
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

40

Application of Object Oriented Metrics to Java and C
Sharp: Comparative Study

Arti Chhikara

Maharaja Agrasen College,Delhi,India

Priyavart Sangwan

HCL Technologies,Noida,India

ABSTRACT
This research paper presents the comparative study of various

object oriented software metrics and their application on C

Sharp and Java language. A set of eleven well established

object-oriented metrics are applied on twenty C Sharp and

Java programs to measure and compare the important features

such as complexity, testability and maintainability of both

languages. This analysis shows that C# is a modern and

powerful language which is fully object-oriented as compared

to Java. The primary objective of this study is to investigate

the applicability of Object–Oriented software metrics to

measure the complexity of a Java and C Sharp software

applications.

Keywords C Sharp, Java, Object-Oriented Software

Development, Software Metric.

1. INTRODUCTION

The design and development of software using object oriented

paradigm is gaining popularity day by day. Object Oriented

Analysis and Design of software provide many benefits to

both the program designer and the user. Object Orientation

contributes to the solution of many problems associated with

the development and quality of software product. This

technology promises greater programmer productivity, better

quality of software and lesser maintenance cost [4][7].

Object oriented software development requires an approach

different from more traditional functional decomposition and

data flow development methods. While the functional and

data flow approaches commence by considering the systems

behavior and/or data separately, object oriented analysis

approaches the problem by looking for system entities that

combine them. Object oriented analysis and design focus on

objects as the primary agents involved in a computation; each

class of data and related operations are collected into a single

system entity[2][5].

There are several object oriented programming languages that

support object oriented paradigm. Most commonly used are

Java, C++, C sharp, and Vb.net. C sharp is Microsoft’s new

programming language for .net platform. It combines some of

the best features of modern programming languages such as

Java, C++ or Visual Basic [5]. Java is an object oriented

language which is highly suited for modeling the real world

and solving the real world problems[6]. In this research paper

different Java and C sharp programs are studied. We have

applied the different object oriented metrics on the same set of

20 programs in C Sharp and JAVA each. Then, we have

calculated the statistical values like mean, median, standard

deviation, etc., for the values obtained. After that, we have

compared the results for both languages. Based on the

empirical quantitative analysis, we have compared the object-

orientation of the two languages C Sharp and JAVA.

2. LITERATURE RESEARCH

2.1 Metrics Relevant for this Study

One of the most widely referenced sets of object-oriented

software metrics has been proposed by Chidamber and

Kemerer [1][3]. At the 1991 Object Oriented Programming

Systems, Languages and Applications conference (OOPSLA),

Shyam Chidamber and Chris Kemerer presented a paper [1]

outlining six metrics for use with object-oriented

programming languages. The metrics used in this study are

given below:

1. Weighted method per class

2. Depth of Inheritance Tree

3. Number of child

4. Response for a class

5. Message passing coupling

6. Data abstraction coupling

7. Number of local subunits.

8. Inheritance Dependencies

9. Factoring Effectiveness

10. Reuse Ratio

11. Specialization Index

3. RESULT ANALYSIS

In this section, four tables are created to study the object-

orientation properties of both the languages—C Sharp and

JAVA. The first two tables show the metrics values for all the

programs in C Sharp and JAVA. The third and fourth tables

show the statistical values such as mean and median for all the

programs in C Sharp and JAVA respectively. On the basis of

these tables, we compare the object-orientation properties of

both the languages.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

41

3.1 Statistical Data Analysis

Table 2 shows the statistical values calculated for the metric values obtained for C Sharp programs.

Table 4 shows the statistical values calculated for the metric values obtained for JAVA programs.

Table 1: Metric Values Calculated for C Sharp Programs

Table2: Statistical Values Calculated for C Sharp Programs

Metric Type Minimum Maximum Mean Median Stand. Deviation

WMC 1.00 3.33 1.98 2.00 0.58

RFC 1.00 4.33 2.57 2.75 1.00

DIT 0.33 2.00 1.08 1.00 0.59

NOC 0.50 1.50 0.75 0.58 0.29

MPC 0.00 1.00 0.24 0.20 0.30

DAC 0.00 0.67 0.29 0.32 0.19

NUS 1.00 2.50 1.65 1.66 0.42

ID 0.20 2.00 0.97 1.00 0.66

FE 0.30 1.50 0.55 0.50 0.28

SI 1.00 3.00 1.89 2.00 0.87

RR 0.25 1.00 0.43 0.50 0.17

Metrics

Type

Program Number

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

WMC 2.00 2.25 1.65 2.25 2.00 1.00 2.25 2.00 2.00 1.00 3.33 1.50 2.00 2.00 1.50 1.50 2.00 3.33 2.00 2.00

RFC 3.00 3.00 4.33 1.00 1.00 3.33 2.00 4.00 2.00 1.50 3.00 3.00 2.50 2.50 3.33 1.00 2.00 4.00 3.00 2.00

DIT 2.00 1.00 1.50 1.00 1.50 2.00 0.50 1.00 1.00 2.00 0.75 0.50 0.50 1.00 1.50 2.00 0.33 0.33 0.33 1.00

NOC 1.00 0.75 0.50 0.50 0.50 1.00 1.00 0.50 0.50 0.50 1.00 0.50 1.00 1.00 1.00 1.50 0.67 0.50 0.50 0.50

MPC 1.00 0.33 0.20 0.20 0.00 0.00 0.10 0.00 0.00 0.00 0.20 1.00 0.33 0.33 0.33 0.20 0.00 0.50 0.00 0.00

DAC 0.30 0.00 0.00 0.40 0.50 0.00 0.00 0.33 0.33 0.50 0.67 0.50 0.20 0.50 0.20 0.33 0.33 0.30 0.20 0.20

NUS 2.00 1.00 1.65 1.65 2.00 2.00 2.50 1.00 1.00 1.33 1.50 1.50 1.00 2.00 2.00 1.67 1.67 2.00 2.00 1.50

ID 2.00 0.50 0.50 1.00 0.50 0.33 2.00 1.00 1.00 1.00 0.20 0.30 0.50 1.00 2.00 2.00 2.00 1.00 0.33 0.33

FE 0.50 0.50 0.30 0.30 0.60 0.67 0.50 1.00 1.50 0.50 0.33 0.50 0.67 0.33 0.33 0.33 0.60 0.50 0.50 0.50

SI 3.00 3.00 1.00 1.00 1.50 3.00 2.00 1.50 1.00 1.00 2.00 3.00 1.00 1.00 2.00 2.00 1.50 2.00 3.00 2.00 2.00

RR 0.50 0.33 0.25 0.25 0.50 0.50 0.50 0.33 1.00 0.33 0.25 0.55 0.50 0.50 0.30 0.50 0.25 0.30 0.50 0.50

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

42

Table 3: Metric Values Calculated for JAVA Programs

Metric

s Type

 Program Number

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1

0

P1

1

P1

2

P1

3

P1

4

P1

5

P1

6

P1

7

P1

8

P1

9

P2

0

WMC 3.0

0

2.2

5

1.6

5

2.0

0

2.0

0

1.2

5

2.2

5

2.0

0

2.0

0

1.6

5

3.3

3

1.5

0

2.0

0

2.0

0

1.0

0

1.6

7

2.0

0

3.3

3

2.0

0

2.0

0

RFC 2.0

0

3.0

0

3.3

3

2.0

0

3.3

3

3.3

3

2.6

7

3.0

0

4.4

8

1.5

0

3.0

0

3.3

3

2.5

0

2.0

0

3.3

3

3.3

3

2.0

0

4.1

0

3.0

0

2.0

0

DIT 2.0

0

1.0

0

1.0

0

1.0

0

0.5

0

2.0

0

0.5

0

0.3

3

1.0

0

1.0

0

0.7

5

0.5

0

0.5

0

1.0

0

1.0

0

2.2

5

0.3

3

0.3

3

0.5

0

0.5

0

NOC 2.0

0

0.7

5

0.5

0

1.0

0

0.5

0

1.5

0

0.5

0

0.5

0

0.5

0

0.6

5

0.6

5

1.0

0

1.0

0

1.0

0

0.7

5

1.7

5

0.6

7

0.5

0

0.5

0

0.5

0

MPC 2.0

0

0.3

3

0.2

0

0.3

3

0.0

0

0.0

0

0.2

0

0.0

0

0.0

0

0.0

0

0.5

0

0.5

0

0.3

3

0.3

3

0.3

3

0.0

0

0.0

0

0.3

3

0.0

0

0.0

0

DAC 0.3

0

0.0

0

0.0

0

0.4

0

0.6

7

0.0

0

0.0

0

0.0

0

0.3

3

0.5

0

0.6

7

0.5

0

0.5

0

0.6

7

0.0

0

0.3

3

0.3

3

0.3

0

0.3

0

0.4

0

NUS 3.0

0

2.0

0

1.6

5

1.6

5

2.0

0

2.0

0

2.0

0

1.6

7

1.6

7

1.3

3

1.5

0

1.5

0

1.5

0

2.5

0

2.0

0

1.6

7

1.6

7

2.5

0

2.0

0

2.0

0

ID 2.0

0

1.0

0

0.5

0

0.5

0

1.0

0

0.3

3

2.0

0

1.0

0

1.0

0

1.0

0

0.5

0

0.5

0

1.0

0

1.0

0

2.0

0

2.2

5

2.0

0

0.5

0

0.5

0

0.3

3

FE 0.5

0

0.5

0

0.3

0

0.3

0

0.5

0

0.6

7

0.6

7

0.6

7

1.2

5

0.5

0

0.3

3

0.6

7

0.6

7

0.3

3

0.3

3

0.3

3

0.5

0

0.6

7

0.5

0

0.5

0

SI 2.0

0

2.0

0

1.0

0

1.0

0

1.0

0

3.0

0

2.0

0

2.0

0

1.0

0

1.0

0

2.0

0

3.0

0

1.0

0

1.0

0

1.0

0

2.00 2.00 2.0

0

3.0

0

2.0

0

2.0

0

RR 0.2

5

0.3

3

0.2

5

0.2

5

0.5

0

0.5

0

0.3

3

0.3

3

0.3

0

0.3

3

0.2

5

0.7

5

0.5

0

0.5

0

0.3

0

0.2

5

0.2

5

0.3

0

0.5

0

0.3

0

 Table4: Statistical Values Calculated for JAVA Programs

Metric Type Minimum Maximum Mean Median Stand. Deviation

WMC 1.00 3.33 2.04 2.00 0.59

RFC 1.50 4.48 2.86 3.00 0.77

DIT 0.33 2.25 0.89 0.87 0.57

NOC 0.50 2.00 0.83 0.66 0.44

MPC 0.00 2.00 0.26 0.20 0.44

DAC 0.00 0.67 0.31 0.33 0.23

NUS 1.33 3.00 1.89 1.83 0.40

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

43

ID 0.33 2.25 1.04 1.00 0.64

FE 0.30 1.25 0.53 0.50 0.21

SI 1.00 3.00 1.75 2.00 0.71

RR 0.25 0.75 0.36 0.31 0.13

3.2 Comparison Graphs

Comparison Graph for WMC

 C SHARP PROGRAM JAVA PROGRAM

Fig 1: Comparision Graph for WMC

Comparison Graph for RFC

 C SHARP PROGRAM JAVA PROGRAM
Fig 2: Comparison Graph for RFC

0

0.5

1

1.5

2

2.5

3

3.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

44

Comparison Graph for DIT

 C SHARP PROGRAM JAVA PROGRAM

Fig 3: Comparison Graph for DIT

Comparison Graph for NOC

 C SHARP PROGRAM JAVA PROGRAM

Fig 4: Comparision Graph for NOC

0

0.5

1

1.5

2

2.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

0

0.5

1

1.5

2

2.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

45

Comparison Graph for MPC

 C SHARP PROGRAM JAVA PROGRAM
Fig 5: Comparison Graph for MPC

Comparison Graph for DAC

 C SHARP PROGRAM JAVA PROGRAM

Fig 6: Comparison Graph for DAC

0

0.5

1

1.5

2

2.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

46

Comparison Graph for NUS

 C SHARP PROGRAM JAVA PROGRAM

Fig 7: Comparison Graph for NUS

Comparison Graph for ID

 C SHARP PROGRAM JAVA PROGRAM

Fig 8: Comparison Graph for ID

0

0.5

1

1.5

2

2.5

3

3.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

0

0.5

1

1.5

2

2.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

47

Fig 9: Comparison Graph for FE

Fig 10: Comparison Graph for SI

Comparison Graph for FE

 C SHARP PROGRAM JAVA PROGRAM

Comparison Graph for SI

 C SHARP PROGRAM JAVA PROGRAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

0

0.5

1

1.5

2

2.5

3

3.5

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

48

Fig 11: Comparison Graph for RR

4 Comparative Study of the Obtained

Results

1. Weighted Method per Class metric predicts time and effort

that is required to build and maintain a class. A high value of

WMC has been found to lead to more faults. Classes with

large number of methods are likely to be more application

specific, limiting the possibility of reuse. The mean values of

these metrics are greater in Java than C Sharp as shown in

figure 1. This implies that C Sharp programs are simpler and

less complex.

2 The RFC metric is the count of the set of all methods that

can be invoked in response to a message to an object of the

class or by some methods in the class. This includes all

methods accessible within the class hierarchy. This metric

looks at the combination of the complexity of a class through

the number of methods and the amount of communication

with other classes. The larger the number of methods that can

be invoked from a class through messages, the greater the

complexity of the class. From our study we found that C

Sharp programs are less complex as the mean value of this

metric is low as relevant from table 2 and 4.

3 The depth of a class within the inheritance hierarchy is the

maximum number of steps from the class node to the root of

the tree and is measured by the number of ancestor classes.

The deeper a class is in the hierarchy, the more methods it is

likely to inherit, making it more complex. Deeper trees

constitute greater design complexity, since more methods and

classes are involved, but at the same time reusability also

increases due to inheritance. The values of DIT are greater in

C Sharp than Java which implies the depth of classes is more

in C Sharp.

 4 The number of children is the number of immediate

subclasses subordinate to a class in the hierarchy. It is an

indicator of the potential influence a class can have on the

design and on the system. The greater the number of children,

the greater the likelihood of improper abstraction of the parent

and may be a case of misuse of subclassing. However, high

NOC indicates high reuse, since inheritance is a form of reuse.

A class with many children may also require more testing.

High NOC has been found to indicate fewer faults. This may

be due to high reuse, which is desired. But NOC values are

greater for C Sharp programs, which implies C Sharp classes

have more children (breadth).But depth is more important

than breadth to reuse components. Thus C Sharp programs

and classes are more reusable than Java. The comparative
values of NOC are shown in Figures 4.

5 Message passing coupling metric measures the numbers of

messages passing among objects of the class. A larger number

indicates increased coupling between this class and other

classes in the system. This makes the classes more dependent

on each other which increases the overall complexity of the

system and makes the class more difficult to change. The

assumption behind this metric is that classes interacting with

many other classes are harder to understand and maintain.

When we applied object oriented metrics on several java and c

sharp programs, we observed that the mean value of Message

Passing Coupling (MPC) metric is low for C Sharp programs
than Java programs.

6 Data Abstraction Coupling metric measures the coupling

complexity caused by Abstract Data Types (ADTs). This

metric is concerned with the coupling between classes

representing a major aspect of the object oriented design,

since the reuse degree, the maintenance and testing effort for a

class are decisively influenced by the coupling level between

classes. It is the count of total number of external classes the

given classes uses. Software complexity increases with

Comparison Graph for RR

 C SHARP PROGRAM JAVA PROGRAM

0

0.2

0.4

0.6

0.8

1

1.2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

49

increasing DAC. The value of this metric is low for C Sharp
than Java programs.

7 The Number of Subunit metric is the total number of

functions and procedures defined for the class. As the number

of functions and procedures grows, the class becomes more

fault prone. The complexity also increases with increases

value of local subunits metric. The value of this metric is
found to be low for C Sharp programs.

8 Inheritance Dependencies metric is intended to reflect

characteristics of the inheritance tree. Morris suggests that “it

may be possible to determine a range of values within which

the inheritance tree depth should be maintained. Inheritance

tree depth is likely to be more favorable than breadth in terms

of reusability via inheritance. However, A deeper tree is more

difficult to test than a broader one. The greater the value of

this metric, more will be the complexity of programs.

Comprehensibility may diminish with a large number of

inheritance layers. The mean value of this metric is higher for

Java programs as shown in figure 8.

9 Morris states that “inheritance hierarchies are optimized via

a process called factoring. The purpose of factoring is to

minimize the number of locations within an inheritance

hierarchy in which a particular method is implemented”.

Highly factored applications are more reliable for reasons

similar to those that argue that such applications are more

maintainable. The smaller the number of implementation

locations for the average task, the less likely that errors were

made during coding. The more highly factored an inheritance

hierarchy is the greatest degree to which method reuse occurs.

The more highly factored an application is, the smaller the

number of implementation locations for the average method.

The mean value of this metric is higher for C Sharp as

compared to Java.

10 The reusability metrics Reuse Ratio (RR) and

Specialization Ratio (SR) values also are more for C Sharp

programs than JAVA programs (Figures 10 and 11). That

means, again C Sharp classes are more reusable.

5 CONCLUSIONS AND FUTURE WORK

The results obtained from the comparative study of Java and

C sharp programs show that C sharp is a better object oriented

language than Java. The properties of object-oriented

programming languages like inheritance, polymorphism,

encapsulation, coupling, cohesion, reusability, etc., are much

better for C Sharp programs than for Java programs we have

taken. Hence it makes C sharp more suitable to object

oriented environment.

However, the metrics presented in this paper are by no means

a complete set of object oriented metrics. But this analysis can

be used as a reference by software developers and managers

for building a fault free, reliable and easy to maintain software

product.

5. REFERENCES

[1] Chidamber S., and Kemerer C. (1991), “Towards a

Metrics Suite for Object Oriented Design,’’ Object

Oriented Programming Systems, Languages and

Applications (OOPSLA), Vol 10, pp 197-211.\

[2] Chidamber S., and Kemerer C. (1994),” A Metrics Suite for

Object Oriented Design”, IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476-493.

[3] Chidamber S., Darcy, D. and Kemerer C. (1998),

“Managerial use of Metrics for Object Oriented

Software”: an Exploratory Analysis, IEEE Transaction

on Software Engineering, vol. 24, no. 8, pp. 629-639.

[4] Conte S.D., Sunsmore H.E, and Shen V.Y.,(2003)

Software Engineering Metrics and Models,

Benjamin/Cummings Publications, Menlo Park,

California.

[5] Jain V.K (2001), “The Complete Guide to C#

programming”, First Edition.

[6] Schildt H.,(2006), “Java: The Complete Reference”, 6th

Edition, McGraw Hill Publication, ISBN: 0072263857,

9780072263855.

[7] Wei L., Salley H.(1993), "Maintenance Metrics for the

Object Oriented Paradigm", First International Software

Metrics Symposium. Baltimore, Maryland. Los

Alamitos, California: IEEE Computer Society Press.

