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ABSTRACT 

This paper targets to investigate the numerical solution of n -

th order fuzzy differential equations with fuzzy environment 

using Homotopy Perturbation Method (HPM). Triangular 

fuzzy convex normalized sets are used for the fuzzy parameter 

and variables. Obtained results are compared with the existing 

solution depicted in term of plots to show the efficiency of the 

applied method.  
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1. INTRODUCTION 
Theory of fuzzy differential equations plays an important role 

in modeling of science and engineering problems because this 

theory represents a natural way to model dynamical systems 

under uncertainty. There exist a large number of papers 

dealing with fuzzy differential equations and its applications 

in the open literatures. Some of are reviewed and cited here 

for better understanding of the present analysis. Chang and 

Zadeh  [15] first introduced the concept of a fuzzy derivative, 

followed by Dubois and Prade [16] who defined and used the 

extension principle in their approach. The fuzzy differential 

equation and fuzzy initial value problems are studied by 

Kaleva [28, 29] and Seikkala [36]. Various numerical 

methods for solving fuzzy differential equations are 

introduced in [1, 2, 6, 31, 32, 37]. Very recently Tapaswini 

and Chakraverty [37] have proposed a new method to solve 

fuzzy initial value problem. Bede [11] described the exact 

solutions of fuzzy differential equations in his note in an 

excellent way. Buckley and Feurin [14] applied two analytical 

methods for solving n -th order linear differential equations 

with fuzzy initial conditions. Similarly many authors studied 

various other methods to solve n -th order fuzzy differential 

equations in [3, 4, 5, 7, 26]. Based on the idea of collocation 

method Allahviranloo et al. [5] investigated the numerical 

solution of n -th order fuzzy differential equations. 

Abbasbandy et al. [3] applied Runge-Kutta method for the 

numerical solution of n -th order fuzzy differential equations. 

The analytical method (eigenvalue-eigenvector method) for 

n -th order fuzzy differential equations with fuzzy initial 

value is also discussed by Allahviranloo et al. [7]. 

Abbasbandy et al. [4] and Jafari et al. [26] used variational 

iteration method for solving n -th order fuzzy differential 

equations recently. Besides the above approaches Homotopy 

Perturbation Method (HPM) is also found to be a powerful 

tool for solving the fuzzy differential equations. The HPM 

was first developed by He [20, 21] and many authors applied 

this method to solve various linear and non-linear differential 

equations of scientific and engineering problems. The solution 

is considered as the sum of infinite series, which converges 

rapidly to accurate solutions. In the homotopy technique (in 

topology), a homotopy is constructed with an embedding 

parameter which is considered as a "small parameter". Very 

recently HPM has been applied to a wide class of physical 

problems [10, 12, 13, 17, 22, 23, 24, 25, 30, 33, 34, 39, 40, 41, 

42, 43]. In these papers the parameters and variables are 

considered as crisp (exact). Few researchers have also 

investigated the solution of fuzzy differential equations using 

HPM  [8, 9, 18, 38]. Allahviranloo et al. [8, 9] applied 

homotopy perturbation method (HPM) to solve fuzzy 

Fredholm integral equations and fuzzy Volterra integral 

equations. Numerical solution of fuzzy initial value problems 

under generalized differentiability by HPM is studied by 

Ghanbari [18]. The example problems solved in [18] only 

consider the positive coefficients of the fuzzy differential 

equations. Also, the author did not described how to tackle the 

n -th order fuzzy differential equations by using HPM. 

Recently, Tapaswini and Chakraverty [38] used HPM for 

solving fuzzy quadratic Riccati differential equations. As 

regards in the present analysis, HPM is used to handle the 

numerical solution of n -th order fuzzy differential equations 

with fuzzy initial conditions respectively. Here the exact 

solutions of the respective systems are also found by the 

authors for the comparison. In the following sections 

preliminaries are first given. Next, numerical implementation 

of HPM for n -th order fuzzy differential equations with 

fuzzy initial conditions is discussed. Lastly numerical 

examples and conclusions are given. 

 

2.  PRELIMINARIES 

In this section, we present some notations, definitions and 

preliminaries which are used further in this paper [19, 27, 35, 

44]. 

Definition 2.1. Fuzzy number 

A fuzzy number U
~

 is convex normalised fuzzy set U
~

 of the 

real line R  such that  

}  ],1 ,0[:)({ ~ RxRx
U

  

 where, 
U
~  is called the membership function of the fuzzy set 

and it is piecewise continuous. 

Definition 2.2. Triangular fuzzy number  

A triangular fuzzy number U
~

 is a convex normalized fuzzy 

set U
~

 of the real line R  such that  

i. There exists exactly one Rx 0  with 1)( 0~ x
U
  ( 0x is 

called the mean value of U
~

), where 
U
~  is called the 

membership function of the fuzzy set. 

ii. )(~ x
U
  is piecewise continuous. 

Let us consider an arbitrary triangular fuzzy number 

) , ,(
~

cbaU  . The membership function 
U
~ of U

~
 will be 

define as follows 
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Any arbitrary triangular fuzzy number ) , ,(
~

cbaU   can be 

represented with an ordered pair of functions through r cut 

approach viz. ])( ,)[()](),([ crbcarabruru    

where, ]1 ,0[r .  

For the triangular fuzzy numbers the left and right bound of 

the fuzzy numbers satisfies the following requirements 

i. )(ru  is a bounded left continuous non-decreasing 

function over  [0, 1]. 

ii. )(ru  is a  bounded right continuous non-increasing 

function over [0, 1]. 

iii. .10 ,)()(  rruru  
Definition 2.3. Fuzzy arithmetic 

For any two arbitrary fuzzy number )](),([~ rxrxx  , 

)](),([~ ryryy   and scalar k , the fuzzy arithmetic is defined 

as follows, 

i. yx ~~  if and only if )()( ryrx  and )()( ryrx   

ii. )]()( ),()([~~ ryrxryrxyx    

iii. 
 
 



















)()(),()(),()(),()(max

,)()(),()(),()(),()(min
~~

ryrxryrxryrxryrx

ryrxryrxryrxryrx
yx

 

iv. 









0)],(),([

0)],(),([~

krxkrxk

krxkrxk
xk  

Lemma 2.1. [11] If ))(),(),(()(~ tztytxtu   is a fuzzy 

triangular number valued function and if u~  is Hukuhara 

differentiable, then ),,(~ zyxu  . By using this property, we 

intend to solve the fuzzy initial value problem 









00
~)(~

)~,(~

xtx

xtfx
 

with, RuuutxRxxxx cc  ),,()(~,),,(~
0000 and 

 

)).,,,(),,,,(),,,,((

)),,(,(,,: 00

uuutfuuutfuuutf

uuutfRRattf

cccc

c 
 

We can translate this into the following system of ordinary 

differential equations as below: 























0
)0(,)0(,)0(

),,,(

),,,(

),,,,(

00
xuxuxu

uuutfu

uuutfu

uuutfu

cc

c

ccc

c

                (1) 

 

3. HPM FOR N -TH ORDER FDES 
Consider the following n -th fuzzy differential equation  

]1 ,0[    ,0))(~,),(''~),('~),(~,()(~ )()(  ttytytytytfty nn     (2) 

with initial conditions  

.1,,2 ,1 ,0       )),( ),(()0(~ )(  nirkrgy ii
i   

By homotopy perturbation method [20, 21], we construct a 

simple homotopy as   

  ,0))(~,),(~),(~),(~,()(~~)1( )()()(  tytytytytftypyp nnn 

                    (3) 

or 

  .0))(~,),(~),(~),(~,()(~ )()(  tytytytytfpty nn   

               (4) 

where, ]1,0[p  is an embedding parameter. 

For ,0p  we obtain 

,0)(~ )( ty n  

from equation (3) and for ,1p  

0))(~,),(~),(~),(~,()(~ )()(  tytytytytfty nn  . 

In topology, this is called deformation.  

)(~ )( ty n  and ))(~,),(~),(~),(~,()(~ )()( tytytytytfty nn   are 

called homotopic.  

Acording to HPM, we can assume that the solution of 

equation (3) or (4) can be expressed as a series in p . 

 )(~)(~)(~)(~)(~
3

3
2

2
10 typtyptyptyty                 (5) 

when 1p , equation (3) or (4) corresponds to equations (2) 

and (5) becomes the approximate solution of equation (2), i.e., 

 )(~)(~)(~)(~)(~
3210 tytytytyty                 (6) 

This is the approximate solution to equation (2). In most cases 

the series equation (6) is a convergent one which leads to the 

exact solution of equation (2). One can take the closed form or 

truncate the series for obtaining approximate solutions.  

 

4. NUMERICAL IMPLEMENTATION 

OF THE METHOD 
In this section we present the homotopy perturbation method 

for solving linear fuzzy differential equations 

Example 1. [5] Let us consider the electrical circuit, where 

hL 1 ,  2R , fC 25.0  and .cos20)( ttE  If Q is the 

charge on the capacitor at time ,0t then  

 cos50)(4)('
~

2)(''
~

ttQtQtQ                    (7) 
subject to the initial conditions 

),6 ,4()0(
~

rrQ   )2 ,()0(
~

rrQ  . 

We have obtained the exact fuzzy solution as 
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The general terms of the equation  

   cos50)(4)('2)('' ttQtQtQ   

   cos50)(4)('2)('' ttQtQtQ   
Using HPM, we have the series solution as follows 

,)4();(
0

rtrrtq   

,)2()6();(0 trrrtq   

,1)cos(
3

2
)83();( 32

1
 trttrrtq  

,1)cos(
3

)2(2)314();(
3

2
1  t

t
rtrrtq  
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  
and so on. The third term approximate solution for equation 

(7) is given by 
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Fig 1: Fuzzy solution of the HPM for n =3. 

 

Obtained results by the HPM for third order approximation 

and numerical solution of [5] are compared with the exact 

solution in Table 1 for t = 0.001. Moreover the HPM solution 

plot is given in Figure 1. 

 

Example 2. [5] Let us consider another second order fuzzy 

linear differential equation  

]1 ,0[   ,04'~4''~  tyyy                  (8) 

subject to the initial conditions 

),4 ,2()0(~ rry  )7 ,5()0(~ rry   

This problem has also been solved by Allahviranloo et al. [5]. 

The authors [5] have studied both numerical solution as 

collocation type method and exact solution. It may be 

mentioned that the exact solution obtained by [5] does not 

satisfy the differential equation. So, here we have obtained the 

exact fuzzy solution for this differential equation by using the 

method of [11]. The same may be given as 
tt eetrrtY 22 3)31)(1() ; (      
tt eetrrtY 22 3)31)(1() ; (      

Now, using HPM method, we get the four term approximate 

solution for equation (8) as follows: 
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Fig 2: Fuzzy solution of the HPM for n =4. 

 
The exact, numerical solution obtained by [5] and present 

solution using HPM are tabulated in Table 2 for t = 0:01. 

Errors obtained are also incorporated in this table. By looking 

into the results, one may conclude that the solution obtained 

by HPM is the same as that of the exact solution. The solution 

plot is given in Figure 2. 
 
Example 3:  [4] Let us consider the following fourth order 

fuzzy linear differential equation 

]1 ,0[   ,~~ )4(  tyy              (9) 

subject to the initial conditions 

),1 ,1()0(~ rry   )1 ,1()0(~ rry  , )1 ,1()0(~ rry   

and )1 ,1()0(~ rry   

The exact fuzzy solution as given in [4] is, 

terrtY )1() ; (   
terrtY )1() ; (   

Applying the same procedure as in example (1)-(2), we get 

the approximate solution for equation (9) as 
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leading to the closed form 

t

t

errty
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which is the exact solution. The obtained results by HPM for 

fourth order approximation and exact solution for t = 0.2 are 

shown in Table 3 along with error. This problem was also 
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solved by Abbasbandy et al. [4] using variational iteration 

method. 

It may be noted that the closed form of the first order 

approximation of HPM will exactly be same as the exact 

solution. Where, as in [4] it takes 10th iteration to get the 

approximate solution. The corresponding plot of the solution 

using HPM is given in Figure 3. 

 

 

Table 1: Comparison of the HPM and exact solutions for n =4 with different r  and 001.0t . 

r  HPM Value q  Exact Value  Q  Error HPM Value q  Exact Value  Q  Error 

0 3.999992505 4.000016989 2.4e-5 6.001986508 6.002010991 2.4e-5 

0.1 4.100092205 4.100116689 2.4e-5 5.901886808 5.901911291 2.4e-5 

0.2 4.200191905 4.200216389 2.4e-5 5.801787107 5.801811591 2.4e-5 

0.3 4.300291605 4.300316089 2.4e-5 5.701687407 5.701711891 2.4e-5 

0.4 4.400391306 4.400415789 2.4e-5 5.601587707 5.601612191 2.4e-5 

0.5 4.500491006 4.500515489 2.4e-5 5.501488007 5.501512491 2.4e-5 

0.6 4.600590706 4.600615189 2.4e-5 5.401388307 5.401412791 2.4e-5 

0.7 4.700690406 4.70071489 2.4e-5 5.301288607 5.30131309 2.4e-5 

0.8 4.800790106 4.80081459 2.4e-5 5.201188907 5.20121339 2.4e-5 

0.9 4.900889806 4.90091429 2.4e-5 5.101089206 5.10111369 2.4e-5 

1 5.000989506 5.00101399 2.4e-5 5.000989506 5.00101399 2.4e-5 

 

 

Table 2: Comparison of the HPM and exact solutions for n =4 with different r  and 01.0t . 

r   HPM Value y  Exact Value  Y  Error HPM Value y  Exact Value  Y  Error 

0 2.050999386 2.050999387 1.e-9 4.070208653 4.070208654 1.e-9 

0.1 2.15195985 2.15195985 0 3.969248189 3.969248189 0 

0.2 2.252920313 2.252920313 0 3.868287726 3.868287727 1.e-9 

0.3 2.353880776 2.353880777 1.e-9 3.767327263 3.767327264 1.e-9 

0.4 2.45484124 2.45484124 0 3.666366799 3.6663668 1.e-9 

0.5 2.555801703 2.555801703 0 3.565406336 3.565406337 1.e-9 

0.6 2.656762166 2.656762167 1.e-9 3.464445873 3.464445873 0 

0.7 2.75772263 2.75772263 0 3.363485409 3.36348541 1.e-9 

0.8 2.858683093 2.858683093 0 3.262524946 3.262524947 1.e-9 

0.9 2.959643556 2.959643557 1.e-9 3.161564483 3.161564483 0 

1 3.060604019 3.06060402 1.e-9 3.060604019 3.06060402 1.e-9 
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Table 3: Comparison of the HPM and exact solutions for n =4 with different r  and 2.0t . 

r  HPM Value y  Exact Value  Y  Error HPM Value y  Exact Value  Y  Error 

0 -1.221402758 -1.221402758 0 1.221402758 1.221402758 0 

0.1 -1.099262482 -1.099262482 0 1.099262482 1.099262482 0 

0.2 -0.9771222065 -0.9771222065 0 0.9771222065 0.9771222065 0 

0.3 -0.8549819307 -0.8549819307 0 0.8549819307 0.8549819307 0 

0.4 -0.7328416549 -0.7328416549 0 0.7328416549 0.7328416549 0 

0.5 -0.6107013791 -0.6107013791 0 0.6107013791 0.6107013791 0 

0.6 -0.4885611033 -0.4885611033 0 0.4885611033 0.4885611033 0 

0.7 -0.3664208274 -0.3664208274 0 0.3664208274 0.3664208274 0 

0.8 -0.2442805516 -0.2442805516 0 0.2442805516 0.2442805516 0 

0.9 -0.1221402758 -0.1221402758 0 0.1221402758 0.1221402758 0 

1 0 0 0 0 0 0 

 

 

 
Fig 3: Fuzzy solution of the HPM for n =4. 

 

5.  CONCLUSIONS 
In this paper, HPM has been successful applied to find the 

solution of n -th order fuzzy differential equations. The 

solution obtained by HPM is an infinite series with 

appropriate initial condition, which in turn be expressed in a 

closed form i.e the exact solution. The result shows that the 

HPM is a powerful mathematical tool to solve n -th fuzzy 

differential equation. The solutions obtained are shown 

graphically.  
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