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ABSTRACT 

The security of a system is an important issue due to the latest 

advancements in information technology. Intrusion Detection 

Systems are used to identify the attacks and malicious 

activities in the computer systems. This paper discusses a new 

host based intrusion detection system for detecting changes in 

hardware profile using fuzzy inference rule. The proposed 

system is able to analyze and detect the unauthorized access in 

a computer system by generating a set of fuzzy IF-THEN 

rules with the help of frequent item set. These fuzzy inference 

rules are used to find the misuse of the system. The 

experiments of the proposed system are carried out on the 

system performance log. 
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1. INTRODUCTION 
Due to technology emerges day by day, there is a need to have 

a security mechanism to protect the systems from 

unauthorised users and malicious activities. For this, the 

intrusion detection systems (IDS) are used. An intrusion 

detection system is a device or software application that 

collects information from a variety of network sources or 

computer systems for analysis in order to detect the signs of 

malicious activities. An intrusion is defined as a set of actions 

that attempts to compromise the integrity, confidentiality, or 

availability of the system resources [1]. Integrity refers to 

maintain and assure the accuracy and consistency of data over 

its entire life cycle. Confidentiality refers to maintain the 

secrecy of data into system so that unauthorized user cannot 

access. Availability refers to availability of information 

resources. There are two common approaches to develop an 

intrusion detection model:  misuse detection model and 

anomaly detection model [2]. The misuse detection model 

refers to detection of intrusions that follow well-defined 

intrusion patterns. Every intrusion has some pattern e.g. 

number of packets, number of connection, bytes sent, duration 

etc. It matches the packets with the database of pattern. 

Whenever there is a match, alarms are raised. It is very useful 

in detecting known attack, but not suitable for unknown 

attacks. The anomaly detection model refers to detection 

performed by detecting changes in the patterns of utilization 

or behaviour of the system. Whenever there is any deviation 

from the normal behaviour activity, alarms are raised. Normal 

behaviour can be developed using different techniques such as 

statistical analysis, data mining algorithms, genetic 

algorithms, artificial neural network approach, fuzzy logic and 

rough set etc. The anomaly detection systems can detect new 

intrusions unlike the misuse detection systems. The IDSs can 

be network based or host based as far as the source of data is 

concerned. Network based IDS (NIDS) collects raw packets 

as the data source from the network and analyse for signs of 

intrusions. The host based IDS (HIDS) operates on 

information collected from within an individual computer 

system such as operating system audit trails, C2 audit logs, 

and System logs. 

Fuzzy inference is the process of formulating the mapping 

from a given input to an output using fuzzy logic. This 

mapping provides a basis from which decisions can be made, 

or patterns are discerned. The process of fuzzy inference 

involves all of the pieces that are described in membership 

functions, logical operations, and fuzzy IF-THEN rules. The 

proposed work describes to design a host based intrusion 

detection system using fuzzy inference rules. The 

performance log of a computer system acts as input to 

proposed system. The input is divided into two subsets: one is 

called as training data and other as testing data. The training 

dataset is further classified into two subsets: abnormal and 

normal data. After that, perform data mining technique to 

select frequent items from each attribute in the abnormal data 

as well as normal data. These mined frequent items are used 

to find the important attributes of the input dataset, which in 

turn are used to develop a set of definite and indefinite rules 

using a deviation method. Then, indefinite rules must be 

ignored and definite rules are used to generate fuzzy inference 

rules by fuzzifying it in such a way that we obtain a set of 

fuzzy IF-THEN rules with consequent parts that represent as 

either normal or abnormal data. These rules are given to the 

fuzzy inference system to effectively learn[16][18]. In testing 

phase, the testing data is matched with fuzzy inference rules 

to detect abnormal and normal behaviour of data. In this 

proposed work, Mamdami fuzzy inference system is used 

which is implemented in MATLAB 7.5. 

The remaining paper is organized as follows: Section 2 

reviews the related work. Section 3 discusses our proposed 

work. The performance log analysis is given in section 4. The 

experimental methodology and the results are discussed in 

section 5. Finally, the paper is concluded in section 6.   

2. RELEATED WORK 
Several researchers have discussed different designs for 

developing intrusion detection systems. In the last couple of 

years, intrusion detection has received a lot of interest among 

the researchers since it is being widely applied for preserving 

the security within a network and computer systems. Denning 

has described a rule based intrusion detection system that can 

detect security violations attempted by outsiders to system 

penetrations and misuse by insiders [5]. In this system, the 

generated audit record is matched with the defined rules and 

checked for abnormal behaviour. Srinivasa et al. have 

presented a rule based intrusion detection system in which 
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they use genetic algorithm to make IDS more efficient [6]. 

The genetic algorithm has been used to prune the best rules 

from the generated rule set. They use DARPA dataset for 

training and testing purpose. Siraj et al. discuss an intelligent 

alert clustering model for network intrusion analysis [7]. They 

use principal component analysis with expectation 

maximization technique to aggregate similar alerts and reduce 

the number of low quality alerts. Shanmugavadivu et al. use 

KDD Cup99 for their proposed anomaly based network 

intrusion detection system [8]. They use fuzzy logic for 

identifying the intrusion activities in a network. This system 

generates fuzzy IF-THEN rules and with the help of fuzzy 

decision module the system identifies the appropriate 

classification of the test data. Dhanalakshmi discusses a 

system in which the fuzzy logic is integrated with the data 

mining methods using genetic algorithm for intrusion 

detection [9]. This system uses data mining to extract rules 

and Mamdami fuzzy inference system to determine the 

behaviour of the test data. Om et al. have designed a PCA 

based anomaly detection system for outlier detection in a 

computer system [10]. They use principal component analysis 

(PCA) to reduce the dimensions of data recorded by the 

computer system (performance log). Bharti et al. have 

proposed an intrusion detection model in which they use 

feature selection algorithm to select the non-redundant 

attributes [11]. They use fuzzy K-mean clustering algorithm 

to calculate the membership of every data point and J48 

classification techniques for assigning a cluster to a particular 

class. Han et al. describe an evolutionary neural network 

based intrusion detection system, which has good detection 

performance and also reduces the training time [12]. Om et al. 

discuss a neural network based model, which can detect 

changes in the hardware profile of a computer system [13]. 

They use back propagation network (BPN) for detection and 

reported that the very high and very low values of the learning 

rate have bad effect on the results. 

3. PROPOSED WORK 
Recently, several researchers have focused on fuzzy logic for 

developing an effective intrusion detection system. This paper 

also proposes a fuzzy logic based intrusion detection system 

for detecting the changes in hardware profile. The model of 

our system is shown in Fig. 1. The preprocessor generates the 

rules and provides them to fuzzy rules generator to generate 
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Fig. 1. Intrusion Detection System based on Fuzzy Inference rule 
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fuzzy IF-THEN rules for the proposed system. A fuzzy 

inference system is used to generate the output for detection.  

In this figure, a bold line denotes the interconnection inside 

the module and a normal line denotes the data flow in the 

proposed system. The different steps involved in the proposed 

system for intrusion detection are described as follows: 

i. Preprocessing module 

a. Data miner 

b. Attribute selector 

ii. Fuzzy rules generator 

iii. Fuzzy inference system 

iv. Finding behavior for a test input 

3.1 Preprocessing Phase 
The first component of our proposed system is preprocessing 

module. This module is responsible for accepting training data 

as system log and categorizes it into two classes: abnormal 

and normal data. These data are used to generate rules. The 

preprocessing module contains two sub-modules: data miner 

and attribute selector. 
 

a. Data miner 

The data miner integrates FP-Growth algorithm property to 

mine the frequent items in each attribute [3]. By considering 

the frequency of items in each attribute, the data miner 

identifies the frequent items by inputting sufficient support. 

The frequent items are identified for both the classes namely, 

abnormal and normal classes. 
 

b. Attribute Selector 

This module selects the suitable attributes from the input data 

as all the attributes are not useful for detection. For 

identifying the suitable attributes, the deviation method is 

used. Each class (abnormal and normal) is represented as 

 1 2 3, , ,........i nClass A A A A , where A1, A2,… An are 

the attributes in ith class. In our proposed system, the class1 

refers to normal and class2 to abnormal class. Each attribute 

Aj contains items Ik that have frequency greater than the 

minimum support. 

  ;1j kA I k m   andsupport(I ) minsupportk   

Here, support(Ik) is the frequency of kth item in Aj attribute of 

classi. Then, for each attribute, the deviation range(D) {min, 

max} of the frequent items is calculated as follows. 

 min max,
jAD f f

,where  min min support(I )kf                                                                                

          and  max max support(I )kf 
 

The attributes containing non-identical {max, min} range for 

both the classes are chosen as effective attributes, which will 

give significant detection rate. The chosen attributes are used 

to generate rules for the proposed system. Compare the 

deviation range of the effective attributes for both abnormal 

and normal data to calculate intersection point. After that, 

intersection points are used to generate IF-THEN rules. 

3.2 Fuzzy Rules Generator 
The fuzzy rules are generated from the definite rules obtained 

from above step. The definite rules are the rules that contain 

only one classification label in THEN part. The fuzzy rules 

contain linguistic variables only, hence the membership 

functions are used to fuzzify the numerical values in definite 

rules. The triangular and trapezoidal membership functions 

are used in this step. For example, if an attribute1 is N1, the 

data is abnormal; if an attribute1 is N2, the data is normal. 

Here, N1 and N2 are linguistic variables. These fuzzy rules are 

given to Rulebase of the fuzzy inference system. 

3.3 Fuzzy Inference System 
This step describes the fuzzy logic system for finding the 

suitable class label of the input test dataset. In the proposed 

system, we use Mamdami inference system [14], which is 

based on Zadeh’s paper on fuzzy algorithms for complex 

system and decision process [17]. In our proposed system, 

nine inputs and one output Mamdami fuzzy inference system 

with the centroid of area defuzzification strategy is used. 

3.4 Finding Behaviour for a Test Input 
For testing phase, a test data from the testing data is given to 

the Mamdami fuzzy inference system. It compares the input 
variable with the membership functions on the premises part 

to obtain the membership value for each linguistic label. The 

output of fuzzification interface is fed to the decision making 

unit which in turn compares that particular input with 

Rulebase. The output of knowledgebase is fed to 

defuzzification interface, which converts the fuzzy result into 

a crisp value. If the crisp value lies in the user defined 

intervals for respective behavior, the data can be classified as 

normal and abnormal. In our proposed system, if the crisp 

value is between 0 to 50, i.e. (0  value 50)crisp  , the 

data is normal; and if the crisp value is between 50 to 100, i.e. 

(50  value 100)crisp  , the data is abnormal. If the 

membership value for a test data is 1.0, the test data is either 

true normal or true abnormal. 

ALGORITHM 
Input: Performance log recorded by the computer system 

Output: Abnormal data or Normal data 

Assumptions:  

a. Training data is divided into two classes: abnormal 

class and normal class. 

b. Testing data contains abnormal data, normal data or 

both. 

step 1: Training data is given as input to preprocessing 

module that contains data miner and attribute 

selector: 

a) Data Miner extracts frequent itemsets in each 

attribute from both the classes: abnormal and 

normal classes. 

b) Attribute selector selects effective attributes, 

which are suitable for rules generation. 

c) With the help of effective attributes, IF-THEN 

rules are generated. 

step 2: Rules obtained from preprocessor are given as input 

to fuzzy rules generator module. 

step 3: Fuzzy rules generator generates fuzzy IF-THEN 

rules corresponding to each rule obtained in step 1, 

and feeds it into rulebase of fuzzy inference system. 

step 4: In database of fuzzy inference system, define 

membership function of fuzzy sets used in fuzzy 

rules. 

step 5: Testing data is given as input to fuzzy inference 

system. 

step 6: For each test data, fuzzy inference system generates 

a crisp value as an output. 

step 7: If crisp value lies in the user defined intervals for 

respective behavior, the data can be classified as 

normal or abnormal. In our proposed system, if 

crisp value is between 0 to 50, the data is normal 
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and, if crisp value is between 50 to 100, the data is 

abnormal.  

step 8: If the membership value for a test data is 1.0, the 

test data is true normal or true abnormal, otherwise 

test data has respective behavior with probability 

less than 1.0 based on the membership value. 

4. PERFORMANCE LOG ANALYSIS 
The performance log has been generated of patterns with 

errors and without errors. The proposed system has been 

applied to analyse the log and find the result. 

(a) Performance log 

The performance logs are generated by taking some of the 

process attributes for normal and abnormal behavior of the 

system. The performance of the personal computer can be 

measured by using the performance log. The hardware profile 

of the system that has been used in experiments as follows: 

 Intel Core 2 Duo CPU @ 2.33 GHz 

 1024 MB RAM 

 Microsoft Windows XP  

 

(b) Attributes used in performance log 

The used attributes for Performance Log analysis are as 

follows. 

 % committed byte in use:  It is the ratio of memory 

committed bytes to the memory commit limit. The commit 

limit is determined by the size of the paging file.  

 Available Mbytes: It is the amount of physical memory in 

Megabytes immediately available for allocation to a 

process or for the system use.  

 System Driver Resident Bytes: It is the size (in bytes) of the 

pageable physical memory being used by device drivers. 

 System Driver Total Bytes: It is the size in bytes of the 

pageable virtual memory currently being used by the device 

drivers.  

 I/O Write Operations/sec: The rate at which the process is 

issuing write I/O operations.  

 File Control Operations/sec: It is the combined rate of file 

system operations that neither reads nor writes.  

 File Data Operations/sec: It is the combined rate of read 

and write operations on all logical disks on the computer.  

 File Write Operations/sec: It is the combined rate of the 

file system write requests to all devices on the computer, 

including requests to write data in the file system cache.  

• Threads: It is the number of threads in the computer at the 

time of data collection. 

5. EXPERIMENT METHODOLOGY     

AND RESULT 
For experimental evaluation of the proposed system, the 

performance log of the computer system needs be generated. 

The steps for generating the performance logs are as follows: 

 On the start menu, point to settings, point to Control 

Panel, double click Administrative Tools, and double 

click Computer Management. 

 Explore performance Logs and Alerts, right click 

Counter Logs, and then click New Log Settings. 

 Type a name for the counter log and then click OK. 

 Click Add Counters. 

 In the Performance object box, select a performance 

object that need be monitored. 

 Counters added for experiment. 

 On the General tab under Sample data every sampling 

interval of 15 seconds is configured. 

 On the Log Files tab log files properties is configured as 

Comma delimited files that can be viewed later in 

reporting tools such as Microsoft Excel. 

The training dataset has been divided into two subdatasets: 

normal dataset and abnormal dataset. Firstly, the normal 

dataset have been generated. Samples of normal dataset are 

shown in Table 1. After that, the abnormal dataset have been 

generated by disabling graphics driver, audio driver, and 

Ethernet driver. This generates the logs for the system 

performance that have been considered as intrusions. Samples 

of abnormal dataset are shown in Table 2. For testing dataset, 

we have taken normal data as well as abnormal data, i.e. 

mixed data. Samples of the testing patterns are shown in 

Table 3. 

Table 1. Training Dataset (Normal dataset) 

% Committed 

Bytes In 

Use 

Available 

MBytes 

System 

Driver 

Resident 

Bytes 

System 

Driver 

Total 

Bytes 

IO Write 

Operations 

/sec 

File Control 

Operations 

/sec 

File Data 

Operations 

/sec 

File Write 

Operations 

/sec 

Threads 

10.07679182 646 1114112 8830976 105.9535826 1407.184756 324.4265362 111.2242327 535 

9.287402465 659 1118208 8830976 11.94779465 851.0300656 89.97557086 13.61648105 514 

9.271461777 688 1118208 8830976 20.24620835 147.1846067 72.46011408 20.24620835 507 

9.232098038 693 1118208 8728576 0.066668724 12.40038269 0.066668724 0.066668724 504 

9.207861687 692 1118208 8728576 20.06729463 157.6716006 68.86882176 20.06729463 499 

9.198427402 694 1118208 8728576 0.066668704 13.80042174 0.133337408 0.066668704 495 

9.070251261 698 1118208 8728576 16.80053295 144.1379057 65.66874981 20.06730324 486 

9.065859439 698 1118208 8728576 0.066668731 13.86709614 0.333343657 0.066668731 482 

9.061955597 700 1118208 8728576 20.66731268 146.0045638 66.33540684 20.66731268 481 

9.061630277 700 1118208 8728576 0.066668763 11.20035221 0.066668763 0.066668763 481 

9.059515696 700 1118208 8728576 20.06729652 145.8712452 65.93540286 20.06729652 480 

9.059190376 701 1118208 8728576 0.066668741 11.33368589 0.066668741 0.066668741 480 

9.247062766 680 1118208 8728576 27.80086509 532.8832487 249.8744421 147.4045869 491 
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9.149792039 682 1118208 8728576 0.200006348 155.1382573 6.866884615 0.400012696 488 

9.150442679 699 1118208 8728576 20.06729462 144.2711813 65.73539035 20.06729462 489 

9.150442679 699 1118208 8728576 0.066668738 13.86709753 0.333343691 0.066668738 489 

9.144424257 698 1118208 8728576 20.06729919 150.7380846 66.06874918 20.06729919 486 

8.742165884 701 1118208 8728576 20.06729919 37.20116907 2.933425518 1.13336895 479 

8.73289426 701 1118208 8728576 20.06729501 149.9380282 67.33544174 20.06729501 475 

8.73289426 701 1118208 8728576 0.06666874 11.26701703 0.06666874 0.06666874 475 

8.728177117 702 1118208 8728576 20.06730434 146.6046587 66.00209735 20.06730434 473 

8.732406279 702 1118208 8728576 0.066668745 11.33368665 0.066668745 0.066668745 469 

8.721833374 702 1118208 8728576 20.06729527 143.2711546 65.66872373 20.06729527 463 

8.720857414 702 1118208 8728576 0.066668754 13.86710078 0.333343769 0.066668754 462 

8.715652291 701 1118208 8728576 20.06729895 153.271496 68.66883031 20.06729895 458 

8.71272441 702 1118208 8728576 0.066668742 11.26701732 0.066668742 0.066668742 456 

8.707844608 702 1118208 8728576 20.06729966 146.0712743 66.00208193 20.06729966 454 

8.707844608 703 1118208 8728576 0.066668741 11.33368595 0.066668741 0.066668741 454 

8.786246765 678 1118208 8728576 29.73427583 452.1476651 107.3367356 29.73427583 454 

8.73452086 703 1118208 8728576 20.20063344 855.2268176 436.4136848 20.20063344 453 

8.7343582 703 1118208 8728576 20.06729848 143.4045151 65.66873424 20.06729848 453 

8.746557706 702 1118208 8728576 0.06666875 23.40073138 3.333437518 0.06666875 453 

8.764287655 702 1118208 8728576 22.60071308 289.6758063 82.60260623 23.06739448 453 

8.747858987 702 1118208 8728576 0.066668763 11.33368974 0.066668763 0.066668763 453 

8.746557706 702 1118208 8728576 20.06729443 145.8045612 65.93539597 20.06729443 452 

8.746720366 702 1118208 8728576 0.066668774 11.33369156 0.066668774 0.066668774 452 

8.75387741 702 1118208 8728576 21.57819834 160.8374969 70.26234337 21.57819834 455 

8.752413469 702 1118208 8728576 0.066668746 11.26701807 0.066668746 0.066668746 455 

Table 2. Training Dataset (abnormal dataset) 

%  

Committed 

Bytes In 

 Use 

Available 

Mbytes 

System 

Driver 

Resident 

Bytes 

System 

Driver 

Total 

Bytes 

IO Write 

Operations 

/sec 

File Control 

Operations 

/sec 

File Data 

Operations 

/sec 

File Write 

Operations 

/sec 

Threads 

7.423384034 700 1617920 2150400 102.1167592 1627.371182 312.9875432 107.081218 486 

7.148329421 705 1617920 2150400 31.36551108 517.8646084 150.0873073 31.76592186 484 

7.087332686 733 1617920 2150400 0.400010744 463.2791101 7.533535681 0.400010744 478 

7.091073819 735 1617920 2150400 20.06719968 152.1373743 68.66849061 20.06719968 475 

7.082778263 736 1617920 2150400 0.066668489 14.5337306 0.333342445 0.066668489 474 

7.083266237 736 1617920 2150400 27.80074732 578.8822277 98.26930826 29.40079033 474 

7.073832075 736 1617920 2150400 0.066599087 15.38438913 0.399594523 0.066599087 471 

6.970218954 739 1617920 2150400 17.53380821 144.0705686 65.6684452 20.06721016 465 

6.968592374 741 1617920 2150400 0.066668435 11.93364993 0.133336871 0.066668435 465 

6.963224662 741 1617920 2150400 20.06721729 144.5372993 65.93514254 20.06721729 464 

6.962086056 740 1617920 2150400 0.066668456 20.20054218 3.066748978 0.066668456 464 

6.964851241 742 1617920 2150400 3.400093518 58.93495431 27.66742765 3.400093518 461 

7.118400357 738 1617920 2150400 22.20059521 329.4088317 201.2720629 137.0703416 470 

7.040649851 739 1617920 2150400 0.80002152 148.6706658 4.533455281 1.0000269 467 

7.040487193 741 1617920 2150400 20.40055848 145.87066 66.3351493 20.40055848 467 

7.040487193 741 1617920 2150400 0.066668473 11.33364035 0.066668473 0.066668473 467 

6.622944207 744 1617920 2150400 16.667118 165.671153 67.00181438 20.80056327 457 

6.624733444 727 1617920 2150400 5.266809775 176.938141 27.467413 11.93365759 457 
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6.622618891 727 1617920 2150400 20.06721418 143.7372551 65.66845838 20.06721418 456 

6.61952839 727 1617920 2150400 0.066668462 11.3336386 0.066668462 0.066668462 455 

6.619853705 744 1617920 2150400 20.06721714 145.3373202 66.00181053 20.06721714 455 

6.631077105 743 1617920 2150400 0.066668439 20.40054244 3.066748209 0.066668439 452 

6.62587205 743 1617920 2150400 20.06721692 144.6706336 65.93514132 20.06721692 450 

6.624570786 743 1617920 2150400 0.066668482 11.33364196 0.066668482 0.066668482 449 

6.614323335 744 1617920 2150400 20.06721429 143.203908 65.66845872 20.06721429 442 

6.605377147 744 1617920 2150400 0.066668464 13.06701891 0.333342319 0.066668464 436 

6.599684118 745 1617920 2150400 20.06721678 143.5372682 65.73513538 20.06721678 432 

6.599684118 745 1617920 2150400 0.066668473 11.26697186 0.066668473 0.066668473 432 

6.896209582 714 1626112 2150400 41.20111634 699.4189507 249.5400946 41.20111634 432 

6.634980896 745 1626112 2150400 7.000191124 582.6825754 289.3412331 7.000191124 431 

6.634980896 744 1626112 2150400 20.06721757 144.6706383 65.80180645 20.06721757 431 

6.644577716 744 1626112 2150400 0.066668477 19.73386925 3.066749951 0.066668477 430 

6.641161898 745 1626112 2150400 20.06721537 143.5372581 65.73513074 20.06721537 429 

6.641324556 744 1626112 2150400 1.266700927 17.26713369 1.800048686 1.266700927 429 

6.640185951 745 1626112 2150400 20.0672155 143.3372535 65.66846267 20.0672155 428 

6.639860635 744 1626112 2150400 0.066668472 19.66719923 3.06674971 0.066668472 428 

6.644415058 744 1626112 2150400 21.73392725 159.404356 70.66859782 21.73392725 430 

6.650433402 743 1626112 2150400 2.466734036 157.004288 16.60045338 2.933413449 430 

Table 3. Testing Dataset 

%  
Committed 
Bytes In  
Use 

Available 
MBytes 

System 
Driver 
Resident 
Bytes 

System 
Driver 
Total 
Bytes 

IO Write 
Operations 
/sec 

File Control 
Operations 
/sec 

File Data 
Operations 
/sec 

File Write 
Operations 
/sec 

Threads 

9.284637244 652 1097728 8830976 108.6147969 1339.254896 319.2395796 114.1205674 513 

9.278130841 657 1101824 8728576 23.3536425 819.6461272 109.0281481 23.3536425 510 

9.226730256 687 1101824 8728576 0.066668887 12.40041307 0.133337775 0.066668887 507 

9.223965035 688 1101824 8728576 20.06732944 145.1381269 65.66883553 20.06732944 504 

9.200379323 688 1101824 8728576 0.066668863 14.80048762 0.333344316 0.066668863 501 

9.189481098 688 1101824 8728576 20.66734708 159.4719168 69.46895373 20.66734708 496 

9.184438636 688 1101824 8728576 0.066668857 14.3338043 0.333344286 0.066668857 494 

9.064720818 691 1101824 8728576 16.80055114 143.8713863 65.66882091 20.06732497 488 

9.063094218 694 1101824 8728576 0.066668849 11.93372394 0.133337698 0.066668849 487 

9.064720818 678 1101824 8728576 24.8674805 307.8767425 90.0029455 28.86761141 487 

9.063419538 678 1101824 8728576 0.066668842 11.26703434 0.066668842 0.066668842 487 

9.06732338 678 1101824 8728576 20.13398502 152.8716148 69.20223991 20.13398502 487 

8.996403586 679 1101824 8728576 0.133337731 130.4043013 3.866794209 0.333344328 487 

9.157925043 676 1101824 8728576 25.20081934 363.5451531 224.2739584 140.0712207 495 

9.147840118 693 1101824 8728576 0.133337658 32.60105736 0.66668829 0.133337658 493 

9.148653419 693 1101824 8728576 20.40066379 144.2713609 66.00214754 20.40066379 492 

9.139056474 693 1101824 8728576 0.466681817 22.6007337 0.866694803 0.466681817 489 

8.738262042 696 1101824 8728576 18.06725269 162.0052548 66.73549795 20.73400586 480 

8.73305692 695 1101824 8728576 0.066668828 20.93401205 3.066766096 0.066668828 478 

8.73338224 695 1101824 8728576 20.06731572 143.2713006 65.66879066 20.06731572 478 

8.735171501 696 1101824 8728576 0.066668828 14.60047333 0.400012968 0.066668828 477 

8.731755639 696 1101824 8728576 20.0673133 143.2712833 68.73554822 20.0673133 473 

8.785596125 690 1101824 8728576 31.68734062 410.2442755 105.3349715 37.29014275 473 
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8.770794058 690 1101824 8728576 20.80517306 163.5073216 70.95097479 20.80517306 471 

8.760546473 690 1101824 8728576 1.598386615 18.1150483 2.131182153 1.598386615 467 

8.75566667 694 1101824 8728576 20.06730937 144.6046313 65.73543867 20.06730937 464 

8.745907066 695 1101824 8728576 0.06666879 11.33369432 0.06666879 0.06666879 458 

8.990547823 663 1105920 8728576 38.33455603 673.8881606 227.5405908 38.33455603 459 

8.787710706 693 1105920 8728576 11.80038201 770.691616 331.8107416 14.46713501 459 

8.765914255 694 1105920 8728576 20.06730534 147.6713665 66.0687694 20.06730534 458 

8.777137801 693 1105920 8728576 0.066668812 20.93400694 3.066765348 0.066668812 458 

8.778601741 694 1105920 8728576 20.06730737 144.2712729 65.7354321 20.06730737 459 

8.774047259 694 1105920 8728576 0.066668791 14.20045253 0.333343956 0.066668791 457 

8.772095338 694 1105920 8728576 20.067307 143.2712384 65.66876211 20.067307 456 

8.771932678 694 1105920 8728576 0.066668779 11.26702366 0.066668779 0.066668779 456 

8.769167457 694 1105920 8728576 21.6673614 159.6717863 70.66893256 21.6673614 454 

8.769655437 694 1105920 8728576 0.066668788 11.33369404 0.066668788 0.066668788 454 

8.769004797 695 1105920 8728576 20.0673076 146.3380073 66.00210807 20.0673076 454 

For testing purpose, the testing dataset is given to the 

proposed system, which finds the behaviour of the input data 

as normal or abnormal. Results of some tested dataset are 

given in the form of a table (shown in Table 4). The last two 

columns denote the results of the tested dataset. The normal 

data is represented as N and the abnormal data as A. In the 

last column, the membership value of each dataset is given for 

the respective behaviour. The membership value 1.0 denotes 

that it is completely member of normal or abnormal data. 

 

Table 4. Result of test dataset of the proposed system 

% 

committed 

bytes in 

use 

Available 

Mbytes 

System 

Driver 

Resident 

Bytes 

System 

driver 

total bytes 

IO write 

operations 

/sec 

File 

control 

operations 

/sec 

File data 

operations 

/sec 

File write 

operations 

/sec 

Threads 

Normal (N) 

or 

abnormal(A) 

Member-

ship value 

8.7690047 695 1105920 8728576 0.0666687

8 

11.533699

9 

0.0666687

8 

0.0666687

8 

454 N 1.0 

6.5995214 729 1687552 2150400 0.7992243

3 

33.167809

9 

1.9314588 0.7992243

3 

424 A 1.0 

8.7556666 694 1101824 8728576 20.067309

3 

144.60463

1 

65.735438

6 

20.067309

3 

464 N 1.0 

6.5915512 734 1687552 2150400 20.067295

8 

143.40449

6 

65.668725 20.067295

8 

427 A 1.0 

9.1390564 693 1101824 8728576 0.4666818

1 

22.600733

7 

0.8666948

0 

0.4666818

1 

489 N 1.0 

7.1449136 728 1679360 2150400 5.2001596

0 

197.13938

4 

47.401454 5.2001596

0 

469 A 1.0 

7.5839623 716 1105920 8728576 0.0666687

8 

11.267024

1 

0.0666687

8 

0.0666687

8 

450 A 0.12 

7.4222454 699 1675264 2150400 15.871385

0 

206.06125

9 

98.762694 15.871385

0 

476 N 0.2 

Graphical results of the tested dataset of the proposed system 

are given below (refer Figs. 2 to 5): 

 

Fig. 2. Normal dataset with membership 1.0 

 

 

 

 

Fig. 3. Abnormal dataset with membership 1.0 
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Fig. 4. Abnormal dataset with membership 0.12 

 

Fig. 5. Normal dataset with membership 0.2 

6. CONCLUSION 
Sometimes, a user attempts to change the hardware profile of 

a computer system without the knowledge of the 

administrator, this can be a sign of intrusion. This paper 

discusses an intrusion detection system using fuzzy logic, 

which can detect the changes in the hardware profile of a 

computer system. A Mamdami fuzzy inference system has 

been implemented to identify the accurate behavior of the 

generated system log. Mamdami fuzzy inference system 

works on the basis of fuzzy IF-THEN rules; so the fuzzy rules 

generator module has been used to generate the rules for all 

combinations of the selected attributes. System performance 

log of a computer system has been used to evaluate the 

performance of the proposed system. The experimentation 

results show that the proposed system can be applicable for 

detecting changes in hardware profile of a computer system. 
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