
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

39

Design of Host based Intrusion Detection System using
Fuzzy Inference Rule

Hari Om
Department of Computer Science & Engineering

Indian School of Mines, Dhanbad
Dhanbad 826004,India

Alok Kumar Gupta
Department of Computer Science & Engineering

Indian School of Mines, Dhanbad
Dhanbad 826004,India

ABSTRACT

The security of a system is an important issue due to the latest

advancements in information technology. Intrusion Detection

Systems are used to identify the attacks and malicious

activities in the computer systems. This paper discusses a new

host based intrusion detection system for detecting changes in

hardware profile using fuzzy inference rule. The proposed

system is able to analyze and detect the unauthorized access in

a computer system by generating a set of fuzzy IF-THEN

rules with the help of frequent item set. These fuzzy inference

rules are used to find the misuse of the system. The

experiments of the proposed system are carried out on the

system performance log.

Keywords

Intrusion Detection System (IDS), Fuzzy logic, System

performance log, Fuzzy inference rules

1. INTRODUCTION
Due to technology emerges day by day, there is a need to have

a security mechanism to protect the systems from

unauthorised users and malicious activities. For this, the

intrusion detection systems (IDS) are used. An intrusion

detection system is a device or software application that

collects information from a variety of network sources or

computer systems for analysis in order to detect the signs of

malicious activities. An intrusion is defined as a set of actions

that attempts to compromise the integrity, confidentiality, or

availability of the system resources [1]. Integrity refers to

maintain and assure the accuracy and consistency of data over

its entire life cycle. Confidentiality refers to maintain the

secrecy of data into system so that unauthorized user cannot

access. Availability refers to availability of information

resources. There are two common approaches to develop an

intrusion detection model: misuse detection model and

anomaly detection model [2]. The misuse detection model

refers to detection of intrusions that follow well-defined

intrusion patterns. Every intrusion has some pattern e.g.

number of packets, number of connection, bytes sent, duration

etc. It matches the packets with the database of pattern.

Whenever there is a match, alarms are raised. It is very useful

in detecting known attack, but not suitable for unknown

attacks. The anomaly detection model refers to detection

performed by detecting changes in the patterns of utilization

or behaviour of the system. Whenever there is any deviation

from the normal behaviour activity, alarms are raised. Normal

behaviour can be developed using different techniques such as

statistical analysis, data mining algorithms, genetic

algorithms, artificial neural network approach, fuzzy logic and

rough set etc. The anomaly detection systems can detect new

intrusions unlike the misuse detection systems. The IDSs can

be network based or host based as far as the source of data is

concerned. Network based IDS (NIDS) collects raw packets

as the data source from the network and analyse for signs of

intrusions. The host based IDS (HIDS) operates on

information collected from within an individual computer

system such as operating system audit trails, C2 audit logs,

and System logs.

Fuzzy inference is the process of formulating the mapping

from a given input to an output using fuzzy logic. This

mapping provides a basis from which decisions can be made,

or patterns are discerned. The process of fuzzy inference

involves all of the pieces that are described in membership

functions, logical operations, and fuzzy IF-THEN rules. The

proposed work describes to design a host based intrusion

detection system using fuzzy inference rules. The

performance log of a computer system acts as input to

proposed system. The input is divided into two subsets: one is

called as training data and other as testing data. The training

dataset is further classified into two subsets: abnormal and

normal data. After that, perform data mining technique to

select frequent items from each attribute in the abnormal data

as well as normal data. These mined frequent items are used

to find the important attributes of the input dataset, which in

turn are used to develop a set of definite and indefinite rules

using a deviation method. Then, indefinite rules must be

ignored and definite rules are used to generate fuzzy inference

rules by fuzzifying it in such a way that we obtain a set of

fuzzy IF-THEN rules with consequent parts that represent as

either normal or abnormal data. These rules are given to the

fuzzy inference system to effectively learn[16][18]. In testing

phase, the testing data is matched with fuzzy inference rules

to detect abnormal and normal behaviour of data. In this

proposed work, Mamdami fuzzy inference system is used

which is implemented in MATLAB 7.5.

The remaining paper is organized as follows: Section 2

reviews the related work. Section 3 discusses our proposed

work. The performance log analysis is given in section 4. The

experimental methodology and the results are discussed in

section 5. Finally, the paper is concluded in section 6.

2. RELEATED WORK
Several researchers have discussed different designs for

developing intrusion detection systems. In the last couple of

years, intrusion detection has received a lot of interest among

the researchers since it is being widely applied for preserving

the security within a network and computer systems. Denning

has described a rule based intrusion detection system that can

detect security violations attempted by outsiders to system

penetrations and misuse by insiders [5]. In this system, the

generated audit record is matched with the defined rules and

checked for abnormal behaviour. Srinivasa et al. have

presented a rule based intrusion detection system in which

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

40

they use genetic algorithm to make IDS more efficient [6].

The genetic algorithm has been used to prune the best rules

from the generated rule set. They use DARPA dataset for

training and testing purpose. Siraj et al. discuss an intelligent

alert clustering model for network intrusion analysis [7]. They

use principal component analysis with expectation

maximization technique to aggregate similar alerts and reduce

the number of low quality alerts. Shanmugavadivu et al. use

KDD Cup99 for their proposed anomaly based network

intrusion detection system [8]. They use fuzzy logic for

identifying the intrusion activities in a network. This system

generates fuzzy IF-THEN rules and with the help of fuzzy

decision module the system identifies the appropriate

classification of the test data. Dhanalakshmi discusses a

system in which the fuzzy logic is integrated with the data

mining methods using genetic algorithm for intrusion

detection [9]. This system uses data mining to extract rules

and Mamdami fuzzy inference system to determine the

behaviour of the test data. Om et al. have designed a PCA

based anomaly detection system for outlier detection in a

computer system [10]. They use principal component analysis

(PCA) to reduce the dimensions of data recorded by the

computer system (performance log). Bharti et al. have

proposed an intrusion detection model in which they use

feature selection algorithm to select the non-redundant

attributes [11]. They use fuzzy K-mean clustering algorithm

to calculate the membership of every data point and J48

classification techniques for assigning a cluster to a particular

class. Han et al. describe an evolutionary neural network

based intrusion detection system, which has good detection

performance and also reduces the training time [12]. Om et al.

discuss a neural network based model, which can detect

changes in the hardware profile of a computer system [13].

They use back propagation network (BPN) for detection and

reported that the very high and very low values of the learning

rate have bad effect on the results.

3. PROPOSED WORK
Recently, several researchers have focused on fuzzy logic for

developing an effective intrusion detection system. This paper

also proposes a fuzzy logic based intrusion detection system

for detecting the changes in hardware profile. The model of

our system is shown in Fig. 1. The preprocessor generates the

rules and provides them to fuzzy rules generator to generate

Testing Data (performance log)

Training Data (performance log)

 Knowledge Base

Fuzzification Interface

Database

Rule base

Defuzzification Interface

Data Miner

Attribute

Selector

Rules

Fuzzy-Rules

Generator

Crisp Interval?

Membership

value (=1.0)?

Membership

value (=1.0)?

True Normal Data

Preprocessing

phase

Normal data

with probability less

than 100 based on

membership value

Abnormal data

with probability less

than 100 based on

membership value

True Abnormal

Data

NO

NO NO

YES

YES YES

Crisp Value
Fuzzy Inference System

Fig. 1. Intrusion Detection System based on Fuzzy Inference rule

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

41

fuzzy IF-THEN rules for the proposed system. A fuzzy

inference system is used to generate the output for detection.

In this figure, a bold line denotes the interconnection inside

the module and a normal line denotes the data flow in the

proposed system. The different steps involved in the proposed

system for intrusion detection are described as follows:

i. Preprocessing module

a. Data miner

b. Attribute selector

ii. Fuzzy rules generator

iii. Fuzzy inference system

iv. Finding behavior for a test input

3.1 Preprocessing Phase
The first component of our proposed system is preprocessing

module. This module is responsible for accepting training data

as system log and categorizes it into two classes: abnormal

and normal data. These data are used to generate rules. The

preprocessing module contains two sub-modules: data miner

and attribute selector.

a. Data miner

The data miner integrates FP-Growth algorithm property to

mine the frequent items in each attribute [3]. By considering

the frequency of items in each attribute, the data miner

identifies the frequent items by inputting sufficient support.

The frequent items are identified for both the classes namely,

abnormal and normal classes.

b. Attribute Selector

This module selects the suitable attributes from the input data

as all the attributes are not useful for detection. For

identifying the suitable attributes, the deviation method is

used. Each class (abnormal and normal) is represented as

 1 2 3, , ,........i nClass A A A A , where A1, A2,… An are

the attributes in ith class. In our proposed system, the class1

refers to normal and class2 to abnormal class. Each attribute

Aj contains items Ik that have frequency greater than the

minimum support.

 ;1j kA I k m andsupport(I) minsupportk

Here, support(Ik) is the frequency of kth item in Aj attribute of

classi. Then, for each attribute, the deviation range(D) {min,

max} of the frequent items is calculated as follows.

 min max,
jAD f f

,where min min support(I)kf

 and max max support(I)kf

The attributes containing non-identical {max, min} range for

both the classes are chosen as effective attributes, which will

give significant detection rate. The chosen attributes are used

to generate rules for the proposed system. Compare the

deviation range of the effective attributes for both abnormal

and normal data to calculate intersection point. After that,

intersection points are used to generate IF-THEN rules.

3.2 Fuzzy Rules Generator
The fuzzy rules are generated from the definite rules obtained

from above step. The definite rules are the rules that contain

only one classification label in THEN part. The fuzzy rules

contain linguistic variables only, hence the membership

functions are used to fuzzify the numerical values in definite

rules. The triangular and trapezoidal membership functions

are used in this step. For example, if an attribute1 is N1, the

data is abnormal; if an attribute1 is N2, the data is normal.

Here, N1 and N2 are linguistic variables. These fuzzy rules are

given to Rulebase of the fuzzy inference system.

3.3 Fuzzy Inference System
This step describes the fuzzy logic system for finding the

suitable class label of the input test dataset. In the proposed

system, we use Mamdami inference system [14], which is

based on Zadeh’s paper on fuzzy algorithms for complex

system and decision process [17]. In our proposed system,

nine inputs and one output Mamdami fuzzy inference system

with the centroid of area defuzzification strategy is used.

3.4 Finding Behaviour for a Test Input
For testing phase, a test data from the testing data is given to

the Mamdami fuzzy inference system. It compares the input
variable with the membership functions on the premises part

to obtain the membership value for each linguistic label. The

output of fuzzification interface is fed to the decision making

unit which in turn compares that particular input with

Rulebase. The output of knowledgebase is fed to

defuzzification interface, which converts the fuzzy result into

a crisp value. If the crisp value lies in the user defined

intervals for respective behavior, the data can be classified as

normal and abnormal. In our proposed system, if the crisp

value is between 0 to 50, i.e. (0 value 50)crisp , the

data is normal; and if the crisp value is between 50 to 100, i.e.

(50 value 100)crisp , the data is abnormal. If the

membership value for a test data is 1.0, the test data is either

true normal or true abnormal.

ALGORITHM
Input: Performance log recorded by the computer system

Output: Abnormal data or Normal data

Assumptions:

a. Training data is divided into two classes: abnormal

class and normal class.

b. Testing data contains abnormal data, normal data or

both.

step 1: Training data is given as input to preprocessing

module that contains data miner and attribute

selector:

a) Data Miner extracts frequent itemsets in each

attribute from both the classes: abnormal and

normal classes.

b) Attribute selector selects effective attributes,

which are suitable for rules generation.

c) With the help of effective attributes, IF-THEN

rules are generated.

step 2: Rules obtained from preprocessor are given as input

to fuzzy rules generator module.

step 3: Fuzzy rules generator generates fuzzy IF-THEN

rules corresponding to each rule obtained in step 1,

and feeds it into rulebase of fuzzy inference system.

step 4: In database of fuzzy inference system, define

membership function of fuzzy sets used in fuzzy

rules.

step 5: Testing data is given as input to fuzzy inference

system.

step 6: For each test data, fuzzy inference system generates

a crisp value as an output.

step 7: If crisp value lies in the user defined intervals for

respective behavior, the data can be classified as

normal or abnormal. In our proposed system, if

crisp value is between 0 to 50, the data is normal

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

42

and, if crisp value is between 50 to 100, the data is

abnormal.

step 8: If the membership value for a test data is 1.0, the

test data is true normal or true abnormal, otherwise

test data has respective behavior with probability

less than 1.0 based on the membership value.

4. PERFORMANCE LOG ANALYSIS
The performance log has been generated of patterns with

errors and without errors. The proposed system has been

applied to analyse the log and find the result.

(a) Performance log

The performance logs are generated by taking some of the

process attributes for normal and abnormal behavior of the

system. The performance of the personal computer can be

measured by using the performance log. The hardware profile

of the system that has been used in experiments as follows:

 Intel Core 2 Duo CPU @ 2.33 GHz

 1024 MB RAM

 Microsoft Windows XP

(b) Attributes used in performance log

The used attributes for Performance Log analysis are as

follows.

 % committed byte in use: It is the ratio of memory

committed bytes to the memory commit limit. The commit

limit is determined by the size of the paging file.

 Available Mbytes: It is the amount of physical memory in

Megabytes immediately available for allocation to a

process or for the system use.

 System Driver Resident Bytes: It is the size (in bytes) of the

pageable physical memory being used by device drivers.

 System Driver Total Bytes: It is the size in bytes of the

pageable virtual memory currently being used by the device

drivers.

 I/O Write Operations/sec: The rate at which the process is

issuing write I/O operations.

 File Control Operations/sec: It is the combined rate of file

system operations that neither reads nor writes.

 File Data Operations/sec: It is the combined rate of read

and write operations on all logical disks on the computer.

 File Write Operations/sec: It is the combined rate of the

file system write requests to all devices on the computer,

including requests to write data in the file system cache.

• Threads: It is the number of threads in the computer at the

time of data collection.

5. EXPERIMENT METHODOLOGY

AND RESULT
For experimental evaluation of the proposed system, the

performance log of the computer system needs be generated.

The steps for generating the performance logs are as follows:

 On the start menu, point to settings, point to Control

Panel, double click Administrative Tools, and double

click Computer Management.

 Explore performance Logs and Alerts, right click

Counter Logs, and then click New Log Settings.

 Type a name for the counter log and then click OK.

 Click Add Counters.

 In the Performance object box, select a performance

object that need be monitored.

 Counters added for experiment.

 On the General tab under Sample data every sampling

interval of 15 seconds is configured.

 On the Log Files tab log files properties is configured as

Comma delimited files that can be viewed later in

reporting tools such as Microsoft Excel.

The training dataset has been divided into two subdatasets:

normal dataset and abnormal dataset. Firstly, the normal

dataset have been generated. Samples of normal dataset are

shown in Table 1. After that, the abnormal dataset have been

generated by disabling graphics driver, audio driver, and

Ethernet driver. This generates the logs for the system

performance that have been considered as intrusions. Samples

of abnormal dataset are shown in Table 2. For testing dataset,

we have taken normal data as well as abnormal data, i.e.

mixed data. Samples of the testing patterns are shown in

Table 3.

Table 1. Training Dataset (Normal dataset)

% Committed

Bytes In

Use

Available

MBytes

System

Driver

Resident

Bytes

System

Driver

Total

Bytes

IO Write

Operations

/sec

File Control

Operations

/sec

File Data

Operations

/sec

File Write

Operations

/sec

Threads

10.07679182 646 1114112 8830976 105.9535826 1407.184756 324.4265362 111.2242327 535

9.287402465 659 1118208 8830976 11.94779465 851.0300656 89.97557086 13.61648105 514

9.271461777 688 1118208 8830976 20.24620835 147.1846067 72.46011408 20.24620835 507

9.232098038 693 1118208 8728576 0.066668724 12.40038269 0.066668724 0.066668724 504

9.207861687 692 1118208 8728576 20.06729463 157.6716006 68.86882176 20.06729463 499

9.198427402 694 1118208 8728576 0.066668704 13.80042174 0.133337408 0.066668704 495

9.070251261 698 1118208 8728576 16.80053295 144.1379057 65.66874981 20.06730324 486

9.065859439 698 1118208 8728576 0.066668731 13.86709614 0.333343657 0.066668731 482

9.061955597 700 1118208 8728576 20.66731268 146.0045638 66.33540684 20.66731268 481

9.061630277 700 1118208 8728576 0.066668763 11.20035221 0.066668763 0.066668763 481

9.059515696 700 1118208 8728576 20.06729652 145.8712452 65.93540286 20.06729652 480

9.059190376 701 1118208 8728576 0.066668741 11.33368589 0.066668741 0.066668741 480

9.247062766 680 1118208 8728576 27.80086509 532.8832487 249.8744421 147.4045869 491

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

43

9.149792039 682 1118208 8728576 0.200006348 155.1382573 6.866884615 0.400012696 488

9.150442679 699 1118208 8728576 20.06729462 144.2711813 65.73539035 20.06729462 489

9.150442679 699 1118208 8728576 0.066668738 13.86709753 0.333343691 0.066668738 489

9.144424257 698 1118208 8728576 20.06729919 150.7380846 66.06874918 20.06729919 486

8.742165884 701 1118208 8728576 20.06729919 37.20116907 2.933425518 1.13336895 479

8.73289426 701 1118208 8728576 20.06729501 149.9380282 67.33544174 20.06729501 475

8.73289426 701 1118208 8728576 0.06666874 11.26701703 0.06666874 0.06666874 475

8.728177117 702 1118208 8728576 20.06730434 146.6046587 66.00209735 20.06730434 473

8.732406279 702 1118208 8728576 0.066668745 11.33368665 0.066668745 0.066668745 469

8.721833374 702 1118208 8728576 20.06729527 143.2711546 65.66872373 20.06729527 463

8.720857414 702 1118208 8728576 0.066668754 13.86710078 0.333343769 0.066668754 462

8.715652291 701 1118208 8728576 20.06729895 153.271496 68.66883031 20.06729895 458

8.71272441 702 1118208 8728576 0.066668742 11.26701732 0.066668742 0.066668742 456

8.707844608 702 1118208 8728576 20.06729966 146.0712743 66.00208193 20.06729966 454

8.707844608 703 1118208 8728576 0.066668741 11.33368595 0.066668741 0.066668741 454

8.786246765 678 1118208 8728576 29.73427583 452.1476651 107.3367356 29.73427583 454

8.73452086 703 1118208 8728576 20.20063344 855.2268176 436.4136848 20.20063344 453

8.7343582 703 1118208 8728576 20.06729848 143.4045151 65.66873424 20.06729848 453

8.746557706 702 1118208 8728576 0.06666875 23.40073138 3.333437518 0.06666875 453

8.764287655 702 1118208 8728576 22.60071308 289.6758063 82.60260623 23.06739448 453

8.747858987 702 1118208 8728576 0.066668763 11.33368974 0.066668763 0.066668763 453

8.746557706 702 1118208 8728576 20.06729443 145.8045612 65.93539597 20.06729443 452

8.746720366 702 1118208 8728576 0.066668774 11.33369156 0.066668774 0.066668774 452

8.75387741 702 1118208 8728576 21.57819834 160.8374969 70.26234337 21.57819834 455

8.752413469 702 1118208 8728576 0.066668746 11.26701807 0.066668746 0.066668746 455

Table 2. Training Dataset (abnormal dataset)

%

Committed

Bytes In

 Use

Available

Mbytes

System

Driver

Resident

Bytes

System

Driver

Total

Bytes

IO Write

Operations

/sec

File Control

Operations

/sec

File Data

Operations

/sec

File Write

Operations

/sec

Threads

7.423384034 700 1617920 2150400 102.1167592 1627.371182 312.9875432 107.081218 486

7.148329421 705 1617920 2150400 31.36551108 517.8646084 150.0873073 31.76592186 484

7.087332686 733 1617920 2150400 0.400010744 463.2791101 7.533535681 0.400010744 478

7.091073819 735 1617920 2150400 20.06719968 152.1373743 68.66849061 20.06719968 475

7.082778263 736 1617920 2150400 0.066668489 14.5337306 0.333342445 0.066668489 474

7.083266237 736 1617920 2150400 27.80074732 578.8822277 98.26930826 29.40079033 474

7.073832075 736 1617920 2150400 0.066599087 15.38438913 0.399594523 0.066599087 471

6.970218954 739 1617920 2150400 17.53380821 144.0705686 65.6684452 20.06721016 465

6.968592374 741 1617920 2150400 0.066668435 11.93364993 0.133336871 0.066668435 465

6.963224662 741 1617920 2150400 20.06721729 144.5372993 65.93514254 20.06721729 464

6.962086056 740 1617920 2150400 0.066668456 20.20054218 3.066748978 0.066668456 464

6.964851241 742 1617920 2150400 3.400093518 58.93495431 27.66742765 3.400093518 461

7.118400357 738 1617920 2150400 22.20059521 329.4088317 201.2720629 137.0703416 470

7.040649851 739 1617920 2150400 0.80002152 148.6706658 4.533455281 1.0000269 467

7.040487193 741 1617920 2150400 20.40055848 145.87066 66.3351493 20.40055848 467

7.040487193 741 1617920 2150400 0.066668473 11.33364035 0.066668473 0.066668473 467

6.622944207 744 1617920 2150400 16.667118 165.671153 67.00181438 20.80056327 457

6.624733444 727 1617920 2150400 5.266809775 176.938141 27.467413 11.93365759 457

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

44

6.622618891 727 1617920 2150400 20.06721418 143.7372551 65.66845838 20.06721418 456

6.61952839 727 1617920 2150400 0.066668462 11.3336386 0.066668462 0.066668462 455

6.619853705 744 1617920 2150400 20.06721714 145.3373202 66.00181053 20.06721714 455

6.631077105 743 1617920 2150400 0.066668439 20.40054244 3.066748209 0.066668439 452

6.62587205 743 1617920 2150400 20.06721692 144.6706336 65.93514132 20.06721692 450

6.624570786 743 1617920 2150400 0.066668482 11.33364196 0.066668482 0.066668482 449

6.614323335 744 1617920 2150400 20.06721429 143.203908 65.66845872 20.06721429 442

6.605377147 744 1617920 2150400 0.066668464 13.06701891 0.333342319 0.066668464 436

6.599684118 745 1617920 2150400 20.06721678 143.5372682 65.73513538 20.06721678 432

6.599684118 745 1617920 2150400 0.066668473 11.26697186 0.066668473 0.066668473 432

6.896209582 714 1626112 2150400 41.20111634 699.4189507 249.5400946 41.20111634 432

6.634980896 745 1626112 2150400 7.000191124 582.6825754 289.3412331 7.000191124 431

6.634980896 744 1626112 2150400 20.06721757 144.6706383 65.80180645 20.06721757 431

6.644577716 744 1626112 2150400 0.066668477 19.73386925 3.066749951 0.066668477 430

6.641161898 745 1626112 2150400 20.06721537 143.5372581 65.73513074 20.06721537 429

6.641324556 744 1626112 2150400 1.266700927 17.26713369 1.800048686 1.266700927 429

6.640185951 745 1626112 2150400 20.0672155 143.3372535 65.66846267 20.0672155 428

6.639860635 744 1626112 2150400 0.066668472 19.66719923 3.06674971 0.066668472 428

6.644415058 744 1626112 2150400 21.73392725 159.404356 70.66859782 21.73392725 430

6.650433402 743 1626112 2150400 2.466734036 157.004288 16.60045338 2.933413449 430

Table 3. Testing Dataset

%
Committed
Bytes In
Use

Available
MBytes

System
Driver
Resident
Bytes

System
Driver
Total
Bytes

IO Write
Operations
/sec

File Control
Operations
/sec

File Data
Operations
/sec

File Write
Operations
/sec

Threads

9.284637244 652 1097728 8830976 108.6147969 1339.254896 319.2395796 114.1205674 513

9.278130841 657 1101824 8728576 23.3536425 819.6461272 109.0281481 23.3536425 510

9.226730256 687 1101824 8728576 0.066668887 12.40041307 0.133337775 0.066668887 507

9.223965035 688 1101824 8728576 20.06732944 145.1381269 65.66883553 20.06732944 504

9.200379323 688 1101824 8728576 0.066668863 14.80048762 0.333344316 0.066668863 501

9.189481098 688 1101824 8728576 20.66734708 159.4719168 69.46895373 20.66734708 496

9.184438636 688 1101824 8728576 0.066668857 14.3338043 0.333344286 0.066668857 494

9.064720818 691 1101824 8728576 16.80055114 143.8713863 65.66882091 20.06732497 488

9.063094218 694 1101824 8728576 0.066668849 11.93372394 0.133337698 0.066668849 487

9.064720818 678 1101824 8728576 24.8674805 307.8767425 90.0029455 28.86761141 487

9.063419538 678 1101824 8728576 0.066668842 11.26703434 0.066668842 0.066668842 487

9.06732338 678 1101824 8728576 20.13398502 152.8716148 69.20223991 20.13398502 487

8.996403586 679 1101824 8728576 0.133337731 130.4043013 3.866794209 0.333344328 487

9.157925043 676 1101824 8728576 25.20081934 363.5451531 224.2739584 140.0712207 495

9.147840118 693 1101824 8728576 0.133337658 32.60105736 0.66668829 0.133337658 493

9.148653419 693 1101824 8728576 20.40066379 144.2713609 66.00214754 20.40066379 492

9.139056474 693 1101824 8728576 0.466681817 22.6007337 0.866694803 0.466681817 489

8.738262042 696 1101824 8728576 18.06725269 162.0052548 66.73549795 20.73400586 480

8.73305692 695 1101824 8728576 0.066668828 20.93401205 3.066766096 0.066668828 478

8.73338224 695 1101824 8728576 20.06731572 143.2713006 65.66879066 20.06731572 478

8.735171501 696 1101824 8728576 0.066668828 14.60047333 0.400012968 0.066668828 477

8.731755639 696 1101824 8728576 20.0673133 143.2712833 68.73554822 20.0673133 473

8.785596125 690 1101824 8728576 31.68734062 410.2442755 105.3349715 37.29014275 473

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

45

8.770794058 690 1101824 8728576 20.80517306 163.5073216 70.95097479 20.80517306 471

8.760546473 690 1101824 8728576 1.598386615 18.1150483 2.131182153 1.598386615 467

8.75566667 694 1101824 8728576 20.06730937 144.6046313 65.73543867 20.06730937 464

8.745907066 695 1101824 8728576 0.06666879 11.33369432 0.06666879 0.06666879 458

8.990547823 663 1105920 8728576 38.33455603 673.8881606 227.5405908 38.33455603 459

8.787710706 693 1105920 8728576 11.80038201 770.691616 331.8107416 14.46713501 459

8.765914255 694 1105920 8728576 20.06730534 147.6713665 66.0687694 20.06730534 458

8.777137801 693 1105920 8728576 0.066668812 20.93400694 3.066765348 0.066668812 458

8.778601741 694 1105920 8728576 20.06730737 144.2712729 65.7354321 20.06730737 459

8.774047259 694 1105920 8728576 0.066668791 14.20045253 0.333343956 0.066668791 457

8.772095338 694 1105920 8728576 20.067307 143.2712384 65.66876211 20.067307 456

8.771932678 694 1105920 8728576 0.066668779 11.26702366 0.066668779 0.066668779 456

8.769167457 694 1105920 8728576 21.6673614 159.6717863 70.66893256 21.6673614 454

8.769655437 694 1105920 8728576 0.066668788 11.33369404 0.066668788 0.066668788 454

8.769004797 695 1105920 8728576 20.0673076 146.3380073 66.00210807 20.0673076 454

For testing purpose, the testing dataset is given to the

proposed system, which finds the behaviour of the input data

as normal or abnormal. Results of some tested dataset are

given in the form of a table (shown in Table 4). The last two

columns denote the results of the tested dataset. The normal

data is represented as N and the abnormal data as A. In the

last column, the membership value of each dataset is given for

the respective behaviour. The membership value 1.0 denotes

that it is completely member of normal or abnormal data.

Table 4. Result of test dataset of the proposed system

%

committed

bytes in

use

Available

Mbytes

System

Driver

Resident

Bytes

System

driver

total bytes

IO write

operations

/sec

File

control

operations

/sec

File data

operations

/sec

File write

operations

/sec

Threads

Normal (N)

or

abnormal(A)

Member-

ship value

8.7690047 695 1105920 8728576 0.0666687

8

11.533699

9

0.0666687

8

0.0666687

8

454 N 1.0

6.5995214 729 1687552 2150400 0.7992243

3

33.167809

9

1.9314588 0.7992243

3

424 A 1.0

8.7556666 694 1101824 8728576 20.067309

3

144.60463

1

65.735438

6

20.067309

3

464 N 1.0

6.5915512 734 1687552 2150400 20.067295

8

143.40449

6

65.668725 20.067295

8

427 A 1.0

9.1390564 693 1101824 8728576 0.4666818

1

22.600733

7

0.8666948

0

0.4666818

1

489 N 1.0

7.1449136 728 1679360 2150400 5.2001596

0

197.13938

4

47.401454 5.2001596

0

469 A 1.0

7.5839623 716 1105920 8728576 0.0666687

8

11.267024

1

0.0666687

8

0.0666687

8

450 A 0.12

7.4222454 699 1675264 2150400 15.871385

0

206.06125

9

98.762694 15.871385

0

476 N 0.2

Graphical results of the tested dataset of the proposed system

are given below (refer Figs. 2 to 5):

Fig. 2. Normal dataset with membership 1.0

Fig. 3. Abnormal dataset with membership 1.0

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.9, February 2013

46

Fig. 4. Abnormal dataset with membership 0.12

Fig. 5. Normal dataset with membership 0.2

6. CONCLUSION
Sometimes, a user attempts to change the hardware profile of

a computer system without the knowledge of the

administrator, this can be a sign of intrusion. This paper

discusses an intrusion detection system using fuzzy logic,

which can detect the changes in the hardware profile of a

computer system. A Mamdami fuzzy inference system has

been implemented to identify the accurate behavior of the

generated system log. Mamdami fuzzy inference system

works on the basis of fuzzy IF-THEN rules; so the fuzzy rules

generator module has been used to generate the rules for all

combinations of the selected attributes. System performance

log of a computer system has been used to evaluate the

performance of the proposed system. The experimentation

results show that the proposed system can be applicable for

detecting changes in hardware profile of a computer system.

7. REFERENCES
[1] Adetunmbi A. O., Zhiwei S., Zhongzhi S., Adewale O.

S., “Network Anomalous Intrusion Detection using

Fuzzy-Bayes,” International Federation for Information

Processing, Vol. 228, pp. 525-530, 2006.

[2] Biswanath, M., Todd L.H. AND Karl, N. L., “Network

Intrusion Detection,” IEEE Network, Vol. 8(3), pp. 26-

41, 1994.

[3] Han J., Pei J., Yin Y., Mao R., "Mining Frequent Patterns

without Candidate Generation: A Frequent-Pattern Tree

Approach," Data Mining and Knowledge Discovery,

Vol. 8(1), pp. 53-87, 2004.

[4] Anderson J. P., Computer Security Threat Monitoring

and Surveillance. Technical report, Fort Washington, PA,

Apr. 1980.

[5] Denning D. E., “An Intrusion Detection Model,” IEEE

Trans. on Software Engineering, Vol. 13(2), pp. 222-232,

1987.

[6] Srinivasa K. G., Chandra S., Kajaria S., Mukherjee S.,

“IGIDS: Intelligent Intrusion Detection System Using

Genetic Algorithms,” World Congress on Information

and Communication Technologies, pp. 852-857, 2011.

[7] Siraj M. M., Maarof M. A., Hashim S.Z.M., “Intelligent

Alert Clustering Model for Network Intrusion Analysis,”

Int. J. Advance Soft Comput. Appl. Vol. 1 (1), pp. 33-48,

2009.

[8] Shanmugavadivu R., Nagarajan N. , “An Anomaly Based

Netwok Intrusion Detection System Using Fuzzy logic,”

IJCSIS, Vol. 8(8), pp. 185-193, 2010.

[9] Dhanalakshmi Y., Babu I. R., “Intrusion Detection Using

Data Mining Along Fuzzy Logic and Genetic

Algorithms,” IJCSNS, Vol. 8(2), pp. 27-32, 2008.

[10] Om H., Hazra T., “Design of Anomaly Detection System

for Outlier Detection in Hardware Profile Using PCA,”

IJCSE, Vol. 4(9), pp. 1623-1632, 2012.

[11] Bharti K., Jain S., Shukla S., “Fuzzy K-mean Clustering

Via J48 For Intrusion Detection System,” IJCSIT, Vol.

1(4), pp. 315-318, 2010.

[12] Han S. J., Cho S. B., “Evolutionary Neural Network for

Anomaly Detection Based on the Behaviour of a

Program,” IEEE Trans. on Systems, Man and

Cybernetics-Part B, Vol. 36(3), pp. 559-570, 2006.

[13] Om H., Sarkar T. K., “Neural network based intrusion

detection system for detecting changes in hardware

profile,” Journal of Discrete Mathematics and

Cryptography, Vol. 12(4), pp. 451-466, 2009.

[14] Mamdani, E.H. and S. Assilian, “An experiment in

linguistic synthesis with a fuzzy logic controller,” Int.

Journal of Man-Machine Studies, Vol. 7(1), pp. 1-13,

1975.

[15] Stallings, W. Cryptography and Network Security

Principles and Practices: Prentice Hall, 1998.

[16] Lamba,V.K., Neuro Fuzzy System, University Science

press: 2008

[17] Zadeh, L.A., “Outline of a new approach to the analysis

of complex systems and decision processes,” IEEE

Trans. on Systems, Man, and Cybernetics, Vol. 3(1), pp.

28-44, 1973.

[18] Cirstea, Dinu A., Khor, Mccormick M., Neural and

Fuzzy logic control of Drives and Power System,

Elsevier : 2002

