

decisions .

 If schedule requires, dropping tests in reverse risk order

reduces the test execution period with the least possible

increase in quality risk.

 Risks can be continuously monitored to know the status

of the project and its quality.

All of these benefits allow the test team to operate more

efficiently and in a targeted fashion, especially in time

constrained and/or resource-constrained situations.

2.5 Disadvantages of Risk Based Testing

Although risk-based testing has several advantages, it also

includes some disadvantages. Following are some of the

disadvantages of RBT:

 Unrecognized risks or risks assessed as too low may

cause problems if it becomes a reality.

 If the risks are described too abstractly, it may be

difficult to attach a test to an identified risk.

 Some mitigation may tasks much cost and more time that

they actually add more problems to the project than

they’re worth in terms of the problems they help detect.

 Risk assessment can be based on too subjective criteria,

the reason for that is simply the lack of reliable objective

criteria and in that case it is quite common to trust to

experts’ judgments.

 It is difficult to identify and select the right stakeholders

for risk assessment.

3. RELATED WORK

Over the last decade, risk-based testing has received

considerable attention in both academics and industry. Several

researchers have proposed their approaches for the

implementation of risk-based testing in the software projects.

Amland [5] stated that IT projects are very rarely on time,

schedule or budget, so when it comes down to testing, the

time to delivery is extremely short and there is no extra

budget left due to the development overrun [5]. To manage

such scenarios, test case design techniques should be able to

identify the most important test cases to be carried out in view

of limited time. Thus, the test cases need to be prioritized to

be comparable with each other.

Amland [6] introduces a risk-based testing approach in which

resources should be focused on those areas representing the

highest risk exposure. He practically applied his approach in a

retail banking application. He introduced a methodology that

would identify functions in their system where the

consequence of a fault would be most costly (either to the

vendor or to the vendor’s customers) and also a technique to

identify those functions with the highest probability of faults.

A risk analysis was performed and the functions with the

highest risk exposure, in terms of probability and cost, were

identified. A risk based approach to testing was introduced,

i.e. during testing resources would be focused in those areas

representing the highest risk exposure.

Procedures/Office System Builder

Regression Testing

Integration Test On-line Fix Team Leader

On-line Team Leader

On-line Test Leader Non-Func. ST

Batch Fix Team Leader Integration Test

Batch Team 1 Leader Batch Team 2 Leader

Batch Team 3 Leader Batch Team 4 Leader

Batch Test Leader

System Test Manager

Fig 1: The Risk Based Approach to testing requires a flexible organisation, focused on fixing bugs related to critical functions

[6].

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

36

Amland[6] stressed that risk-based testing must be supported

by an organization (as shown in Fig 1) where in roles and

responsibilities should be defined. His approach gave certain

metrics to help software developers determine how best to use

their testing time. His suggested metrics include ones that help

to identify high-risk areas, a minimum level of testing, and

additional testing along with some that monitor project quality

and progress to calculate estimated effort to complete, as well

as managing the test process.

The method proposed for conveying the results of these

metrics is a matrix with probability values on the rows and

consequence values on the columns. Table1 shows an

example of calculated Risk Exposure for the function Close

Account in the case study.

He compared the estimated resource requirements using his

risk-based approach against the traditional approach and

concluded that the risk based approach consumed less

resources relative to the original estimate based on a

traditional test approach as shown in Figure 2. Bach [7]

describes a heuristic analysis to do risk-based testing.

Heuristic refers to experience-based techniques for problem

solving, learning, and discovery. Where the exhaustive search

is impractical, heuristic methods are used to speed up the

process of finding a satisfactory solution; mental short cuts to

ease the cognitive load of making a decision [8].

Bach proposed two approaches to his heuristic risk-based

testing: inside-out and outside-in. With an in-side out

approach, the test team begins with the situation details and

then performs risk identification by looking for

vulnerabilities, threats and victim’s .With an outside-in

approach, the test team begins with a predefined risk list and

reacts to those risks that are visible in the present situation.

Bach suggests three types of lists: quality criteria categories, a

generic risk list, and risk catalogs.

Quality Criteria Categories are used to help elicit new

requirements or clarification on existing requirements such as:

capability, reliability, usability, and performance, install

ability, compatibility, supportability, testability,

maintainability, portability, and localizability.

Original Estimate Risk Based Estimate

Actual

Week

Ac
cu

m
ul

at
ed

 H
ou

rs
 p

er
 W

ee
k

Week

Ac
cu

m
ul

at
ed

 H
ou

rs
 p

er
 W

ee
k

Week

Ac
cu

m
ul

at
ed

 H
ou

rs
 p

er
 W

ee
k

Fig2: Resource profiles for Original Estimate (i.e. Traditional Approach), Risk Based Estimate (Risk Based Approach) and

Actual (i.e. actual accumulated number of hours spent).

Table 1. Example of calculated Risk Exposure for the function Close Account [6].

Cost Probability

Func. C(v) C(c) Avrg.

Cost

New

Func.

Design

Quality

Size Compl. Weight Probability Risk Exp. funct.

 5 5 1 3 Avrg. P(f) Re(f)

Close

Accnt.

1 3 2 2 2 2 3 7,75 0,74 1,48

Generic Risk List is a list of risks that are common to all

software systems, and risk catalogs are domain specific. Table

2. Shows the generic list of Bach [7].

Risk catalogues is a list of risks that belong to a particular

domain. Risk catalogs are motivated by testing the same

technology pattern over and over again. A risk catalog can be

created by categorizing the kinds of problems one has

observed during testing in a particular domain.

Below follows an example of risk catalog from installation.

Problems that may occur in this domain are listed. Table 3

displays an example of an installation risk catalog.

Bach [7] suggested that the above three kinds of lists can be

used in any of the following ways:

1. Decide what component or function to be analyzed.

2. Determine the scale of concern. In a general term,

everything is assumed to have a normal risk unless there is

some reason to believe it’s a higher or a lower risk.

3. Gather information about the things you want to analyze.

4. Determine the importance of each risk in the present

situation.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

37

5. Record other potential risks that are not on the list.

6. Record any unknowns which may impact the ability to

analyze the risk.

7. Double-check the risk distribution

Table 2. A Generic Risk List [7]

Complex: anything disproportionately large, intricate, or

convoluted.

- New: anything that has no history in the product.

- Changed: anything that has been tampered with or

"improved".

- Upstream Dependency: anything whose failure will cause

cascading failure in the rest of the system.

- Downstream Dependency: anything that is especially

sensitive to failures in the rest of the system.

- Critical: anything whose failure could cause substantial

damage.

- Precise: anything that must meet its requirements exactly.

- Popular: anything that will be used a lot.

- Strategic: anything that has special importance to your

business, such as a feature that sets you apart from the

competition.

- Third-party: anything used in the product, but developed

outside the project.

- Distributed: anything spread out in time or space, yet who

elements must work together.

- Buggy: anything known to have a lot of problems.

- Recent failure: anything with a recent history of failure.

Table 3. A Risk Catalogue for installation [7]

1. Wrong files installed

 o temporary files not cleaned up

 o old files not cleaned up after upgrade

 o unneeded file installed

 o needed file not installed

 o correct file installed in the wrong place

2. Files clobbered

 o older file replaces newer file

 o user data file clobbered during upgrade

3. Other apps clobbered

 o file shared with another product is modified

 o file belonging to another product is deleted

4. HW not properly configured

 o HW clobbered for other apps

 o HW not set for installed apps

5. Screen saver disrupts install

6. No detection of incompatible apps

 o apps currently executing

 o apps currently installed

7. Installer silently replaces or modifies critical files

or parameters

8. Install process is too slow

9. Install process requires constant user monitoring.

10. Install process is confusing

 o UI is unorthodox

 o UI is easily misused

 o Messages and instructions are confusing

He suggested three ways to organize risk-based testing

namely, risk watch list, risk/task matrix and component risk

matrix. The risk watch list is a list of risks that you

periodically review during the project to be aware of the most

common risks. Risk/task matrix sorts the risks according to

their importance. It provides us a list of the risk mitigation

tasks to be invested in to minimize the risk associated with

each risk. It is very useful in negotiations for more testing

resources.

The component risk matrix consists of a table with three

columns. It breaks the product into 30 or 40 areas or

components. In the left column the components are listed. In

the middle the scale of concern, “low”, “normal” or “high”

risk is listed. In the right column the risk heuristics for that

component are listed. The risk heuristic indicates the risk for

that component.

During testing, the components are tested according to their

risks as specified in the matrix. Table 4 shows an example of

component risk matrix.

In 2002, Chen[9] gives an approach for risk-based regression

testing optimization [13]. He suggested a specification-based

method for regression test selection. The author applies a risk

value to each test case to prioritize them. The formula for

calculating the Risk Exposure RE(f) is taken from Amland [1]

which is as follows:

 RE(f) = P(f) x C(f)

where C(f) is the cost of fault for each test case and P(f) is the

severity probability for each test case.

Cost is categorized on a scale from one to five. Two types of

cost can be considered: The cost for the customer (losing

market share) and the cost for the vendor (high maintenance

cost).Also, P(f) is found by looking on number of earlier

defects and severity of these defects.

Table 4. A component risk matrix [7]

Component Risk Risk Heuristics

Printing Normal Distributed, popular

Report

 Generation Higher

 New, strategic, third-party,

 complex, critical

Installation Lower Popular, usability, changed

Clipart

Library Lower Complex

Scenarios covering one or more test case are created. A

traceability matrix is created, mapping the test cases with each

scenario. The Risk Exposure for each scenario is calculated

.Based on these risk values, the test cases are comparable and

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

38

can be prioritized to either be included in, or excluded from, a

re-running regression testing process.

Gerrard [10] employs a risk-based approach to test e-business

using Failure Modes and Effect Analysis (FMEA), but his

method can apply to other kinds of system also. FMEA is

mostly a qualitative analysis with an aim to identify the parts

of the system that will need improvements to meet the safety

and reliability requirements. The process consists of five

stages: risk identification, risk analysis, test scoping and test

process definition.

A table called Test Process Worksheet is the main working

document in the method and is completed in stage 1 to 4.

Each row in the Test Process Worksheet consists of a failure

mode, also called risk. The columns consist of scoring and

prioritization, assignment of test objectives, effort, costs and

so on for this failure mode. In Risk identification stage, an

inventory of potential failure modes, similar to the checklists

of Bach [7], is prepared. These are derived from checklists.

In Risk analysis stage, a risk workshop is convened with

representatives from the business, development, technical

support and testers. Each risk is considered, and the

probability and the consequence are assessed. The risk

exposure is calculated. Table 2.5 shows an example of this

stage. In Risk response stage, if the risk is testable, it is turned

into a test objective using the risk description. In the Test

scoping stage, a budget for testing is passed .In the Test

process definition stage, the stage-by-stage test process is

documented.

Scheafer [11] approach of risk-based testing focus on

prioritizing what to test, by finding the most important and

worst parts of the product. The most important parts of the

system are found using factors like cost of failure, most

visible and most used parts of the product. The worst parts of

the system are found using defect generators like complexity,

changed areas, new technology, new solutions, new methods,

new tools, number of people involved, where there was time

pressure and local factors.

Table 5. An example calculating the risk, taken from

Schaefer [11].

Area to

test

Busin

ess

Critic

ality

Visibi

lity

Com

plexi

ty

Change

Frequen

cy RISK

Weight 3 10 3 3

Order

registrat

ion 2 4 5 1 46*18

Invoicin

g 4 5 4 2 62*18

Order

statistics 2 1 3 3 16*18

Manage

ment

Reporti

ng 2 1 2 4 16*18

Perform

ance of

order

registrat
5 4 0 1 55*3

ion

Perform

ance of

statistics 1 1 0 0 13*0

Perform

ance of

Invoicin

g 4 1 0 1 22*3

Weights are assigned for each relevant cost factor and defect

generator. For each part of the system, values are assigned for

the factors and the defect generators. Higher values mean that

the area is more important or worse. This is illustrated in

Table 5. These values are multiplied by the weights and added

together. The highest values give the most risky parts and

should be prioritized.

Another formal and systematic approach of doing risk

analysis is HazOp [12].It is carried out in the later stage of the

development, when the architecture design is already built.

The study nodes are the points of the system where our

analysis is focused. These can be points where the system

interacts with its environment or where parts of the system

exchange information. HazOp contains two structuring

devices, the table and the guide words.

Stålhane [13] describes how to use HazOp to find the

subsystems with most hazards.UML use cases are used as a

starting point. Since use cases don’t study nodes; therefore a

standard HazOp with guide words could not be used. Instead,

a functional HazOp is performed based on the functionality

offered by the system. This can be done in the following step:

Step 1: Prepare use cases for the subsystem to be analyzed.

Step 2: A warm up exercise looking at previous risk analysis.

Step 3: Perform function-based HazOp by addressing

questions like:

-How can this function fail?

-What will be the consequences for the stakeholders, the

service receiver, the service provider and the development

company? This will give a list of hazards.

Step 4: Document the result obtained and get the feedback

from the participants.

Step 5: Assess severity of each hazard.

 A score from 0 to 3 is given to indicate the severity of each

hazard, where 3 is the most serious. Different stakeholders

may assign different severities to the same hazard. For each

subsystem and stakeholder group, the number of functions

that receive each hazard value is registered. The score for each

function can be found in two ways, the weighted average and

the score to the majority of the functions.

Redmill [14] has presented a high-level approach for risk-

based testing. He discusses what constitutes “risk” and how it

can be used for test focusing. In his paper, risk is defined as a

fairly general term, covering aspects such as safety risks,

financial risks to the customer if the system fails or

economical risks to the manufacturer if the software does not

have the desired quality. This approach is applicable for all

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

39

kinds of product risks, but does not provide direct support for

the construction of test cases.

Wallace and Keil [15] in their research, analysed the effect of

risks from both process and project viewpoints. The results

from this research are noteworthy as they are based on a study

of 500 software development projects by members of the

Project Management Institute. At the end of each project, the

project managers participated in an online survey to indicate

how many and to what level each of a set of 53 risks existed

within the project. The 53 risks were categorized into the four

categories of customer mandate, scope and requirements,

environment, and execution. They used their survey results to

indicate the perceived relative importance of risks.

 Raparla and Sherrell [16] presented a risk assessment tool

called QUART-ER (QUick Assessment of Risks Tool for

Engineering Requirements). QUART-ER allows users to

analyse,

Plan and monitor project risks, especially those encountered

during requirements. In the design of QUART-ER, they first

identified primary risks with the aid of an initial set of

software developers from local industry. Next, they developed

and distributed an on-line survey to software engineers and

managers at software firms.

Based on survey responses, risk categories and associated risk

factors within categories were collated into a risk assessment

form, which was implemented in QUART-ER. This tool

allows team leaders and software developers to assign

rankings to risk categories and/or to rank the more detailed,

informative risk factors. After that QUART-ER compares

these rankings to those of previous projects providing a flag if

the risks are considered “too high” for project completion.

Van Veenendaal [17] introduced PRISMA (PRoduct RIsk

MAanagement) method for finding product risks that can be

applied to all the level of testing, .i.e., from component testing

to acceptance testing. In this method, the components which

are classified as highest risk are given a higher priority (tested

first and more rigorously) than those with a low risk.

He compared the risk-based testing to the concept of “good

enough testing” where instead of aiming for the unrealistic

goal of zero defects, testers intend for a product that has no

critical problems and has an acceptable number of benefits, so

that the benefits sufficiently outweigh the non-critical

problems, and a release date that cannot be pushed back for

further improvements because the delay may cause greater

damage in a business sense. The PRISMA model is an

implementation of a product risk matrix where the impact and

likelihood of defects are calculated and assigned to the matrix.

The different steps in the PRISMA process are planning, kick-

off, individual preparation, gathering individual scores,

consensus meeting, and defining the test approach.

During the planning step, requirements or architectural

documents are collected, the risks are identified from these

input documents, and are ranked or weighted, stakeholders

that will participate in the risk analysis are determined, and

scoring rules are established. In the kick-off step, which is

optional, a meeting is held with the test manager and all the

stakeholders to make sure that all players understand their

roles. In the individual preparation step, the stakeholders

assign a score to each risk individually and documents their

perceptions and assumptions. Then, in the gathering

individual scores step, the team manager checks all scores for

correctness, processes the scores by tabulating the average

value of the impact and likelihood respectively, and places the

results in a risk matrix to be discussed in the consensus

meeting. Based on the final positioning of the risks on the

matrix or matrices, the risks are prioritized and a test approach

is determined based on the prioritization.

 Stallbaum et. al.[18] made a first step towards

automated generation of risk-based test suites based on

previously calculated requirements metrics. They presented a

prototype research tool called RiteDAP has which can

generate test cases out of weighted activity diagrams in a two-

stage process. In the first step, paths through the activity are

derived in a non-risk based way.

Then in the second step, the paths are ranked due to the risk

they include. The traversal algorithm of the test case generator

is predefined and is non-adjustable. The risk-based selection

of test cases in that approach is a simple ordering of paths due

to their subsumed risk exposures.

Zimmermann et. al. [19] has presented a methodology called

sequence-based specification to express formal requirements

models as low-level mealy machines for safety-critical

systems. They first build a system model based on the

requirements specification and then the outcome of a hazard

analysis is weaved into the mealy machine.

The correctness of the natural language requirements is

assumed to hold as there is no thorough approach to verify or

validate the natural language requirements prior to performing

the hazard analysis. Finally, they describe an algorithm that

derives test models that include critical transitions out of the

system model for each single identified hazard in order to

verify the implementation of a corresponding safety function.

 Q. Li et al.[20] in their paper demonstrated a value-based

approach for prioritizing features for testing which aligns the

internal test process with the value objectives coming from

the customers and the market. This involves prioritizing

features based on their business importance, quality risk, and

testing cost of each feature; adjusting feature’s value priority

during the testing process; and providing stop-testing decision

criteria based on the market pressure.

They also carried out a case study in a real-life business

project and showed that their helps the test manager to

identify features with high business importance, high quality

risk and low cost, to focus testing effort on these features and

to control and adjust testing plan toward success-critical

stakeholders (SCSs) win-win realization[21,22]. Their result

shows that this method can help to improve ROI of testing

investment at the early stage, especially when the market

pressure is high.

 Kloos et.al. [23] has described an approach for transitioning

from a fault tree as produced by a fault tree analysis (FTA). It

is used in combination with a system model, expressed as

mealy machine, to generate a test model. A test model is in

their definition a system model with failure modes and critical

transitions leading to the failure modes. This approach is

useful for risk-based testing of safety functions for safety-

critical systems.

 Recently, Zech [24] gave an approach to risk-based

security testing using models for cloud environments which is

still in a very early state. Due to a cloud’s openness, in theory

there exist an infinite number of tests. Taking this into

account, they proposed a new model–driven methodology for

the automatic risk analysis and subsequent deduction of

misuse cases, defined by negative requirements derived from

risk analysis for the security testing of cloud environments.

The risk analysis is also planned to be carried out completely

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

40

automatically by using a vulnerability repository. Neither one

of the involved models has been described in greater detail,

nor have the involved transformations been specified so far.

4. COMPARISON SOME STATE OF ART

OF RISK-BASED SOFTWARE TESTING

IN TERMS OF DIFFERENCES AND

ISSUES.

All the approaches discussed here use risk to prioritize what to

test. Many use similar methods to the one of Amland [6]

where factors that can increase the cost and consequences of

failure for some parts of the product are found. Amland [6]

look at the cost in respect of maintenance, legal issues, and

reputation for the vendor and the customer, while Schaefer

[11] look at what functions have the highest importance and

cause bigger inconveniences of failure for the user. His

important areas are more or less the same as Amland [6] calls

cost.

 Schaefer [11] consider many factors that will increase

the likelihood for an error done by the developers – called

defect generators. From these defect generators he can find

the parts with most defects. Chen [9] uses many of the same

ideas as Amland [6], but looks at test cases, not functions.

Gerrard [10] use a different way to prioritize what to test.

Instead of different areas of the product, a risk analysis on

different the failure modes is performed. Tests are generated

from the failure mode with the priority on the failure modes

with highest risk. This is similar to Stålhane et.al. [13] where

they used HazOp to find hazards. The number and severity of

the hazards for each function is used to prioritize the

functions. This is another way to sort out problematic areas in

a risk analysis. The risk analysis was done to decide what

functions to put extra effort into, but could also be used to

decide what functions to test.

 Stålhane [13] analyze how use cases can fail. This is

similar to Bach’s inside-out where he looks at how functions

can fail. The consequences for each failure are considered.

Stålhane [13] assess severity for each failure mode. These two

approaches does not try to give guidelines on what to test,

they rather look at the risk in order to find possible faults.

These methods can be helpful when use cases are gathered,

but it is difficult to make a software tool that can help the

tester.

 Analyzing the approach of Kloos et.al. [23], we

conclude that although they claimed their approach to be risk-

based, they do not provide a clear explanation on how to use

the identified risks for the generation of test cases.

 Going through the approach presented by Redmill [14],

we conclude that although it is applicable for all kinds of

product risks, but does not provide direct support for the

construction of test cases.

 The drawback of the RiteDAP tool given by Stallbaum

et. al.[18] is that the algorithm used for the test case

generation is fixed and can’t be modified.

The methodology described by Zimmermann et. al. [19] failed

to address the question of ranking the critical transitions in the

test models with respect to their risk priority. Further, it is not

clear, whether and how the algorithm they present can be

modified in order to vary the test case generation process.

Although the author [24] claims to offer a quite sophisticated

approach to risk-based security testing of cloud environments,

neither one of the involved models has been described in

greater detail, nor have the involved transformations been

specified.

5. CRITERIA FOR THE SELECTION

RISK-BASED SOFTWARE TESTING

APPROACHES

After analysing the different approaches of risk-based testing,

it has become clear that the most suitable approach depends

entirely upon the specific criteria of any given project. The

approach that may be most suitable to one project may well be

ineffective for another project.

Provided that the best method is selected and implemented by

all parties concerned there should be every chance that the

element of risk in a project can substantially be reduced.

Some of the factors which should be kept in mind while

selecting a suitable approach for any given project are system

complexity of the project, timeframes /deadlines, available

resources, and acceptable risk levels.

6. CONCLUSION

Risk based testing is a powerful testing technique that helps

the testing teams to streamline their testing efforts, which in

turn helps in mitigating the risk and minimizing the testing

efforts, thus, bringing an objectivity to test designing and test

management activities.

The goal of risk-based testing cannot practically guarantee a

risk-free project. What we can expect from risk-based testing

is to carry out the testing with best practices in risk

management to accomplish a project outcome that balances

risks with quality, features, budget and schedule. Based on our

analysis of different approaches of RBT, we will propose a

novel risk-based testing model in future. Furthermore, we will

apply that model to do some case studies in order to get

empirical results for our methodology.

7. REFERENCES

[1] C. C. Michael, Will Radosevich, Cigital, 2007, [Online],

available, https://buildsecurityin.us

cert.gov/bsi/articles/best-practices/testing/255- BSI.html

[2] Unnati Bajpai , 2012 Risk Based Testing 102 , [Online],

available, http://help.utest.com/testers/crash-

courses/general/risk-based-testing-102

[3] Pramod Lumb, 2012 Risk Based Testing 101, [online],

http://help.utest.com/testers/crash-courses/general/risk-

based-testing-101

[4] Mika Lehto, 2011, The concept of risk-based testing and

its advantages and disadvantages, [online],

https://www.ictstandard.org/article/2011-10-

25/concept-risk-based-testing-and-its-advantages-and-

disadvantages.

[5] S. Åmland, 1999 Risk Based Testing and Metric, 5th

International Conference EuroSTAR, Barcelona, Spain,

[6] S. Åmland, “Risk-based testing: Risk analysis

fundamentals and metrics for software testing including a

financial application case study”, Journal of Systems and

Software 53(3), 2000, pp. 287-295.

[7] J. Bach, 1999 Heuristic Risk-Based Testing. Software

Testing and Quality Engineering Magazine, November

1999, pp. 96-98.

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

41

[8] Wikipedia, 2012, the free encyclopedia, [Online],

http://en.wikipedia.org/wiki/Heuristic.

[9] Y. Chen, R. Probert, and P. Sims, 2002 Specification-

based Regression Test Selection with Risk Analysis, In:

Proceedings of the conference of the Centre for

Advanced Studies on Collaborative research (CASCON

'02), pp. 1.

[10] Paul G, 2002, Risk-Based E-Business Testing, ISBN

1580533140, page 3 – 29 and 51 – 80

[11] Hans Schaefer, Strategies for Prioritizing Tests against

Deadlines Risk Based Testing, Undated, [Online],

http://home.c2i.net/schaefer/testing/risktest.doc

 [12] Marvin Rausand, Risiko Analyse veiledning til NS 5814,

1991, ISBN 82-519-0970-8, page 41 – 100

[13] Tor Stålhane, Gunhild Sivertsen Sørvig,2003

RiskAnalysis as a Prioritizing Mechanism in SPI,

EuroSPI

[14] F. Redmill, 2004 Exploring risk-based testing and its

implications: Research articles,” Softw. Test. Verif.

Reliab., vol. 14, no. 1,pp. 3–15, 2004.

[15] Wallace, L. and M. Keil 2004 Software Project Risksand

their Effect on Outcomes. Communications of the

ACM,47 (4), 68-73.

[16] Raparla, R. and L. Sherrell 2007 A Tool for Risk-based

Testing”

[17] Veenendaal, E. 2006 Practical Risk-Based testing

PRoduct RIsk MAanagement: the PRISMA

method.Improve Quality Services BV, [online],

www.improveqs.nl

[18] H. Stallbaum, A. Metzger, and K. Pohl 2008 An

Automated Technique for Risk-based Test Case

Generation and Prioritization”, In: Proceedings of the 3rd

Workshop on Automation of Software Test,AST'08, at

30th Intl. Conference on Software Engineering (ICSE),

Germany, pp. 67-70.

[19] F. Zimmermann, R. Eschbach, J. Kloos, and T. Bauer

2009 Risk-based Statistical Testing: A Refinement-based

Approach to the Reliability Analysis of Safety-Critical

Systems”, In: Proceedings of the 12th European

Workshop on Dependable Computing (EWDC), France.

[20] Qi Li1, Mingshu Li2, Ye Yang2, Qing Wang2, Thomas

Tan1, Barry Boehm1,and Chenyong Hu2 2009 Bridge

the Gap between Software Test Process and Business

Value- A Case Study” Springer-Verlag Berlin

Heidelberg , pp. 212–223.

[21] Boehm, B., et al.: 1998 Using the WinWin spiral model:

a case study. IEEE Computer 31(7), 33–44 (1998)

[22] Boehm, B. 1988 A Spiral Model of

SoftwareDevelopment and Enhancement. IEEE

Computer 21(5), 61–72.

[23] J. Kloos, T. Hussain, and R. Eschbach 2011 Risk-Based

Testing of Safety-Critical Embedded Systems Driven by

Fault Tree Analysis In: Proceedings of the IEEE Fourth

International Conference onSoftware Testing,

Verification and Validation (ICST) IEEE Computer

Society, Berlin, 2011, pp. 26-33.

[24] P. Zech, 2011 Risk-Based Security Testing in Cloud

Computing Environments IEEE Fourth International

Conference on Software Testing, Verification

andValidation (ICST), 2011, pp. 411-414

AUTHOR'S PROFILE

Md Mottahir Alam has around six years of experience

working as Software Engineer (Quality) for some leading

software multinationals where he worked on projects for

companies like Pearson and Reader’s Digest. He is ISTQB

certified software tester. He has received his Bachelors degree

in Electronics & Communication and Masters in

Nanotechnology from Faculty of Engineering and

Technology, Jamia Millia Islamia University, New Delhi.

Currently, he is a research scholar at CMJ University,

Shillong, Meghalaya, India.

Asif Irshad Khan received his Bachelor and Master degree in

Computer Science from the Aligarh Muslim University

(A.M.U), Aligarh, India in 1998 and 2001 respectively. He is

presently working as a Lecturer Computer Science at the

Faculty of Computing and Information Technology, King

Abdulaziz University, Jeddah, Saudi Arabia.

He has more than eight years experience of teaching as

lecturer to graduate and undergraduate students in different

universities and worked for four years in industry before

joining academia full time.

He has published more than 14 research papers in reputed

International journals, His current research interests include

software engineering with a focus on Component Based and

Agent Oriented Software Engineering.

