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ABSTRACT 

Cuckoo search is a nature-inspired metaheuristic algorithm, 

based on the brood parasitism of some cuckoo species, along 

with Lévy flights random walks. In this paper, a modified 

version is proposed, where the new solutions generated from 

the exploration and exploitation phases are combined, 

evaluated and ranked together, rather than separately in the 

original algorithm, in addition to imposing a bound by best 

solutions mechanism to help improve convergence rate and 

performance. The proposed algorithm was tested on a set of 

ten standard benchmark functions, and applied to a real-world 

problem of algorithmic trading systems optimization in the 

financial markets. Experimental analysis demonstrated 

improved performance in almost all benchmark functions and 

the problem under study. 
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1. INTRODUCTION 
Optimization is used everywhere, from engineering design to 

economics, and while resources and time are always limited, 

the best possible tools available are very important to be 

utilized efficiently. There are many algorithms which can be 

classified in several ways. From a simple perspective, 

algorithms can be classified as deterministic or stochastic. If 

an algorithm works in a mechanical manner, without any 

randomness, it is called deterministic. If there is some random 

nature in the algorithm, it is called stochastic, as in genetic 

algorithms (GA) [1] and particle swarm optimization (PSO) 

algorithms [2, 3]. Algorithms with stochastic components are 

often referred to as heuristic, or as metaheuristics in the recent 

literature [4–7]. Almost all modern metaheuristics algorithms 

have two major components of exploration and exploitation, 

and use a certain trade-off of randomization and local search. 

An example of the nature-inspired metaheuristics algorithms 

is the cuckoo search (CS) algorithm [7–9]. A recent study 

suggests that CS is potentially far more efficient than GA, 

PSO, and other popular algorithms [10]. 

Algorithmic trading is the use of a trading system with a set of 

rules that automatically decides, without any human 

discretionary intervention, on aspects of the entry and exit 

orders, including time, price, and quantity of the order in the 

financial markets [11–14]. Technical analysis is the field of 

security analysis concerning the evaluation of financial 

instruments by analyzing market data and activity, such as 

historical prices and volume, using charts, and other tools to 

identify patterns that can advise on future movements [15, 

16]. Technical analysis is commonly used as the primary 

component in defining algorithmic trading systems rules. 

This paper aims to derive a modified version of the cuckoo 

search algorithm and provide a comparison study of the 

original and proposed algorithms. The subsequent parts of this 

paper are organized as follows: an outline of the cuckoo 

search algorithm in section 2, explanation of the proposed 

algorithm in section 3, a performance comparison of the 

original and proposed algorithms in section 4, an application 

of algorithmic trading systems optimization in section 5, and 

the discussions and conclusions are presented in section 6. 

2. CUCKOO SEARCH ALGORITHM 
Cuckoo search is a relatively recent nature-inspired 

metaheuristic algorithm, developed by Xin-She Yang and 

Suash Deb in 2009. CS was inspired by the brood parasitism 

of some cuckoo bird species, in combination with the Lévy 

flights [17–19] random walks. Cuckoos are catching 

scientists’ interest because of their aggressive reproduction 

strategy. Some species lay their eggs in communal nests of 

other host birds (often other species), and may remove others' 

eggs to increase the hatching probability of their own eggs. 

CS idealized rules can be summarized as: 

1. Each cuckoo lays one egg at a time, and dumps its 

egg in a randomly chosen nest. 

2. The best nests with high quality of eggs will carry 

over to the next generations. 

3. The number of available host nests is fixed, and the 

egg laid by a cuckoo is discovered by the host bird 

with a probability         , where the host bird 

can either throw the egg away, or abandon the nest 

and build a completely new nest. 

These rules are used to draw the basic cuckoo search 

algorithm in Pseudo code 1. 

While exploring new solutions, it is necessary to control the 

Lévy flights random walks, to avoid large moves, causing the 

solutions to jump outside of the search space. A step size 

factor that is defined according to the scale of the problem of 

interest should be used for this purpose. This might be an 

interesting subject for more research, studying the optimal 

utilization of the Lévy flight in optimization; for simplicity, a 

typical step size factor of 0.01, as suggested by the authors, is 

being used in this study [7, 9, 18]. 
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Pseudo code 1.  Cuckoo search algorithm 

Objective function                   
Initialize a population of   host nests/solutions; 

Define the Lévy flights step size factor       ; 

 

While is not stop criteria 

Find  new nests, using Lévy flights as: 

For          (all nests) 

For          (all dimensions) 

                 
                              
                        

End for 

End for 

 

Evaluate the new nests against the objective function 

and calculate their quality/fitness; 

Rank and keep the current best nests as: 

For          

If            is better than         
Replace                       

End if 

End for 

 

Replace a fraction    of nests as: 

Get two random permutation arrays     and     of   

length; 

For          

For          

If                   

                 
               
                                  

End if 

End for 

End for 

 

Evaluate the new nests; 

Rank and keep the current best nests; 

 

Get the current best nest; 

End while 

 

3. PROPOSED ALGORITHM 
The proposed algorithm, one rank cuckoo search (ORCS), 

applies two behavioral amendments to the original cuckoo 

search algorithms, in aim to improve convergence rate, and 

consequently achieve a better performance and accuracy. 

These behaviors are defined in the following subsections. 

3.1 One Rank (Combined Evaluation) 
The original algorithm generates new nests using Lévy flights 

(exploration phase) and evaluates their fitness, then replaces a 

fraction of nests (exploitation phase) and evaluates and ranks 

their fitness once more. Instead, the proposed algorithm 

generates new solutions using Lévy flights, replaces a fraction 

of them, and finally evaluates and ranks their fitness at once. 

This behavior allows a more conservative consumption of the 

function evaluations, by merging together the new solutions 

generated by the exploration and exploitation phases before 

evaluating them, and hence consuming   (population size) 

evaluations per iteration by the proposed algorithm against    

evaluations by the original algorithm. 

 

A one rank ratio     is initiated by 1, to allow the proposed 

algorithm to combine all the explorations and exploitations, 

until it fails to find better nests for     iterations, to trigger a 

gradual decrease of the one rank ratio as in Eq. 1, where   is 

the iteration number and   is the number of objective function 

dimension. 

    
       

         . (1) 

 

3.2 Bound by Best Solutions 
It is required to enforce the constraints defined by an objective 

function for all the solutions generated during the 

optimization process, particularly when using algorithms with 

some random nature components, such as the cuckoo search 

algorithm. The draw on Lévy flights for exploring the search 

space, rather than uniform random walks, tends to increase the 

probability for the generated solutions to get out of the 

defined constraints, and accordingly an increased need for a 

better bound behavior than a simple minimum-maximum 

bound. 

The proposed algorithm enforces the integrity over an out of 

constraints solution by replacing its invalid dimensions by the 

corresponding dimensions drawn from randomly selected 

solutions among the current best solutions. A ratio of the 

replaced dimensions is utilizing the current best solutions 

found so far, and the rest is being randomly drawn by further 

exploring the search space. A bound by best ratio      is 

defined as in Eq. 2, and the basic bound by best solutions 

behavior is presented in Pseudo code 2. 

            . (2) 

 

Pseudo code 2. Bound by best procedure 

Objective function                       ; 
Define bound by best ratio      as in Eq. 2; 

For each dimension   in new solution 

If not                          

If                      

Select a solution randomly from the current 

  best solutions,             ; 
                                 ;  

Else 

                       
                        ; 

End if 

End for 

 

3.3 One Rank Cuckoo Search Algorithm 
The one rank/combined evaluation and bound by best solution 

functionalities, have been added to the original cuckoo search 

algorithm, and used to draw the basic one rank cuckoo search 

algorithm in Pseudo code 3. 

The proposed ORCS algorithm introduced one more 

parameter, one rank ratio update trigger    , in addition to the 

two parameters employed by the original CS algorithm, 

population size   and abandon rate   . This parameter has not 

been meta-optimized to select the best performing setting; 

however the preliminary tests undergone during the algorithm 

development, demonstrated insensitivity in this parameter to 

have a major impact on the algorithm performance. 
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Pseudo code 3. One rank cuckoo search algorithm 

Objective function                   
Initialize a population of   host nests/solutions; 

Define the Lévy flights step size factor       ; 

Define the one rank ratio       ; 

 

While is not stop criteria 

Find  new nests, using Lévy flights as: 

For          (all nests) 

For          (all dimensions) 

                 
                              
                        

End for 

End for 

 

If                      

Replace a fraction    of solutions as: 

Get two random permutation arrays     and     

of   length; 

For          

For          

If                   

                 
               
                
                  

End if 

End for 

End for 

 

Bound by best, as in pseudo code 2; 

Evaluate the new nests; 

Rank the nests and keep the current best nests as: 

For          

If            is better than         
Replace                       

End if 

End for 

Else 

Bound by best; 

Evaluate the new nests; 

Rank the nests and keep the current best nests; 

 

Replace a fraction    of nests; 

 

Bound by best; 

Evaluate the new nests; 

Rank the nests and keep the current best nests; 

End if 

 

Get the current best nest; 

If no better nests since     evaluations 

Decrease    , as in Eq. 1; 

End if 

End while 

 

4. EXPERIMENTAL ANALYSIS 

4.1 Benchmark Functions 
The proposed algorithm was tested on 10 standard benchmark 

functions that are commonly used to evaluate the performance 

of optimization algorithms [20, 21]. The functions selected are 

carrying different properties of being unimodal or multimodal, 

separable or non separable, and having few or many local 

optima solutions. Table 1 lists the functions and their testing 

properties, and Fig. 1 shows a 3D plot of the functions in 2 

dimensions. 

Table 1. The benchmark functions 

 and their testing properties 

Function 

                                 

Search 

Space /  

Optimum 

Ackley, 

         
      

 
 
   

  
    

  
 
 
      

 
    

    / 0 

Dixon & Price, 

              
       

   
 

   
 

    / 0 

Griewank,  
  
 

    

 
          

  

  
  

           / 0 

Michalewicz,             
   

 

 
    

    

   / 

Varies by 

dimensions 

Rastrigin,        
             

 
          / 0 

Rosenbrock, 

       
       

         
   

   
 

    / 0 

Schwefel,                      
       / 0 

Sphere,    
  

         / 0 

Trid,                  
 
   

 
    

    /  

Varies by 

dimensions 

Zakharov, 

   
          

 

   
   

 

   
        

 

   
    

         /  
0 

 

 

Fig. 1. A 3D plot of the benchmark functions 

 in 2 dimensions 
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4.2 Comparison of CS and ORCS 
The original cuckoo search (CS) algorithm with a population 

size      and discovery rate        , as suggested by its 

authors, and the proposed one rank cuckoo search (ORCS) 

algorithm with the same settings as CS, plus a one rank ratio 

update trigger         (i.e. 10% of the maximum number of 

function evaluations) have been used for all tests.  

The tests have been run on 5, 10, 25, 50, 100, and 250 

dimensions for a maximum of 100000 function evaluations, 

with an automatic stop criteria defined as: 

 Optimum fitness reached. 

 All the population of   nests is holding identical 

eggs (i.e. all solutions’ dimensions are equal). 

 

All tests have been run for 100 times and their mean were 

used to carry out a meaningful statistical analysis. The 

comparative results of the achieved fitness are plotted in 

Figures 2-7. 

 

 

Fig. 2. Experimental results in 5 dimensions 

 

 

Fig. 3. Experimental results in 10 dimensions 

 

 

Fig. 4. Experimental results in 25 dimensions 
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Fig. 5. Experimental results in 50 dimensions 

 

 

Fig. 6. Experimental results in 100 dimensions 

 

 

Fig. 7. Experimental results in 250 dimensions 

 

The results obtained, from the 60 tests carried on 10 different 

benchmark functions and 6 different dimensions, by the CS 

and ORCS algorithms, suggest that ORCS outperformed CS 

in almost all tests. This improvement can be credited to the 

well balance between exploration and exploitation rules 

introduced by the original algorithm, backed by the 

conservative use of function evaluations and selective bound 

rules presented by the proposed algorithm. 

 

5. APPLICATION TO ALGORITHMIC 

TRADING SYSTEMS OPTIMIZATION 
The input parameters of a trading system are generally a mix 

of integer and floating point variables, and hence it can be 

described as a combinatorial [5] or mixed-integer nonlinear 

[22] optimization problem. The algorithms defined in the 

earlier sections need to go through an additional step before 

they could be successfully used to optimize a trading system 

with part (or all) of its input parameters are of discrete nature, 

such as being restricted to integer values. After generating a 

new nest/solution and before evaluating its 

fitness/performance, a round to a specific increment is 
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performed as in Eq. 3, where   is the solution parameter and   
is the parameter increment. 

         
 

 
   . (3) 

 

5.1 Trading System 
For the purpose of this study, an experimental trading system 

(MRA) has been defined, to verify and compare the efficiency 

of CS and ORCS algorithms in the problem of algorithmic 

trading systems optimization. 

The main rules of the MRA trading system, responsible for 

generating buy and sell orders and managing positions, are 

built on three well-known technical analysis indicators: 

Moving Averages (MA), Relative Strength Index (RSI) and 

Average True Range (ATR) [15, 16]. The basic behavior of 

the MRA system is defined in Pseudo code 4. 

 

Pseudo code 4. Experiment MRA trading system 

Read input parameters: 

                                 
                                              ; 

 

Define Close Moving Average      , High Moving 

Average       and Low Moving Average      ; 
Define Relative Strength Index      , its Trailing Level 

(    and Slow Trailing Level      ; 
Define Average True Range (    ; 
 

For each price update 

If                                 

If (    crossed above     and         

or    crossed above     and          
and                  

Buy; 

Set stop loss level at: 

                      ; 

Set profit target level at:  

              ; 

Else if (    crossed below     and         
or    crossed below     and          
and                

Sell short; 

Set stop loss level at:  

                      ; 

Set profit target level at:  

              ; 

Else if          exists 

Switch          

Case     : 

Update stop loss level to: 

                  
                    ; 

Break; 

Case      : 
Update stop loss level to: 

                   
                    ; 

Break; 

End Switch 

End if 

End if 

End For 

5.2 Comparison of CS and ORCS 
The CS and ORCS algorithms, with identical setting to those 

used in section 4 have been applied to optimize the MRA 

trading system parameters listed in Table 2. 

The tests have been run on a basket of 23 instruments, 

selected from the foreign exchange (FOREX) market [23], for 

a total of 2 years of historical data, from January 2011 to 

December 2012. 

The objective function used in the optimization of the MRA 

trading system is show in Eq. 4, where       is the 

parameters-list achieving the best performance possible,    is 

the total net profit and    is the Sharpe ratio [24] of the 

monthly profits. 

                    . (4) 

 

The tests have been run for a maximum of 10000 evaluations, 

with an automatic stop criterion when all the population of   

nests is holding identical eggs. 

 

Table 2. Experimental MRA trading system parameters 

Component Parameter 
Range / 

Increment 

Session Filter 
          [0 , 19] / 1 

        [3 , 22] / 1 

Order Generator 

(moving averages) 

            [1 , 3] / 1 

              [2 , 9] / 1 

Order Generator 

(relative strength 

index and its 

trailing levels) 

          [5 , 14] / 1 

             [1 , 5] / 1 

             [5 , 14] / 1 

                [5 , 14] / 1 

         [0 , 2.5] / 0.1 

          [0.5 , 5] / 0.1 

         [20 , 40] / 1 

Position Manager 

(stop loss and 

profit target 

levels) 

          [5 , 24] / 1 

                   [2 , 4] / 0.1 

                 [1 , 5] / 0.1 

           [3 , 10] / 0.1 

 

All tests have been run for 25 times and their mean were used 

to carry out a meaningful statistical analysis. The comparative 

results of the achieved performance are plotted in Fig. 8. 

It is worth mentioning that, while optimizing a trading system, 

it is important to avoid the overfitting of the system rules on 

the data being optimized, which is commonly caused by 

relying on a limited data or too many parameters [25–27]. 

This problem might be an interesting subject to study the 

possibilities of auto detection and prevention of overfitting on 

different optimization problems in general and the problem of 

algorithmic trading systems in specific. 
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Fig. 8. Experimental results for a basket of 23 FORX instruments 

 

100 Evaluations 

 
1000 Evaluations 

 
10000 Evaluations 

 

Fig 9. Cumulative profit of the MRA trading system, on 

the EURUSD instrument, after optimization by the ORCS 

algorithm for 100, 1000 and 10000 evaluations 

The results obtained, from the tests carried on 23 FOREX 

instruments, by the CS and ORCS algorithms, suggest that 

both algorithms have been able to present success in the 

problem of algorithmic trading systems optimization, while 

ORCS outperformed CS in the majority of tests. These results 

conform to the results produced from the benchmark functions 

tested in section 4. 

6. DISCUSSIONS AND CONCLUSION 
In this paper, the one rank cuckoo search (ORCS) algorithm 

was proposed, by applying two updates to the behavior of the 

original cuckoo search (CS) algorithm: first is the one rank 

(combined evaluation) rule, following a more conservative 

attitude of consuming the function evaluations, by merging 

together the new solutions generated from the exploration and 

exploitation phases to evaluate and rank them jointly, and 

second is the bound by best solutions rule, to enforce 

constraints by utilizing the best solutions found so far, while 

further exploring the search domain. The proposed algorithm 

has been tested in comparison to the original algorithm, and 

the experimental results indicate a favorable performance 

improvement in the greater part of all the benchmark function 

studied.  

The ORCS algorithm uses three parameters only to control its 

operations. This is considered an advantage, compared to 

other optimization algorithms like GA and PSO, by reducing 

the complexity associated with the use of the ORCS 

algorithm, and allowing researchers to focus their efforts 

without worrying about the best operational parameters to use, 

making it more convenient to apply the algorithm to different 

optimization problems with ease. 
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The CS and ORCS algorithms have been applied to optimize a 

real-world problem of algorithmic trading systems 

optimization with a clear success. The ORCS algorithm 

outperforms the CS algorithm again, to conform to the 

experimental results of the benchmark function. 

Further research can focus on the study of the algorithm 

parameters and verify on their sensitivity to affect its 

performance, studying the usefulness of employing adaptive 

parameters (ex. an increasing population size), extra study on 

the behavior of the Lévy flights and the optimal employment 

of it operations in optimization, the hybridization with other 

optimization algorithms, applying the algorithm to further 

real-world problems and evaluating their success, and 

studying on the automatic detection and prevention of 

overfitting in the problem of algorithmic trading systems and 

other optimization problems related to forecasting. 
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