
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

30

One Rank Cuckoo Search Algorithm with Application to
Algorithmic Trading Systems Optimization

Ahmed S. Tawfik

Department of Computer
Science, Faculty of Computers

and Information, Cairo
University

Giza, Egypt

Amr A. Badr
Department of Computer

Science, Faculty of Computers
and Information, Cairo

University
Giza, Egypt

Ibrahim F. Abdel-Rahman
Department of Computer

Science, Faculty of Computers
and Information, Cairo

University
Giza, Egypt

ABSTRACT

Cuckoo search is a nature-inspired metaheuristic algorithm,

based on the brood parasitism of some cuckoo species, along

with Lévy flights random walks. In this paper, a modified

version is proposed, where the new solutions generated from

the exploration and exploitation phases are combined,

evaluated and ranked together, rather than separately in the

original algorithm, in addition to imposing a bound by best

solutions mechanism to help improve convergence rate and

performance. The proposed algorithm was tested on a set of

ten standard benchmark functions, and applied to a real-world

problem of algorithmic trading systems optimization in the

financial markets. Experimental analysis demonstrated

improved performance in almost all benchmark functions and

the problem under study.

General Terms

Algorithms, Algorithmic Trading, Optimization.

Keywords
Algorithms, Algorithmic Trading, Cuckoo Search,

Metaheuristics, Nature-inspired Algorithms, Optimization,

Technical Analysis, Swarm Intelligence.

1. INTRODUCTION
Optimization is used everywhere, from engineering design to

economics, and while resources and time are always limited,

the best possible tools available are very important to be

utilized efficiently. There are many algorithms which can be

classified in several ways. From a simple perspective,

algorithms can be classified as deterministic or stochastic. If

an algorithm works in a mechanical manner, without any

randomness, it is called deterministic. If there is some random

nature in the algorithm, it is called stochastic, as in genetic

algorithms (GA) [1] and particle swarm optimization (PSO)

algorithms [2, 3]. Algorithms with stochastic components are

often referred to as heuristic, or as metaheuristics in the recent

literature [4–7]. Almost all modern metaheuristics algorithms

have two major components of exploration and exploitation,

and use a certain trade-off of randomization and local search.

An example of the nature-inspired metaheuristics algorithms

is the cuckoo search (CS) algorithm [7–9]. A recent study

suggests that CS is potentially far more efficient than GA,

PSO, and other popular algorithms [10].

Algorithmic trading is the use of a trading system with a set of

rules that automatically decides, without any human

discretionary intervention, on aspects of the entry and exit

orders, including time, price, and quantity of the order in the

financial markets [11–14]. Technical analysis is the field of

security analysis concerning the evaluation of financial

instruments by analyzing market data and activity, such as

historical prices and volume, using charts, and other tools to

identify patterns that can advise on future movements [15,

16]. Technical analysis is commonly used as the primary

component in defining algorithmic trading systems rules.

This paper aims to derive a modified version of the cuckoo

search algorithm and provide a comparison study of the

original and proposed algorithms. The subsequent parts of this

paper are organized as follows: an outline of the cuckoo

search algorithm in section 2, explanation of the proposed

algorithm in section 3, a performance comparison of the

original and proposed algorithms in section 4, an application

of algorithmic trading systems optimization in section 5, and

the discussions and conclusions are presented in section 6.

2. CUCKOO SEARCH ALGORITHM
Cuckoo search is a relatively recent nature-inspired

metaheuristic algorithm, developed by Xin-She Yang and

Suash Deb in 2009. CS was inspired by the brood parasitism

of some cuckoo bird species, in combination with the Lévy

flights [17–19] random walks. Cuckoos are catching

scientists’ interest because of their aggressive reproduction

strategy. Some species lay their eggs in communal nests of

other host birds (often other species), and may remove others'

eggs to increase the hatching probability of their own eggs.

CS idealized rules can be summarized as:

1. Each cuckoo lays one egg at a time, and dumps its

egg in a randomly chosen nest.

2. The best nests with high quality of eggs will carry

over to the next generations.

3. The number of available host nests is fixed, and the

egg laid by a cuckoo is discovered by the host bird

with a probability , where the host bird

can either throw the egg away, or abandon the nest

and build a completely new nest.

These rules are used to draw the basic cuckoo search

algorithm in Pseudo code 1.

While exploring new solutions, it is necessary to control the

Lévy flights random walks, to avoid large moves, causing the

solutions to jump outside of the search space. A step size

factor that is defined according to the scale of the problem of

interest should be used for this purpose. This might be an

interesting subject for more research, studying the optimal

utilization of the Lévy flight in optimization; for simplicity, a

typical step size factor of 0.01, as suggested by the authors, is

being used in this study [7, 9, 18].

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

31

Pseudo code 1. Cuckoo search algorithm

Objective function
Initialize a population of host nests/solutions;

Define the Lévy flights step size factor ;

While is not stop criteria

Find new nests, using Lévy flights as:

For (all nests)

For (all dimensions)

End for

End for

Evaluate the new nests against the objective function

and calculate their quality/fitness;

Rank and keep the current best nests as:

For

If is better than
Replace

End if

End for

Replace a fraction of nests as:

Get two random permutation arrays and of

length;

For

For

If

End if

End for

End for

Evaluate the new nests;

Rank and keep the current best nests;

Get the current best nest;

End while

3. PROPOSED ALGORITHM
The proposed algorithm, one rank cuckoo search (ORCS),

applies two behavioral amendments to the original cuckoo

search algorithms, in aim to improve convergence rate, and

consequently achieve a better performance and accuracy.

These behaviors are defined in the following subsections.

3.1 One Rank (Combined Evaluation)
The original algorithm generates new nests using Lévy flights

(exploration phase) and evaluates their fitness, then replaces a

fraction of nests (exploitation phase) and evaluates and ranks

their fitness once more. Instead, the proposed algorithm

generates new solutions using Lévy flights, replaces a fraction

of them, and finally evaluates and ranks their fitness at once.

This behavior allows a more conservative consumption of the

function evaluations, by merging together the new solutions

generated by the exploration and exploitation phases before

evaluating them, and hence consuming (population size)

evaluations per iteration by the proposed algorithm against

evaluations by the original algorithm.

A one rank ratio is initiated by 1, to allow the proposed

algorithm to combine all the explorations and exploitations,

until it fails to find better nests for iterations, to trigger a

gradual decrease of the one rank ratio as in Eq. 1, where is

the iteration number and is the number of objective function

dimension.

 . (1)

3.2 Bound by Best Solutions
It is required to enforce the constraints defined by an objective

function for all the solutions generated during the

optimization process, particularly when using algorithms with

some random nature components, such as the cuckoo search

algorithm. The draw on Lévy flights for exploring the search

space, rather than uniform random walks, tends to increase the

probability for the generated solutions to get out of the

defined constraints, and accordingly an increased need for a

better bound behavior than a simple minimum-maximum

bound.

The proposed algorithm enforces the integrity over an out of

constraints solution by replacing its invalid dimensions by the

corresponding dimensions drawn from randomly selected

solutions among the current best solutions. A ratio of the

replaced dimensions is utilizing the current best solutions

found so far, and the rest is being randomly drawn by further

exploring the search space. A bound by best ratio is

defined as in Eq. 2, and the basic bound by best solutions

behavior is presented in Pseudo code 2.

 . (2)

Pseudo code 2. Bound by best procedure

Objective function ;
Define bound by best ratio as in Eq. 2;

For each dimension in new solution

If not

If

Select a solution randomly from the current

 best solutions, ;
 ;

Else

 ;

End if

End for

3.3 One Rank Cuckoo Search Algorithm
The one rank/combined evaluation and bound by best solution

functionalities, have been added to the original cuckoo search

algorithm, and used to draw the basic one rank cuckoo search

algorithm in Pseudo code 3.

The proposed ORCS algorithm introduced one more

parameter, one rank ratio update trigger , in addition to the

two parameters employed by the original CS algorithm,

population size and abandon rate . This parameter has not

been meta-optimized to select the best performing setting;

however the preliminary tests undergone during the algorithm

development, demonstrated insensitivity in this parameter to

have a major impact on the algorithm performance.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

32

Pseudo code 3. One rank cuckoo search algorithm

Objective function
Initialize a population of host nests/solutions;

Define the Lévy flights step size factor ;

Define the one rank ratio ;

While is not stop criteria

Find new nests, using Lévy flights as:

For (all nests)

For (all dimensions)

End for

End for

If

Replace a fraction of solutions as:

Get two random permutation arrays and

of length;

For

For

If

End if

End for

End for

Bound by best, as in pseudo code 2;

Evaluate the new nests;

Rank the nests and keep the current best nests as:

For

If is better than
Replace

End if

End for

Else

Bound by best;

Evaluate the new nests;

Rank the nests and keep the current best nests;

Replace a fraction of nests;

Bound by best;

Evaluate the new nests;

Rank the nests and keep the current best nests;

End if

Get the current best nest;

If no better nests since evaluations

Decrease , as in Eq. 1;

End if

End while

4. EXPERIMENTAL ANALYSIS

4.1 Benchmark Functions
The proposed algorithm was tested on 10 standard benchmark

functions that are commonly used to evaluate the performance

of optimization algorithms [20, 21]. The functions selected are

carrying different properties of being unimodal or multimodal,

separable or non separable, and having few or many local

optima solutions. Table 1 lists the functions and their testing

properties, and Fig. 1 shows a 3D plot of the functions in 2

dimensions.

Table 1. The benchmark functions

 and their testing properties

Function

Search

Space /

Optimum

Ackley,

 / 0

Dixon & Price,

 / 0

Griewank,

 / 0

Michalewicz,

 /

Varies by

dimensions

Rastrigin,

 / 0

Rosenbrock,

 / 0

Schwefel,
 / 0

Sphere,

 / 0

Trid,

 /

Varies by

dimensions

Zakharov,

 /
0

Fig. 1. A 3D plot of the benchmark functions

 in 2 dimensions

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

33

4.2 Comparison of CS and ORCS
The original cuckoo search (CS) algorithm with a population

size and discovery rate , as suggested by its

authors, and the proposed one rank cuckoo search (ORCS)

algorithm with the same settings as CS, plus a one rank ratio

update trigger (i.e. 10% of the maximum number of

function evaluations) have been used for all tests.

The tests have been run on 5, 10, 25, 50, 100, and 250

dimensions for a maximum of 100000 function evaluations,

with an automatic stop criteria defined as:

 Optimum fitness reached.

 All the population of nests is holding identical

eggs (i.e. all solutions’ dimensions are equal).

All tests have been run for 100 times and their mean were

used to carry out a meaningful statistical analysis. The

comparative results of the achieved fitness are plotted in

Figures 2-7.

Fig. 2. Experimental results in 5 dimensions

Fig. 3. Experimental results in 10 dimensions

Fig. 4. Experimental results in 25 dimensions

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

34

Fig. 5. Experimental results in 50 dimensions

Fig. 6. Experimental results in 100 dimensions

Fig. 7. Experimental results in 250 dimensions

The results obtained, from the 60 tests carried on 10 different

benchmark functions and 6 different dimensions, by the CS

and ORCS algorithms, suggest that ORCS outperformed CS

in almost all tests. This improvement can be credited to the

well balance between exploration and exploitation rules

introduced by the original algorithm, backed by the

conservative use of function evaluations and selective bound

rules presented by the proposed algorithm.

5. APPLICATION TO ALGORITHMIC

TRADING SYSTEMS OPTIMIZATION
The input parameters of a trading system are generally a mix

of integer and floating point variables, and hence it can be

described as a combinatorial [5] or mixed-integer nonlinear

[22] optimization problem. The algorithms defined in the

earlier sections need to go through an additional step before

they could be successfully used to optimize a trading system

with part (or all) of its input parameters are of discrete nature,

such as being restricted to integer values. After generating a

new nest/solution and before evaluating its

fitness/performance, a round to a specific increment is

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

35

performed as in Eq. 3, where is the solution parameter and
is the parameter increment.

 . (3)

5.1 Trading System
For the purpose of this study, an experimental trading system

(MRA) has been defined, to verify and compare the efficiency

of CS and ORCS algorithms in the problem of algorithmic

trading systems optimization.

The main rules of the MRA trading system, responsible for

generating buy and sell orders and managing positions, are

built on three well-known technical analysis indicators:

Moving Averages (MA), Relative Strength Index (RSI) and

Average True Range (ATR) [15, 16]. The basic behavior of

the MRA system is defined in Pseudo code 4.

Pseudo code 4. Experiment MRA trading system

Read input parameters:

 ;

Define Close Moving Average , High Moving

Average and Low Moving Average ;
Define Relative Strength Index , its Trailing Level

(and Slow Trailing Level ;
Define Average True Range (;

For each price update

If

If (crossed above and

or crossed above and
and

Buy;

Set stop loss level at:

 ;

Set profit target level at:

 ;

Else if (crossed below and
or crossed below and
and

Sell short;

Set stop loss level at:

 ;

Set profit target level at:

 ;

Else if exists

Switch

Case :

Update stop loss level to:

 ;

Break;

Case :
Update stop loss level to:

 ;

Break;

End Switch

End if

End if

End For

5.2 Comparison of CS and ORCS
The CS and ORCS algorithms, with identical setting to those

used in section 4 have been applied to optimize the MRA

trading system parameters listed in Table 2.

The tests have been run on a basket of 23 instruments,

selected from the foreign exchange (FOREX) market [23], for

a total of 2 years of historical data, from January 2011 to

December 2012.

The objective function used in the optimization of the MRA

trading system is show in Eq. 4, where is the

parameters-list achieving the best performance possible, is

the total net profit and is the Sharpe ratio [24] of the

monthly profits.

 . (4)

The tests have been run for a maximum of 10000 evaluations,

with an automatic stop criterion when all the population of

nests is holding identical eggs.

Table 2. Experimental MRA trading system parameters

Component Parameter
Range /

Increment

Session Filter
 [0 , 19] / 1

 [3 , 22] / 1

Order Generator

(moving averages)

 [1 , 3] / 1

 [2 , 9] / 1

Order Generator

(relative strength

index and its

trailing levels)

 [5 , 14] / 1

 [1 , 5] / 1

 [5 , 14] / 1

 [5 , 14] / 1

 [0 , 2.5] / 0.1

 [0.5 , 5] / 0.1

 [20 , 40] / 1

Position Manager

(stop loss and

profit target

levels)

 [5 , 24] / 1

 [2 , 4] / 0.1

 [1 , 5] / 0.1

 [3 , 10] / 0.1

All tests have been run for 25 times and their mean were used

to carry out a meaningful statistical analysis. The comparative

results of the achieved performance are plotted in Fig. 8.

It is worth mentioning that, while optimizing a trading system,

it is important to avoid the overfitting of the system rules on

the data being optimized, which is commonly caused by

relying on a limited data or too many parameters [25–27].

This problem might be an interesting subject to study the

possibilities of auto detection and prevention of overfitting on

different optimization problems in general and the problem of

algorithmic trading systems in specific.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

36

Fig. 8. Experimental results for a basket of 23 FORX instruments

100 Evaluations

1000 Evaluations

10000 Evaluations

Fig 9. Cumulative profit of the MRA trading system, on

the EURUSD instrument, after optimization by the ORCS

algorithm for 100, 1000 and 10000 evaluations

The results obtained, from the tests carried on 23 FOREX

instruments, by the CS and ORCS algorithms, suggest that

both algorithms have been able to present success in the

problem of algorithmic trading systems optimization, while

ORCS outperformed CS in the majority of tests. These results

conform to the results produced from the benchmark functions

tested in section 4.

6. DISCUSSIONS AND CONCLUSION
In this paper, the one rank cuckoo search (ORCS) algorithm

was proposed, by applying two updates to the behavior of the

original cuckoo search (CS) algorithm: first is the one rank

(combined evaluation) rule, following a more conservative

attitude of consuming the function evaluations, by merging

together the new solutions generated from the exploration and

exploitation phases to evaluate and rank them jointly, and

second is the bound by best solutions rule, to enforce

constraints by utilizing the best solutions found so far, while

further exploring the search domain. The proposed algorithm

has been tested in comparison to the original algorithm, and

the experimental results indicate a favorable performance

improvement in the greater part of all the benchmark function

studied.

The ORCS algorithm uses three parameters only to control its

operations. This is considered an advantage, compared to

other optimization algorithms like GA and PSO, by reducing

the complexity associated with the use of the ORCS

algorithm, and allowing researchers to focus their efforts

without worrying about the best operational parameters to use,

making it more convenient to apply the algorithm to different

optimization problems with ease.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.6, February 2013

37

The CS and ORCS algorithms have been applied to optimize a

real-world problem of algorithmic trading systems

optimization with a clear success. The ORCS algorithm

outperforms the CS algorithm again, to conform to the

experimental results of the benchmark function.

Further research can focus on the study of the algorithm

parameters and verify on their sensitivity to affect its

performance, studying the usefulness of employing adaptive

parameters (ex. an increasing population size), extra study on

the behavior of the Lévy flights and the optimal employment

of it operations in optimization, the hybridization with other

optimization algorithms, applying the algorithm to further

real-world problems and evaluating their success, and

studying on the automatic detection and prevention of

overfitting in the problem of algorithmic trading systems and

other optimization problems related to forecasting.

7. REFERENCES
[1] Goldberg, D.E. 1989. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley

Professional.

[2] Kennedy, J. and Eberhart, R. 1995. Particle swarm

optimization. Neural Networks, 1995. Proceedings.,

IEEE International Conference on (1995), 1942–1948.

[3] Tan, Y. et al. 2011. Advances in Swarm Intelligence,

Part I: Second International Conference, ICSI 2011,

Chongqing, China, June 12-15, 2011, Proceedings.

Springer.

[4] Baghel, M. et al. 2012. “Survey of Metaheuristic

Algorithms for Combinatorial Optimization.”

International Journal of Computer Applications. 58, 19

(Nov. 2012), 21–31.

[5] Blum, C. and Roli, A. 2003. “Metaheuristics in

combinatorial optimization: Overview and conceptual

comparison.” ACM Computing Surveys (CSUR). 35, 3

(2003), 268–308.

[6] Talbi, E.-G. 2009. Metaheuristics: From Design to

Implementation. Wiley.

[7] Yang, X.-S. 2010. Nature-Inspired Metaheuristic

Algorithms: Second Edition. Luniver Press.

[8] Yang, X.S. and Deb, S. 2009. Cuckoo search via Lévy

flights. Nature & Biologically Inspired Computing, 2009.

NaBIC 2009. World Congress on (2009), 210–214.

[9] Yang, X.S. and Deb, S. 2010. “Engineering optimisation

by cuckoo search.” International Journal of Mathematical

Modelling and Numerical Optimisation. 1, 4 (2010),

330–343.

[10] Civicioglu, P. and Besdok, E. 2011. “A conceptual

comparison of the Cuckoo-search, particle swarm

optimization, differential evolution and artificial bee

colony algorithms.” Artificial Intelligence Review.

(2011), 1–32.

[11] Chaboud, A. et al. 2009. “Rise of the machines:

Algorithmic trading in the foreign exchange market.”

FRB International Finance Discussion Paper. 980 (2009).

[12] Kissell, R. and Malamut, R. 2006. “Algorithmic

decision-making framework.” The Journal of Trading. 1,

1 (2006), 12–21.

[13] Miner, R.C. 2008. High Probability Trading Strategies:

Entry to Exit Tactics for the Forex, Futures, and Stock

Markets. Wiley.

[14] Weissman, R.L. 2004. Mechanical Trading Systems:

Pairing Trader Psychology with Technical Analysis.

Wiley.

[15] Achelis, S. 2000. Technical Analysis from A to Z, 2nd

Edition. McGraw-Hill.

[16] Murphy, J.J. 1999. Technical Analysis of the Financial

Markets: A Comprehensive Guide to Trading Methods

and Applications. New York Institute of Finance.

[17] Barthelemy, P. et al. 2008. “A Lévy flight for light.”

Nature. 453, 7194 (2008), 495–498.

[18] Gutowski, M. 2001. “Lévy flights as an underlying

mechanism for global optimization algorithms.” arXiv

preprint math-ph/0106003. (2001).

[19] Pavlyukevich, I. 2007. “Lévy flights, non-local search

and simulated annealing.” Journal of Computational

Physics. 226, 2 (2007), 1830–1844.

[20] Andrei, N. 2008. “An unconstrained optimization test

functions collection.” Adv. Model. Optim. 10, 1 (2008),

147–161.

[21] Molga, M. and Smutnicki, C. 2005. “Test functions for

optimization needs.” Test functions for optimization

needs. (2005).

[22] Bussieck, M.R. and Pruessner, A. 2003. “Mixed-integer

nonlinear programming.” SIAG/OPT Newsletter: Views

& News. 14, 1 (2003), 19–22.

[23] Levinson, M. 2009. Guide to Financial Markets.

Bloomberg Press.

[24] Sharpe, W.F. 1994. “The Sharpe Ratio.” The Journal of

Portfolio Management. 21, 1 (Jan. 1994), 49–58.

[25] Everitt, B.S. and Skrondal, A. 2010. The Cambridge

Dictionary of Statistics. Cambridge University Press.

[26] Hawkins, D.M. 2004. “The problem of overfitting.”

Journal of chemical information and computer sciences.

44, 1 (2004), 1–12.

[27] Lin, L. et al. 2005. “Genetic algorithms for robust

optimization in financial applications.” Computational

Intelligence. 2005, (2005), 387–391.

