
International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.5, February 2013   

43 

2.5D Feature Tracking and 3D Motion Modeling  
 

Mozhdeh Shahbazi 
Department of Applied Geomatics, University of Sherbrooke 

2500, Boul. de l'Universite 
Sherbrooke, Canada 

 

ABSTRACT 

Image-based tracking of objects is becoming an important 

area of research within computer vision and image processing 

community. However, there are still challenges with regard to 

robustness of the algorithms. This paper explains an algorithm 

to track the pre-defined objects within stereo videos (image 

sequences) in a condition where cameras are fixed and objects 

are moving. The tracking technique used in this research, 

applies the intensity-based least squares matching (LSM) to 

find the correspondent targets in successive frames. Unlike 

ordinary correlation-based registration methods, LSM takes 

both geometric and radiometric variations of images into 

account, succeeding at sub-pixel scale feature tracking. The 

proposed algorithm combines three dimensional updated 

object constraints with adaptive two dimensional LSM to 

ensure the robustness and convergence to optimum solution. 

While tracking the features in stereo images, photogrammetric 

techniques are applied to extract the coordinates of the 

features in object space which result in detecting the 3D 

trajectory of the features. The average tracking error is about 

0.11 pixel at x-direction and 0.15 pixel at y-direction. The 3D 

motion vectors are modeled by mean magnitude precision of 

0.65 millimeter and orientation precision of 0.27 degree.   
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Keywords 
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1. INTRODUCTION 
Image-based tracking of objects is becoming an important 

area of research within computer vision and image processing 

community [1]. Different studies have provided tracking 

algorithms to fulfill various applications such as vehicle and 

pedestrian monitoring [2], medical image registration [3], 

mobile mapping [4], lip tracking for speech processing [5], 

body motion detection like facial motion analysis [6]. The 

features can be defined as different structures in the image 

itself such as points and edges or as more complex structures 

defined based on an object. Feature tracking is one of the most 

fundamental operations in computer vision - it is probably the 

most popular way of extracting motion information from 

image sequences, namely videos. It is also applicable in the 

field of videogrammetry which is extracting and following the 

three dimensional models from video frames. Besides, it is the 

main key in iterative image matching and co-registration [7]. 

As the object or the camera moves and rotates within the 

imaging scene, the patterns of image intensities change in a 

complex way. Therefore, the features are, to some extent, 

deformed both geometrically and radiometrically [8].  

Least squares matching is one of the most popular techniques 

applied, so far, for both multi-image matching, target locating, 

3D surface matching and tracking (e.g. [3], [4], [9], [10], 

[11]); since it considers the geometric and radiometric 

variations of correspondence targets in a flexibly adoptive 

way. However, as a non-linear problem, LSM is tightly 

dependent to initialization procedures such as determining the 

approximate values of the variables, matching window size 

and observation weights [12,13,14]. Otherwise, the 

adjustment might completely fail or converge to a false 

solution. Besides, in most applications, image tracking is not 

the only matter of concern while three dimensional motion 

modeling of the moving objects is interested as well. 

This paper improves the conventional least squares matching 

aimed to feature tracking on image sequences by adding 

object-space constraints to initialization procedure, providing 

a two and a half robust tracking algorithm. While tracking the 

features in stereo images, photogrammetric techniques are 

applied to extract the coordinates of the features in object 

space which result in simultaneously detecting the 3D 

trajectory of the features. It is assumed that applying this 

adoptive LSM technique along with stereo-vision facilitates 

tracking the 3D moving features in a video sequence.  

2. IMAGING GEOMETRY 
As mentioned in Section 1, the problem is to track the 

determined objects within stereo videos in a condition where 

cameras are fixed. The cameras, applied in this study, are two 

identical Canon HD camcorders (VIXIA HF R30) with 3.28 

megapixels, 1/4.85-inch CMOS sensors. 

The cameras are separately calibrated by photogrammetric 

self-calibration technique, explanation of which is out the 

scope of this paper; readers are referred to [15, 16]. By the 

way, their lens and sensor parameters including principal 

distance, principal point coordinates, lens distortion 

parameters and sensor electrical biases are determined via 

calibration. These parameters are applied to compute the 

systematic errors of image observations (subsubsection 3.2.2). 

The results of self-calibration procedure are listed in Table 1. 

The objects to be tracked on the stereo videos are designed as 

white circles at black background. Eight white circles with 

two centimeters diameters are plotted on paper and pasted on 

a wooden surface so that its displacing is made easy. The 

features are designed as circles so that their automatic 

localization on images would also be possible by the circle 

detection method of this paper and, thus, the results of LSM 

tracking can be evaluated. 

The cameras are installed on two tripods on a stable surface 

and are rotated so that their view fields are well overlapped on 

the scene where the targets are moved. The target plane is 

depicted in Figure 1. 
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Fig 1. Targets installed on wooden surface 

As there has been no electrical instrument to trigger the 

cameras at precisely the same time, the old-fashioned method 

of filming clapboards is used. When the cameras are well 

installed and the recording buttons are pressed, two boards are 

clapped in front of the cameras and to verify the accuracy of 

synchronization, they are clapped once more at the end of the 

test. Then at the programs, the instants, in which the boards 

are just clapped, are distinguished.  

The difference between the frame numbers in two cameras is 

a constant time. For example, in this test, the clapping instant 

in the first video takes place at frame number 858 and the 

same instant in the second video happens on frame number 

1042; i.e. the time difference between two cameras is 184 

frames. To verify that this difference is constant through the 

whole test period, the same measurement is done for the 

ending clapboards. It is realized that the ending frame on the 

first video is the 5981th and on the second one is the 6165th; 

i.e. the difference has been constant through the test. 

Thereafter, each frame from the first video is correspondent to 

its unique stereo pair in the second video and vice versa by the 

determined time difference. 

In order to determine the features 3D trajectory, an arbitrary 

object-space coordinate frame requires to be defined. The 

origin of the object coordinate system is established on the 

upper left corner of the target plane "at the beginning of the 

video", the wooden plane of targets is considered as XY plane 

with Z axis pointing outwards and the true distance between 

the circles determines the scale to ensure that motions vectors 

are modeled at the real ground scale. 

3. THEORECTICAL PRINCIPLES 

3.1 Least Squares Adjustment 
Herein, the basics of the least squares adjustment of the 

second form are explained. Assume a set of equations in 

which observations are nonlinear function of some 

parameters. The problem is to estimate those parameters. If 

the number of equations (observations) are more than the 

number of unknowns (parameters), then there won't be a 

unique solution for each unknown. Here the least squares 

solution is one the possible solutions by which sum of squared 

residuals between real observations and estimated 

observations as functions of parameters would be minimized 

[17]. The mathematical model of observation equations 

expresses the relationship between observation vector L and 

unknown vector X . 

( )L F X  (1) 

The vector function F represents equations of observations. 

Since the equations are nonlinear regarding the unknowns, 

linearization is accomplished by replacing the nonlinear 

functions by their Taylor series approximation. That is 

0( ) 0
F

L F X X
X



  


 (2) 

Renaming the above matrices leads to 

. 0W A X   (3) 

where W is called miss-closure vector and A is design matrix. 

The least squares estimation of unknowns is obtained by the 

following equation.  

1ˆ
( )T TX A PA A PW   (4) 

where P is the weight matrix of observations. 

This solution,
ˆ

X , must be added to the initial 

approximations of unknowns,
0X , to improve the solutions 

for next iteration. The Iterations are repeated recursively until 

reaching a convergent solution. 

The covariance matrix of solutions is computed by equation 5. 

The elements on the diagonal of the covariance matrix are the 

squared standard deviations (variances) of the resolved 

variables which are a measure of  the solution precision. 

1( )T
XC A PA   (5) 

3.2 Photogrammetric Issues 

3.2.1 Collinearity Condition 
Regarding the optical and photogrammetric point of view, 

each ground point is related to its image observation by the 

collinearity equations as follows: 

0

0

U
x x f

W

V
y y f

W

   

   

 (6) 

where: 

3 2 1( ). ( ). ( )

C

C

C

U X X

V R R R Y Y

W Z Z

  

  
  

   
      

 (7) 

In the above equations, ( , )x y are the image coordinates of the 

observation on the camera, ( , , )X Y Z  are the object-space 

coordinates of the point, ( , , , , , )C C CX Y Z   are exterior 

orientation parameters of the camera in which ( , ,   ) are 

the rotation angles of the imaging  coordinate system of the 

camera with respect to object-space coordinate system around 

X, Y and Z axes respectively and ( , ,C C CX Y Z ) are the 

coordinates of the camera perspective center according to the 

object space coordinate system. The parameter f is principal 

distance of the camera which is accurately determined in 

calibration process; R1,R2,R3 are the fundamental rotation 

matrices and ( , )x y   are systematic errors on the image 

point which are calculated from camera calibration parameters 

as in equation 8: 
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(8) 

where
1 2 3( , , )K K K  are the radial lens distortion coefficients, 

1 2( , )P P are the decentring les distortion terms, 
1 1( , )A B are the 

electronic biases, namely affinity and shear, and ( , )p px y are 

principal point coordinates of the sensor. The radius, r, is 

defined as the distance between the image point and the 

principal point.  

The photogrammetric space resection using collinearity 

equations means determining the exterior orientation 

parameters of the camera, ( , , , , , )C C CX Y Z   , from 

equation 6. Since digital photogrammetry is not the main 

subject of this paper, further information can be found on [15, 

18].  

On the other hand, the space intersection by collinearity 

condition, means determining the object coordinates, (X,Y,Z), 

given the exterior orientation parameters. The intersection 

procedure is briefly explained in the following subsubsection 

as it plays an important role in the presented algorithm. 

3.2.2 Space Intersection 
Applying space intersection for two images, whose exterior 

orientation parameters are specified, makes it possible to 

calculate the object coordinates for points that lie in the stereo 

overlap area. 

To calculate the object point coordinates, the collinearity 

equations of subsubsection 3.2.1 can be reformed to the 

following format: 

( ) 0

( ) 0

C C

C C

D
X X Z Z

F

E
Y Y Z Z

F

   

   

 (9) 

where: 

1 2 3( ). ( ). ( )

D x x

E R R R y y

F f

  

    
   

  
   
      

 (10) 

As implied by equation 9, for projection of each object point 

at one image, two equations can be formed. There are three 

unknown parameters (X,Y,Z) while there are only two 

equations. That's when the same two collinearity equations 

from the stereo pair are added to the observation equations; 

i.e. there are four observation equations from two images to 

solve three unknowns. The optimum solution is acquired by 

applying least squares adjustment. Readers are referred to 

[15,18] for further details. 

3.3 Least Squares Matching 
Least squares matching provides several advantages over 

simple normalized cross correlation (NCC). First of all, the 

sub-pixel accuracy, in NCC, is obtained virtually by 

interpolating the correlation values on discrete pixels to 

estimate the fractional peak. However, LSM directly results in 

sub-pixel accuracy. Although the normalized cross correlation 

is invariant against mean gray level, it is not to local 

dissimilarities and rotations. Since the object moves and 

rotates in different directions, its radiometric and geometric 

characteristics may differ from one image to another so much 

that the correlation coefficient would not be an ideal measure 

of similarity and translation (shift) would not be an effective 

transformation between two image patches [19]. LSM allows 

simultaneous radiometric correction and local geometrical 

transformation, whereby the system parameters are 

automatically assessed, corrected, and thus optimized during 

the least squares iterations.  

As any other matching problem, given a coordinate at left 

image, the problem is to find its corresponding point at right 

one. Assume two image windows are given as discrete two-

dimensional functions f(x,y), and g(x,y). f(x,y) and g(x,y) can 

be defined as conjugate patches of a stereo pair in the ‘left’ 

and the ‘right’ images respectively. Typically, f(x,y) is named 

as the template and g(x,y) as the target. If the centers of these 

two windows are correspondent and completely correlated, 

then the following equation is true. 

( , ) ( , )f x y g x y  (11) 

The difference values, f(x,y)-g(x,y), are actually the distances 

between gray levels of the pixels in template and target. 

Finding the match point means determining the location of the 

function values g(x,y). This is achieved by minimizing a goal 

function which measures the distances between grey levels in 

template and target. The goal function to be minimized in 

LSM approach is the L2-norm of the residuals of least squares 

estimation. 

In the least squares context, equation 11 can be considered as 

an observation equation which models the vector of 

observations f(x, y) with a function g(x, y), whose location in 

the right image needs to be determined. The location can be 

described by shift parameters. However, to account for a 

variety of systematic image deformations and to obtain a 

better match, image shaping parameters and radiometric 

corrections are introduced in addition to shift parameters. In 

this study, the image shaping is considered as an affine 

transformation and the radiometric parameters are considered 

as simple radiometric gain and drift.  

According to the aforementioned hypotheses, equation 11 can 

be re-formulated. 

0 1 1 2( , ) ( ( ), ( ))f x y G G g T x T y    (12) 

G0 and G1 are the radiometric correction parameters, 

respectively gain and drift. T1 and T2 are the affine 

transformations which move each pixel of the template from 

left image to its correspondent on the right image as follows. 

1 0 1 2

2 0 1 2

( )

( )

T x a a x a y

T y b b x b y

  

  
 (13) 

In equation 12, for each template there are eight unknown 

parameters. Therefore, the template should contain at least 

eight pixels. However, more pixels are needed to ensure that 

the template window reflects the spectral properties of the 

region around its center point, the point that should be 

matched to a point on right image. Later, the approach used in 

this paper to determine the window size adoptively is 

explained.  

Assume the template is an N by N window from the left image 

and the problem is to find the corresponding point to its center 

at the right image using equation 12.  For each pixel in the 

template with coordinate (xi, yi), one observation equation can 
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be formed by equation 12. Therefore, there are N2 observation 

equations and eight unknowns. To solve this problem, the 

least squares approach is utilized.  

In order to use the least square solution of subsection 3.1, the 

observation and unknown vectors are first formed. 

 

2 2

1 1

2 2

0 1 0 0 1 1 2 2

( , )

( , )
   ,

( , )
N N

T

f x y

f x y
L

f x y

X G G a b a b a b

 
 
 
 
 
  



 (14) 

The function at the right hand of equation 12 should be 

replaced by its Taylor series approximation: 

0
0 0 0 0 0

0 1 1

0 0 0 0 0
0 0 0 0 0

1 1 1 1 1

( , ) [1

]

g
f x y G G g g G

x

g g g g g
G G x G x G y G X

y x y x y



   



    

    

 

(15) 

where: 

0 0 0 0 0 0 0

0 1 2 0 1 2( , )g g a a x a y b b x b y      (16) 

in which any variable with superscript "0" represents the 

initial value of that variable which will be updated at any 

iteration of adjustment by the estimated
ˆ

X  (equation 4) and 

image gradients ( , )
g g

x y

 

 
are calculated by convolutions of 

target window by Sobel kernels. 

As indicated by equation 15, the integer pixel coordinates 

from left image are transformed to decimal coordinates at the 

right images. Therefore, it would be necessary to estimate the 

gray level of the points at non-integer coordinates. The 

method used in this study is a bilinear interpolation. Bilinear 

interpolation is an extension of linear interpolation for 

interpolating functions of two variables on a regular 2D grid 

(like an image). Assume the problem is to determine the gray 

value at location (x0, y0) on the right image. The coordinates 

(x0, y0) are decomposed to their integer and fractional parts: 

0 0

0 0

int( )

int( )

P x x P p

Q y y Q q

   

   
 (17) 

The final gray value g(x0, y0) is computed using equation 18. 

0 0( , )g x y A p B q C p q D         (18) 

where: 

( , )

( 1, 1) ( , ) - ( 1, ) - ( , 1)

( , 1) - ( , )

( 1, ) - ( , )

D g P Q

C g P Q g P Q g P Q g P Q

B g P Q g P Q

A g P Q g P Q



     

 

 

 (19) 

As a non-linear problem, LSM accuracy is highly dependent 

to the initial values fed to the adjustment. The solution to 

handle this sensitivity, applied in this paper, is to perform 

LSM in three steps. In the first step, the equation 12 is 

reduced to a simpler problem in which the only shaping 

transformation are the shift parameters; i.e. only a0 and b0 are 

considered as unknown variables while (G0, a2, b1) are set to 

zero and (G1, a1, b2) are set to one. In the second step, the 

original problem is reduced so that radiometric gain and offset 

(G0, G1) are the only unknown parameters while a0 and b0 are 

set fixed to their values updated by the first step and (a1, b2) 

are set to one and (a2, b1) are set to zero. Finally, in the last 

step, the entire original problem with all eight parameters has 

to be solved. However, the approximate values for (G0, G1, a0, 

b0) are this time closer to the reality in comparison with their 

very initial values. This, greatly, helps the adjustment 

iterations to converge to the globally optimum solutions. 

However, the important issues to ensure robustness of LSM 

are yet remained as defining the initial shift values (a0, b0), 

defining the template window size (N) and giving appropriate 

weights to observations (defining matrix P in equation 4). 

They are all addressed in Section 4.  

4. TRACKING METHODOLOGY 
Back to the tracking problem, in order to follow the features 

trajectory in true scale, the exterior orientation of the cameras 

should be determined in the same scale. As described in 

Section 2, the arbitrary object-space coordinate is defined on 

the first frames of the test. Therefore, the object-space 

position of the features can be coordinated.  

If the features can be located precisely on the first frames, the 

exterior orientation parameters of the cameras can be 

determined via space resection. In this paper, a semi-

automatic circle detection technique is developed. It is used 

for locating the features on the first and the second frames of 

the cameras as well as evaluating the accuracy of the proposed 

tracking algorithm. 

4.1 Circular Target Detection 
As the object moves in different directions and orientations, 

the circular targets are no longer projected as exact circles on 

the image. Their image is transformed to an ellipse which 

might be oriented at any direction. 

As explained before, the exterior orientation parameters of the 

cameras will be extracted using the targets of the first frames. 

It means that precision of determining the centers of the 

circular features on the first frames plays an important role on 

the accuracy of exterior orientation parameters. Consequently, 

the accuracy of space intersection for further tracked features 

would highly rely on the accuracy of exterior orientation 

parameters of the cameras too. According to the sensor pixel 

size, lens focal length and the initial distance of the cameras 

from the targets, one pixel error in detecting the targets would 

lead to five millimeters error on camera positioning, applying 

the rule of error propagation. This clarifies the importance of 

a proper target detection method which is able to localize the 

targets by sub-pixel accuracy.  

To determine the accurate center coordinates of the circular 

targets, the approximate place of the circle is given to the 

algorithm manually. According to the diameter of the circles 

(2 centimeters), the approximate distance of the cameras from 

the targets (1500 millimeters), the lens focal length and sensor 

pixel size, it can be seen that each circle is imaged on an area 

of 25 pixels width. Therefore, an area of 50 pixels around the 

approximate position of the circle is considered as the 

processing window. 

The processing window is converted to binary system 

applying Otsu's method of gray level thresholding in which 

the first and zero order cumulative moments of the image 

histogram are used to determine the global threshold [20]. The 

binary window is searched for closed-connected components 

by defining eight-neighbor connectivity [21]. As a result, the 

parent regions, ignoring the child holes, are segmented from 
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the background. Putting the constraints on the upper and 

lower limits of candidate circular element's primitive and area, 

the closed components are reduced to the circular target of 

interest whose center should be determined. 

Then, an ellipse is fit to the pixels of the inner border of the 

closed region by least squares fitting, according to the 

following equation: 

2 2 2

0 0( ) .( )x x K y y R     (20) 

where (x,y) are the coordinates of the pixels on the inner 

border of the component, (x0,y0,K,R) are the unknown 

parameters of ellipse, namely, center coordinates in x and y 

direction, scale factor and radius. Putting equation 20 into 

least squares adjustment iterations, the terminating condition 

is set to ensure that the estimated parameters are converged 

better than 0.01 pixel. This means that the targets centers are 

determined by 0.01 pixel accuracy. 

4.2 Tracking Algorithm 
Starting by the first frames, the exterior orientations of the 

cameras are determined via space resection using collinearity 

condition (equation 7), where object coordinates are known, 

the image features (circles centers) are measured accurately 

applying the circular target detection technique. The exterior 

orientation parameters of the cameras are hold fixed through 

the test as the cameras are not moving. 

Going to the second frames, the object is moved and positions 

of features both on object space and image plane are varied. In 

the second frames, again, features are detected by the circular 

target detection method. Applying photogrammetric space 

intersection leads to the 3D coordinates of the targets in 

object-space frame. 

Thereupon, the tracking is completely automated. Assume 

that we have a feature, to be tracked from the tth frame to the 

t+1th frame. The following procedure is developed to solve 

this problem.  

1- The object coordinates of the feature from the tth and t-1th 

frames are already determined via space intersection of stereo 

pairs.  

2- As the frame interval is so short in time, the movements of 

the object between two successive frames can be considered 

linear with constant speed. Therefore, the approximate object 

coordinates of the feature in the t+1th frame can be estimated 

linearly from the coordinates in the previous frames by: 

 
1

.
t t

X V t X


    (21) 

where V is the velocity vector estimated from two previous 

frames as follows. 

1t t
X X

Y Y

Z Z
V

t

    
    

    
         


 

(22) 

Substituting equation 22 into equation 21 yields the final 

formula to approximate coordinates of the object in the t+1th 

frame. 

1 1

2

t t t
X X X

Y Y Y

Z Z Z

 

     
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 
     
          

 (23) 

3- The object coordinates of the t+1th frame are fed into 

equation 6 to estimate the image coordinates (xt+1, yt+1) where 

the object point is imaged.  

1
1 1

1

1
1 1

1

( )

( )

t
t t

t

t
t t

t

U
x x f

W

V
y y f

W


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


 



   

   

 (24) 

4- The approximate values for shift parameters (a0 and b0) to 

transfer the feature from the tth frame to the t+1th frame can 

now be estimated as: 

1

0

1

0

t t

t t

a x x

b y y





 

 
 (25) 

5- The approximate imaging scale of the feature is determined 

by the following equation. 

1 2 1 2 2

1

1 2 1 2 1 2

( ) ( )

( ) ( ) ( )

t t

p pt

t C t C t C

x x y y f

X X Y Y Z Z


 



  

   


    
 (26) 

Multiplying the target diameter (two centimeters) by the 

imaging scale, gives an approximation of feature size on the 

t+1th frame. Therefore, the LSM template window size (N) is 

adoptively defined as twice the approximate feature size on 

the t+1th frame. 

6- The least squares matching technique is now performed on 

the t+1th frame as "right" image and the tth frame as "left" 

image. LSM is initiated by the values of a0 and b0 from 

equation 25. The exact image coordinates (xt+1, yt+1) of the 

feature at the t+1th frame along with their estimated variances 

are calculated at LSM procedure. 

If t is equal to 2, then the observations weights are determined 

by the accuracy output of circular target detection. Elsewhere, 

the least squares matching errors from the tth frame determine 

the observations weights. 

7- The same procedure from the third step is performed for 

the other stereo pair as well.  

8- Applying space intersection on stereo images, the accurate 

3D object-space coordinates of the feature at the t+1th frame 

are calculated. 

9- Moving to the next frame, the whole procedure from the 

first step is repeated and the feature is sequentially tracked 

through the frames while its object-space coordinates are 

calculated as well. 

5. EXPERIMENTAL RESULTS 
The results of camera calibration and exterior orientation form 

the first frames are summarized in Tables 1 and 2. Figure 2 

illustrates the cameras orientations with regard to the defined 

object-space coordinate system (Section 2). 
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Table 1. Calibration parameters of the cameras 

Camera2 Camera1 Parameter 

0.008288 0.007962 K1 
0.000032 0.000075 K2 

-0.000056 -0.000062 K3 

-0.000053 0.000503 P1 

0.000332 0.000171 P2 

-0.004828 -0.085548 xp (mm) 
-0.001796 -0.024051 yp (mm) 

4.829939 4.820844 f  (mm) 

-0.000967 0.000335 A1 
0.000181 -0.000562 B1 

 

Table 2. Exterior orientation parameters of the cameras 

Parameter Camera1 Camera2 

ω (deg) 4.069±0.102 -8.653±0.109 

φ 42.626±0.075 48.112±0.074 

κ 79.710±0.066 90.781±0.055 

XC (cm) 137.05±0.11 147.41±0.13 

YC 2.81±0.17 62.33±0.18 

ZC 127.08±0.15 127.38±0.16 

 

 

Fig 2. Cameras, initial position of targets, object-space 

coordinate system 

 

The systematic error of image observations based on equation 

8 and the parameters of Table 1 are plotted against the radial 

distance from the principal point. The results are compared for 

two cameras in figure 3.  

 
Fig 3. Systematic errors of cameras vs. radial distance 

 

Figure 3 explains how much camera calibration affects the 

accuracy of the results and why separate calibration of both 

cameras should be performed while the cameras are nominally 

identical. 

In order to assess the accuracy of the feature tracking 

algorithm, the image coordinates of the features are measured 

by semi-automatic circular target detection (subsection 4.1) on 

some random frames and the results are compared by those of 

LSM tracking. The mean residuals at eight features are 

illustrated in Figure 4. The average tracking error is about 

0.11 pixel at x-direction and 0.15 pixel at y-direction. 

 
Fig 4. Average tracking error of test features 

In order to evaluate the accuracy of motion modeling, in terms 

of magnitude, the true distances are compared with those of 

computed 3D coordinates. As the targets are originally printed 

at predefined coordinates on the paper, it is known that the 

distances between targets 1 and 2, targets 3 and 6, targets 4 

and 5 as well as targets 7 and 8, are the same and equal to 160 

millimeters. Therefore, the distances between these targets 

from their computed coordinates at each epoch are calculated 

and compared to the true 160 millimeters length. The distance 

residual between targets i and j, at frame t,  t

i jr 
, is computed 

as: 

     
2 2 2

160

 ( , ) {(1,2), (3,6), (4,5), (7,8)}

t i j i j i j

i j t t t t t tr X X Y Y Z Z

for i j

       



 

(27) 

in which, ( , , )i i i

t t tX Y Z  are the 3D coordinates of the target i 

computed at frame t. t

i jr  is the error of calculating the 

distance between targets i and j at moment t. 

Entirely, the mean and variance of the distance residuals are 

0.65 and 0.34 millimeter respectively. 

In order to evaluate the accuracy of positioning in terms of 

orientation, the true right angles are compared with those of 

computed coordinates as follows: 

1 X X
90 cos

X X

 ( , , ) { (4,1,2), (3,5,6), (5,8,7) }

where:
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(28) 

In equation 28, t

i j k    is called orientation residual which is 

the error of calculating the right angle between three targets i, 

j and k whose vertex is target  j.  
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Totally, the mean and variance of the orientation residuals are 

0.27 and 0.12 degree respectively. 

This means that, on average, the features trajectory is 

determined in 3D object-space by magnitude precision of 0.65 

millimeter and orientation precision of 0.27 degree. 

In Figures 5-6, samples of tracking results for two frames is 

depicted where the upper image shows the 3D coordinates of 

the objects, the lower left image is the frame of the first 

camera on which the features are tracked and demonstrated by 

colored plus signs, and the lower right image is the 

correspondent frame from the second camera on which the 

targets are shown by respective colors. 

6. CONCLUSION 
The least squares matching technique is improved in this 

study to track the image features. As a flexible registration 

technique, LSM takes both geometric and radiometric 

transformations of two images into account and enables a 

precise sub-pixel registration. As a non-linear solution, 

however, LSM is strongly sensitive to initial values of 

variables. Therefore, a three step adjustment procedure is 

performed which reduces this sensitivity by predicting more 

suitable approximations at each step.  

Howbeit, the most important initial values to be determined 

are the shift parameters which transfer the feature from one 

frame to its subsequent one. Unlike conventional studies, a 

ground-based adaptive methodology is developed in this 

paper to approximate the shift initial values, determine the 

window size and define observations weights.  The proposed 

methodology is tested on a set of pre-defined features while 

they are moved and rotated irregularly. The tracking 

technique succeeds in following the features frame-by-frame 

precisely. Experiments show that having a fixed window size 

and estimating the initial shift parameters based on cross 

correlation make the LSM fails because of rapid object 

deformations. The proposed algorithm tracks the features 

more accurately than 0.15 pixel in both directions.  

At the same time as extracting the features, their 3D 

coordinates are calculated from stereo pairs and motion 

vectors are visualized with magnitude and orientation 

precisions better than 0.7 millimeter and 0.3 degree. 

The circular targets are chosen in this study to make the 

evaluation of tracking procedure possible. In the future, the 

proposed algorithm will be evaluated on body motion 

detection which will be highly applicable in actor animation, 

speech recognition and relevant applications.  
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Fig 5. Sample of feature tracking results  

 

 
Fig 6. Sample of feature tracking results  

 

 


