
International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

17

Securing Storage Appliances via UNIX based

Kerberos Authentication

Latesh Kumar K.J

Dept.of.Computer Science
S.I.T, B.H.Road

Tumkur, Karnataka

ABSTRACT
Securing storage systems to use UNIX-based Kerberos

version 5 servers for NFS storage authentication using both

NFS version 3 and 4. NFS version 4 is the NFS

Implementation and mandates Kerberos authentication as part

of the NFS client and server specification Integrate their

storage systems with Kerberos version 5 to achieve strong

NFS storage authentication.

General Terms

Storage Security, Kerberos, Algorithms.

Keywords

KDC, SEAM, MIT, NFS, CIFS.

1. INTRODUCTION
Kerberos is a network authentication protocol used in client-

server applications. There are two versions of Kerberos

currently in use, version 4 and 5. Kerberos versions 1 through

3 were internal development versions and never released.

Kerberos version 4 has a number of known weaknesses and

should no long be used. There are several popular Kerberos

version5 distributions today, including MIT Kerberos,

Heimdal Kerberos, Sun® Enterprise Authentication

Mechanism (SEAM), and the Kerberos implementation in

Microsoft® Active Directory. MIT and Heimdal Kerberos are

freely distributed in public domains. The major difference

between MIT and Heimdal Kerberos is that MIT Kerberos is

subject to U.S. government export regulations, while Heimdal

Kerberos is not. The Heimdal Kerberos distribution is

available as a port (security/Heimdal), and a minimal

installation of it is included in the base FreeBSD install.

Kerberos 5 (RFC 1510) added security enhancements that

were not available in Kerberos 4. MIT Kerberos supports both

4 and 5, and the newer Heimdal Kerberos implementation

supports only version 5. However, there is often confusion

about which NFS versions support Kerberos authentication.

One common Misconception is that NFS v2 and v3 do not

support Kerberos authentication. NFS v2 supports Kerberos 4,

and NFS v4 supports Kerberos 5 which is the best

authentication mechanism for NFSv4. Storage systems fully

support Kerberos 5 and Microsoft Active Directory-based

Kerberos and these can be used with NFS and CIFS in storage

environment. This document provides guidance to users to

implement Kerberos in their existing NFS storage fabric to

accomplish strong authentication. After reading this document

you can install, setup and configure Kerberos version 5 in

your storage environment.

2. HOW KERBEROS WORKS
Kerberos is an authentication protocol which uses a shared

secret and a trusted third party arbitrator in order to validate

the identity of clients. In Kerberos, clients may be users,

servers, or pieces of software. The trusted third party

arbitrator is a server known as a Key Distribution Center

(KDC) which runs the Kerberos daemons. The shared secret is

the users password transformed into a cryptographic key. In

the case of servers or software systems, a random key is

generated. In Kerberos, users are known as principals. The

KDC has a database of principals and their secret keys which

is uses to perform authentication. In Kerberos knowledge of

the secret key is considered sufficient for proof of identity.

Since knowledge of a secret key translates into proof of

identity in Kerberos, the Kerberos server can be trusted to

authenticate any client to any other client. Authentication is

Kerberos is done with out sending any clear text passwords

across the wire.

Fig 1: How Kerberos Works

2.1 Messages
Signal Comments

KRB_AS_REQ or

AS_REQ

Used to ask for initial TGT

KRB_AS_REP or

AS_REP

Used to return TGT

KRB_TGS_REQ

or TGS_REQ

Used to ask for Ticket for service/application

KRB_TGS_REP or Used to return Ticket for service/application

USER A

Workstation

STORAGE

KDC

TRUSTED

ENTITY BY

BOTH apprsrv

AND user-a

USER-A talks to

Application Server

and the KDC is the

trusted entity to both

the parties.

OPERATING

SYSTEM
APPSRV

authentication

User-A based on

Credentials

provided to

USER-A by

KDC

Mutu

al

Auth

entic

ation

Verify password

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

18

TGS_REP

KRB_AS_ERR There are many Used by KDC to report why

it cannot grant a ticket in

response to AS_REQ or TGS_REQ

KRB_AP_ERR Again, there are many Used by the

Application Server to report why

authentication failed

2.2 Key Commands

Command Description

Kadmin.local Add/Delete/Modify principals

Generate keys (keytab files)

kdb5_util Manage KDC database

Klist List contents of keytab files

Kinit To get the initial TGT

Ktadd Add a Kerberos key to a keytab file

Ktutil Another command that you can use to

administer keytab files is the ktutil command.

This interactive command enables you to

manage a local host's keytab file without

having Kerberos administration Privileges,

because ktutil doesn't interact with the

Kerberos database as Kadmin does. So, after a

principal is added to a keytab file, you can use

ktutil to view the keylist in a keytab file or to

Temporarily disable authentication for a

service. With ktutil you can Temporarily

Disable Authentication for a Service on a

Host

3. CONFIGURING KERBEROS ON SUN

SOLARIS

3.1 Configuring Kerberos on Solaris®

Solaris

The Kerberos setup constitutes 3 major steps

1. KDC (Key Distribution center)

2. Kerberos Client (Client to access the Storage)

3. Kerberos Server (Storage)

3.2 Setting up KDC
The realm used is "BIGFOOT.REALM1.COM". The steps to

configure the KDC are as follows:

INITIALIZE THE KERBEROS DATABASE

Use the kdb_util program to initialize the Kerberos database

for the realm

‘SNOWMAN.LAB.ENG.SHADOW.SHADOW.IN'. The

syntax of the command is:

kdb5_util create -r <realm-name>

sun123# kdb5_util create -r BIGFOOT.REALM1.COM –s

3.3 Configuring KDC
The KDC is configured through the config file

/etc/krb5/kdc.conf. A sample configuration is shown below:

[realms]

BIGFOOT.REALM1.COM= {

profile = /etc/krb5/krb5.conf

database_name =

/var/krb5/principal.BIGFOOT.REALM1.COM

admin_keytab =

/var/krb5/kadm5.keytab.BIGFOOT.REALM1.COM

acl_file = /etc/krb5/kadm5.acl.BIGFOOT.REALM1.COM

Kadmind_port = 749

max_life = 8h 0m 0s

max_renewable_life = 7d 0h 0m 0s

default_principal_flags = +preauth

supported_enctypes = des-cbc-crc:normal des-cbc-

md5:normal

3.4 Generate Service Key
The service key will be shared between the server and the

KDC. This key is used to encrypt the ticket that the KDC

grants to the client. Launch the application 'Kadmin.local' on

the KDC.

Generate keys for the service "nfs" as follows

Kadmin.local: add_principal -e "des-cbc-crc:normal des-cbc-

md5:normal" -randkey

nfs/storage123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

3.5 Generate Keytab file for SERVER
The service key generated in the previous step gets added to

the Kerberos database. To pull this out into a keytab file, the

following command is used:

Kadmin.local: ktadd -k /tmp/storage123.keytab -e "des-cbc-

crc:normal des-cbcmd5:

normal" nfs/storage123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

3.6 Generate Keys for Client
Generate keys for the clients. Note that for Linux, the service

needs to be named as "nfs/<client

FQDN>@<realm>" and for Solaris this would be named as

"root/<client FQDN>@<realm>"

For Linux client with FQDN

'lnx123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

19

Kadmin.local: add_principal -e "des-cbc-crc:normal des-cbc-

md5:normal" –randkey

nfs/lnx123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

For Solaris client with FQDN

'sun123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

Kadmin.local: add_principal -e "des-cbc-crc:normal des-cbc-

md5:normal" -randkey

root/sun123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

3.7 Generate Keytab Files
Kadmin.local: ktadd -k /tmp/lnx123.keytab -e "des-cbc-

crc:normal des-cbcmd5:

normal" nfs/lnx123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

Kadmin.local: ktadd -k /tmp/sun123.keytab -e "des-cbc-

crc:normal des-cbcmd5:

normal" root/sun123.lab.eng.shadow.shadow.in@

BIGFOOT.REALM1.COM

4. PURPOSE AND BENEFITS
The Kerberos configuration on the Client and the Application

Server is done through the krb5.conf file. This file will be

placed in the /etc/krb5 directory in case of Solaris and in the

/etc directory in case of Linux. On the Storage, this file is

placed in the /etc directory. A sample configuration is shown:

[libdefaults]

default_realm = BIGFOOT.REALM1.COM

default_tgs_enctypes = des-cbc-md5 des-cbc-crc

default_tkt_enctypes = des-cbc-md5 des-cbc-crc

[realms]

BIGFOOT.REALM1.COM= {

kdc = sun217-21.BIGFOOT.REALM1.COM:88

admin_server = sun217-21.BIGFOOT.REALM1.COM :749

default_domain = BIGFOOT.REALM1.COM }

11 Configuration and Best Practises – Kerberised NFS in

storage box

[logging]

kdc = FILE:/var/log/krb5kdc.log

admin_server = FILE:/var/log/Kadmin.log

default = FILE:/var/log/krb5lib.log

[domain_realm]

.lab.eng.shadow.shadow.in = BIGFOOT.REALM1.COM

lab.eng.shadow.shadow.in = BIGFOOT.REALM1.COM

[appdefaults]

pam = {

debug = false

ticket_lifetime = 36000

renew_lifetime = 36000

forwardable = true

krb4_convert = false

5. CLIENT CONFIGURATION
Copy the keytab files, Copy the keytab file generated as

generated above to the Client under the /etc directory. Rename

the file as krb5.keytab. Note: Kerberos server doesn’t does not

encrypt while copying keytab files across servers and clients

manually. It is highly recommended to use secure copy tools

like scp, ssh to copy the keytab files either to Shadow Storage

or Clients.

Enable NFS security Create/edit the file /etc/sysconfig/nfs and

add the following line SECURE_NFS=yes

Restart rpcgssd

Restart the service using the command:

/etc/init.d/rpcgssd restart

5.1 Configure Solaris as Client
Copy the keytab files

Copy the keytab file generated in #5 from the KDC

Configuration section on to the Client under the

/etc/krb5 directory. Rename the file as krb5.keytab

Enable NFS security

Un-comment all the krb lines in /etc/nfssec.conf

Restart rpcdgssd

svcs | grep gss

svc:/network/rpc/gss:default

svcadm -v disable svc:/network/rpc/gss:default

svcadm -v enable svc:/network/rpc/gss:default

6. KERBEROS REPLICATION
Kerberos is designed to allow Master/Slave replication of a

cluster. A master KDC serves as the primaryserver and at

least one slave KDC which is a backup. The master and slave

servers may be thought of as Primary and Secondary servers

respectively.

Kerberos client applications are designed to attempt

authentication against secondary servers if the primary is

down. The administrative features of Kerberos do not provide

for automatic failover. In the event that primary server fails,

Kadmind will be unavailable. Therefore, administrative

functions will be unavailable until the primary server is

restored. Specifically, principal management, key creation,

and key changes, cannot be done during a primary server

failure.

IMPLEMENTATION

Server replication is handled by the kprop command and

kprop must be run on the primary master KDC. It should be

run in a scheduled cron job to keep the principal database in

sync across all servers.

The first step in setting up replication is to set up ACLs for

kpropd. The kpropd acl filename is by default located at

/var/Kerberos/krb5kdc/kpropd.acl. In our example, it would

have the following contents:

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

20

host/kerberos1.test.com@test.com

host/kerberos2.gnud.ie@ sit.com

The kpropd.acl file should only exist on the slave Kerberos

server. In Fedora derived GNU/Linux, Kadmin will not run on

a Kerberos server on which /var/Kerberos/krb5kdc/kpropd.acl

exists.

Next we’ll have to create host keys for your master and slave

Kerberos servers:

{Kerberos1}bash# Kadmin.local

{Kerberos1}Kadmin.local: addprinc -randkey

host/kerberos1.test.com

{Kerberos1}Kadmin.local: addprinc -randkey host/kerberos2.

sit.com

The next step is to extract these keys to the keytab file. The

keytab file is a keyring which contains the cryptographic keys

needed to authenticate with the KDC. Extraction of keys to

the keytab is done with the

ktadd sub command:

{Kerberos1}Kadmin.local: ktadd host/kerberos1.test.com

{Kerberos1}Kadmin.local: ktadd host/kerberos2. sit.com

Then finally, copy the keytab over to the slave server so that it

has the keys it needs available to authenticate.

{Kerberos2}bash# scp

root@kerberos1.gnud.ie:/etc/krb5.keytab /etc

Here is a crontab entry from the master Kerberos server used

to synchronize principal databases every fifteen minutes:

15 * * * * /usr/local/bin/krb5prop.sh

Here are the contents of the krb5prop.sh script:

#!/bin/sh

/usr/Kerberos/sbin/kdb5_util dump

/var/Kerberos/krb5kdc/slave_datatrans

/usr/Kerberos/sbin/kprop -f

/var/Kerberos/krb5kdc/slave_datatrans kerberos2. sit.com >

/dev/null

Initially running this command by hand, you should see

something similar to the following:

{Kerberos1} bash# /usr/Kerberos/sbin/kdb5_util dump

/var/Kerberos/krb5kdc/slave_datatrans

{Kerberos1}bash# /usr/Kerberos/sbin/kprop -d -f

/var/Kerberos/krb5kdc/slave_datatrans kerberos2.sit.com

3234 bytes sent.

Database propagation to kerberos2. sit.com: SUCCEEDED

{Kerberos1}bash# The slave server will now synchronize its

principal database with the master server.

7. STATISTICAL ANAYLSIS
The below chart illustrates the features supportability for the

web application via storage connected..

0

0.2

0.4

0.6

0.8

1

KRB5 RHEL 3 Kernel 2.6.9 MIT Kerberos

KRB5 RHEL 3 Kernel

2.6.9 MIT Kerberos

0

No, all applications must use the same

version

8. CONCLUSION
Although Kerberos removes a common and severe security

threat, it may be difficult to implement for a variety of

reasons:

• Migrating user passwords from a standard UNIX password

database, such as /etc/passwd or

/etc/shadow, to a Kerberos password database can be tedious,

as there is no automated mechanism to perform this task.

Refer to the online Kerberos FAQ:

• Kerberos has only partial compatibility with the Pluggable

Authentication Modules (PAM) system used by most Red Hat

Enterprise Linux servers. (Only with Linux)

• Kerberos assumes that each user is trusted but is using an

untrusted host on an untrusted network. Its primary goal is to

prevent unencrypted passwords from being transmitted across

that network. However, if anyone other than the proper user

has access to the one host that issues tickets used for

authentication — called the key distribution center (KDC) —

the entire Kerberos authentication system is at risk.

• For an application to use Kerberos, its source must be

modified to make the appropriate calls into The Kerberos

libraries. Applications modified in this way are considered to

be Kerberos-aware, or kerberized. For some applications, this

can be quite problematic due to the size of the application or

its design. For other incompatible applications, changes must

be made to the way in which the server and client

communicate. Again, this may require extensive

programming. Closed-source applications that do not have

Kerberos support by default are often the most problematic.

9. REFERENCES
[1] B. Clifford Neuman and Theodore Ts'o, Kerberos: An

Authentication Service for Computer Networks, IEEE

Communications 32 (1994), no. 9, 33—38

[2] S. M. Bellovin and M. Merritt. Limitations of the

kerberos authentication system. Computer

International Journal of Computer Applications (0975 – 8887)

Volume 65– No.1, March 2013

21

Communication Review, 20(5):119-132, October 1990.

postscript

[3] Prof R.P. Arora, Garima Verma, “Implementation of

Authentication and Transaction Security based on

Kerberos”, IJITCE, Feb 2011 7..

[4] “How Kerberos Authentication Works“,Learn

Networking on line magazine, Jan’2008

[5] Ravi Ganesan, “Yaksha’ : Augmenting Kerberos with

Public Key cryptography”

