
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

35

Enhanced Insertion Sort Algorithm

Tarundeep Singh Sodhi
Assistant Professor in CSE
dept. at ARNI University,

Kathgarh Indora-H.P.
H.No

B-5
/108, Ganga Singh Nagar

Jandiala road,Tarn-Taran.
Pincode-143401

Surmeet Kaur
Assistant Professor in CSE dept. at

Lovely Professional University,
Jalandhar.

H.No-170A , 2 Partap Nagar,
Opposite Kamal Palace, Sangrur.

Pincode-148001

Snehdeep Kaur
Student of MCA at Guru Nanak

Dev University, Regional
campus, jalandhar.

H.No
B-5

/108, Ganga Singh Nagar
Jandiala road,Tarn-Taran.

Pincode-143401

ABSTRACT

Sorting is integral part of many computer based systems

and applications, as it involves rearranging information

into either ascending or descending order. There are

many sorting algorithms like Quick sort, Heap sort, Merge

sort, Insertion sort, Selection sort, Bubble sort and

Freezing sort. However, efforts have been made to

improve the performance of the algorithm in terms of

efficiency, indeed a big issue to be considered. Major

Emphasis has been placed on complexity by reducing the

Number of comparisons, hence reducing complexity. This

paper presents new sorting algorithm EIS, “ENHANCED

INSERTION SORT”.It is basically an enhancement

toINSERTION SORT (a kind of Hybrid sorting

technique) by making it impressively faster algorithm with

O(n)complexity as compared to O(n2) of insertion sort in

worst case and less than O(n1.585) in average case which is

much better than insertion sort O(n2). It works flawlessly

with huge lists of elements. To prove the effectiveness of

the algorithm, the new algorithm is analyzed, implemented,

tested and results has been carried out and compared with

other major sorting algorithms and the results were

promising.

General Terms

Sorting Algorithm, Hybrid technique, EIS-Enhanced

Insertion sort, NOC- Number of Comparisons, NOE-

Number of elements.

Keywords

Enhanced Insertion sort, EIS, NOC, NOE, Freezing Sort,

complexity, selection sort, bubble sort, transition element.

1. INTRODUCTION
Algorithm is a stepwise method to solve a problem,

efficiently and expressed as a finite sequence of steps.

Algorithms are used for calculation, data processing, and

many other fields.

Sorting has been considered as a fundamental

problem in the study of algorithms, that due to

many reasons:

 The need to sort information is inherent in

many applications.

 Algorithms often use sorting as a key subroutine

and efficient sorting is important to optimize

the use of other algorithms that require sorted

lists to work correctly.

The output should satisfy two major conditions:

 The output is a permutation, or reordering,

of the input. \

 The output is in non decreasing order.

Many researchers considered all sorting techniques had

been discovered, but many useful new sorting

algorithms are recently introduced, for example, library

sort was first published in 2004.

Insertion sorting algorithm is another important

algorithm, used for sorting small lists. But the study

shows that the EIS is more efficient, theoretically,

analytically, and practically as compared to the original
(insertion) sorting algorithm and also good for sorting

bigger lists. Section III presents the concept of EIS

algorithm and its pseudo code. Furthermore, the

implementation, analysis, and comparison with insertion

sort and other algorithms are highlighted.

2. ABOUT INSERTION SORT
The insertion sort, as its name suggests, inserts each

item into its proper place in the final list. The simplest

implementation of this requires two list structures: the

source list and the list into which sorted items are

inserted.

2.1 Example

45 30 60 25 70 20 80 75 15 10
30 45 60 25 70 20 80 75 15 10
30 45 60 25 70 20 80 75 15 10
25 30 45 60 70 20 80 75 15 10
 25 30 45 60 70 20 80 75 15 10
 20 25 30 45 60 70 80 75 15 10
20 25 30 45 60 70 80 75 15 10
20 25 30 45 60 70 75 80 15 10
15 20 25 30 45 60 70 75 80 10
10 15 20 25 30 45 60 70 75 80

 Calculating the number of green elements, we can

observe that no of comparisons in all are 31.

 Red elements show the transitioned elements

3. ENHANCED INSERTION SORT

3.1 Concept
Inserting a new element at desired place in already sorted

part of an and decreasing the number of comparisons of

the array by one for next call. In fact, the Enhanced

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

36

Insertion Sort(EIS) algorithm is an enhancement to the IS

algorithm, but the difference is in the approach as it

compares with the very first element i.e.A[0] in the sorted

part of array, which in fact is the smallest element in the

list at instant , after comparing i
th

element with (i-1)
th

.

This is called as hit method; more we get hit more the

efficiency increases.

Basically sometimes we have element which gets sorted

after (n-1) comparisons i.e at first place A[0] in insertion

sort. So for reducing these useless comparison, why not

we compare the element to be sorted with the very first

element A[0] in the part of list, which is already sorted i.e.

before i
th

element, which we know is the smallest element

up till now.

Further list is divided, selecting a middle element and

comparing to part on its left or right based on the condition

for middle comparison and then comparing after leaving

one element in that particular part, hence reducing the no

of comparisons. The technique is more efficiently suitable

for bigger lists and efficiency increases when the i
th

is

less than A[0] which gives O[n] in worst case.

3.2 Procedure
The whole procedure which shows the enhancement in

the insertion sort technique as described below:-

1. Instead of comparing all the elements from right

to left, we just compare the ith element with

(i-1)th element.

2. If ith > (i-1)th then the element is simply

added/appended to the list i.e no swapping.

Else

3. Compare ith element with ptr, (i.e. first element

which is smallest in current sorted list) as the

elements from A[0]th to A[i-1]th are already

sorted.

4. If ith <ptr then insert ith element before ptr and

ptr to this element. (which is now smallest and

first element in the list)and swap further list

accordingly. Else

5. If the element lies between A[0]th and the (i-1)th

element, then we further divide the total number

of sorted elements or ith by 2 i.e k = (i-1)/2 or

k=i/2. We take the later one.

6. Now compare the ith element with kth element

and check again.

7. If ith < kth, then compare with k-2 and so on until

we find an element kth < ith and then compare

with (k+1)th and swap based on conditions.

8. If ith > kth then compare with k+2 and so on until

we find an element kth > ith and then compare

with (k-1)th and swap ith based on condition 2.

3.3 Pseudo code
1. Calculate length n

2. var i=1,j

3. if (a[i] < a [i-1]), then

4. if (a[i] < a [0]), then

5. set j = 0 and goto-35

6. else j = i/2 and goto-10

7. end if

8. else i++ and repeat-3

9. end if

10. if (a[i]<a[j]), then goto-16

11. elseif (if (a[i] = = a[j]), then

12. set j = j+1 and goto-35

13. end if
14. else goto-25

15. end if

16. while((j-1)>=0), do

17. j = j-2 and if (a[i]>a[j]), then

18. if (a[i] < a [j+1]), then

19. set j = j+1 and goto-35

20. else set j = j+2 and goto-35

21. end if

22. else if (a[i] = =a[j]), then

23. Set j = j+1 and goto-35

24. Else return

25. While (((i-1)-j) > = 0), do

26. J = j+2 and (a[i] < a[j]), then

27. If (a[i] < a [j-1]), then

28. Set j=j-1 and goto-35

29. Else set j+j+0 and goto-35

30. End if

31. Else if (a[i]= = a[j]), then

32. Set j=j+1 and goto-35

33. Else return

34. End if

35. Swap a[i] and a[j]

36. j++

37. while(j=i-1), do

38. i++ and goto-3

39. END

3.4 Analysis and Comparisons

EIS algorithm is easy to analyze as compared to IS

algorithm since the loop does not requires scanning

all i-1 elements (this takes i-1 comparisons) and

then swapping the i
th

element into its appropriate

position as in IS algorithm.

3.4.1. Swaps
We can very well observe that there is no change in

number of swaps in this technique as compared to

insertion sort as the previous list is already sorted in both

the techniques and we just have to find the place for the

next element. For example:

For 10 Elements

5,60,37,28,50,20,160,7,89,10

 Number of swaps in Insertion sort 22

 Number of Swaps in Enhanced insertion sort

22

3.4.2. Complexity

3.4.2.1. Best Case
 In the best case, when all the elements in the array are in

increasing order, then there should be no comparisons

for i=1, 2, 3……..n. So we get the running time in

linear order i.e O(n) which is same as that of insertion sort.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

37

3.4.2.2. Average Case
The average case of enhanced insertion sort is also
quadratic as is the case with insertion sort when we have
an unsorted array, but it reduces the number of comparison
as compared to insertion sort, as it is observed that the
average case of insertion sort can often be as bad as worst

case i.e there may be a need to compare each element A[i]
with each elements in the entire sorted sub array
A[1],A[2],…….A[i-1] and thus the time can be expressed
as a quadratic equation i.e O(n2), but this is never the
case with any unsorted array in EIS.

So in an unsorted array, when the i
th

element to be

sorted lies at A[2]
th

or A[i-2]
th

position we
have maximum number of comparisons which is much
less than the worst case of insertion sort.

For example, consider the list of 106 elements as below,

where we have maximum number of comparisons when

sorted with EIS:

950,50,750,250,751,249,752,248,753,247,754,246,755,245

,756,244,757,243,758,242,759,241,760,240,761,239,762,2

38,763,237,764,236,765,235,766,234,767,233,768,232,769

,231,770,230,771,229,772,228,773,227,774,226,775,225,7

76,224,777,223,778,222,779,221,780,220,781,219,782,218

,781,217,782,216,783,215,784, 214,785, 213,786, 212,787,

211,788,210,789,209,790,208,791,207,792,206,793,794,20

5,795,204,796,203,797,202,798,201,799,200,800

Let us include them one by one.(Green shows the element

to be compared, red represent the current element which is

being added and brackets represents the number of times it

is compared)

Table 1: LISTING

LIST
INPUT

NUMBER
OF
Elements
(NOE) =
 106

950,50,750,250,751,249,752, 248,753, 247,754, 246,755,245,756,
244,757,243,758,242,759,241,760,240,761,239,762,238,763,237,
764,236,765, 235,766, 234,767, 233,768, 232,769, 231,770, 230,771,
229,772,228,773,227,774,226,775, 225,776, 224,777, 223,778, 222,
779, 221,780,220,781,219,782, 218,781, 217,782, 216,783, 215,784,
214,785, 213,786, 212,787, 211,788, 210,789, 209,790, 208,791,207,
792,206,793,794,205,795,204,796,203,797,202,798,201,799,200,800

VALUE OF
(i)

NOE
(Sorted List)

ETI
Element
To
INSERT

LIST AFTER SORTING

NOC
Number

Of
Compari

sons

(NMPC)
Number of
Possible
Comparisons

i = 1 0 50 50,950 1 1
i =2 2 750 50,750,950 2 3
i =3 3 250 50,250,750,950 3 4
i =4 4 751 50,250,750,751,950 3 4
i =5 5 249 50,249,250,750,751,950 4 5
i =6 6 752 50,249,250,750,751,752,950 4 5
i =7 7 248 50,248,249,250,750,751,752,950 4 5
i =8 8 753 50,248,249,250,750,751,752,753,950 4 5
i =9 9 247 50,247,248,249,250,750,751,752,753,950 5 6

i =10 10 754 50,247,248,249,250,750,751,752,753,754,950 5 6
i =11 11 246 50,246,247,248,249,250,750,751,752,753,754,950 5 6
i =12 12 755 50,246,247,248,249,250,750,751,752,753,754,755,950 5 6
i =13 13 245 50,245,246,247,248,249,250,750,751,752,753,754,755,

950
6 7

i =14 14 756 50,245,246,247,248,249,250,750,751,752,753,754,755,
756,950

6 7

i =15 15 244 50,244,245,246,247,248,249,250,750,751,752,753,754,
755,756,950

6 7

i =16 16 757 50,244,245,246,247,248,249,250,750,751,752,753,754,
755,756,757,950

6 7

i =17 17 243 50,243,244,245,246,247,248,249,250,750,751,752,753,
754,755,756,757,950

7 8

i =18 18 758 50,243,244,245,246,247,248,249,250,750,751,752,753,
754,755,756,757,758,950

7 8

i =19 19 242 50,242,243,244,245,246,247,248,249,250,750,751,752,
753,754,755,756,757,758,950

7 8

i =20 20 759 50,242,243,244,245,246,247,248,249,250,750,751,752,
753,754,755,756,757,758,759,950

7 8

i =21 21 241 50,241,242,243,244,245,246,247,248,249,250,750,751, 8 9

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

38

752,753,754,755,756,757,758,759,950
i =22 22 760 50,241,242,243,244,245,246,247,248,249,250,750,751,

752,753,754,755,756,757,758,759,760,950
8 9

i =23 23 240 50,240,241,242,243,244,245,246,247,248,249,250,750,
751,752,753,754,755,756,757,758,759,760,950

8 9

i =24 24 761 50,240,241,242,243,243,245,246,247,249,250,750,751,
752,753,754,755,756,757,758,759,760,761,950

8 9

And so on….So to arrange any nth element in the list,

number of comparisons required are ┌n/4┐+12.

So as we can notice, after n=4 we have 4 times the same

number of comparisons starting from 5,6,7……so on. So

talking about n=48, no of comparisons will be

 15+15+15+15+14+14+14+14+13+13+13……….=449

The number of comparisons as calculated are always less

than n1.585. So the complexity in the worst scenario of

average case will be O(n1. 585) for constant 1.

The complexity may vary from O(n) to O(n1. 585)

For example….for n=48,the number of comparisons
calculated manually are 449 which is less than 481.585 i.e
462.

3.4.2.3 Worst Case
In the worst case of Insertion Sort , when the array

is in decreasing order, one must compare each
element A[i] with each elements in the entire sorted sub
array A[1],A[2],…….A[i-1] and thus the time can be

expressed as a quadratic equation i.e O(n
2

) But in case of

enhanced insertion technique, it is O(n) as we have just 1
comparisons for the first two elements, rest n-2 have
just 2 comparisons. For example:

For the average case like this:-

100 80 70 50 40 20

80 100 70 50 40 20

70 80 100 50 40 20

50 70 80 100 40 20

40 50 70 80 100 20

20 40 50 70 80 100

We get 1+2*4=9comparisons

In general 1+2(n-2) comparisons=O (n)

3.4.3.Example
Consider the same example as below

45 30 60 25 70 20 80 75 15 10

30 45 60 25 70 20 80 75 15 10

30 45 60 25 70 20 80 75 15 10

25 30 45 60 70 20 80 75 15 10

25 30 45 60 70 20 80 75 15 10

20 25 30 45 60 70 80 75 15 10

20 25 30 45 60 70 80 75 15 10

20 25 30 45 60 70 75 80 15 10

15 20 25 30 45 60 70 75 80 10

10 15 20 25 30 45 60 70 75 80

Here as compared to insertion sort there are only 16

So there is always reduction in no of comparisons.

3.4.4 Pseudo code
Insertion sort works by removing an element from the
input data for every repetition of insertion sort, inserting
it into the correct position in the already sorted list, until
no input elements remain. The insertion sort has a

complexity of O(n
2

). In simple pseudo code, insertion
sort algorithm might be expressed as:

1. for j ←1 to length (A)-1

2. key ← A [j]

3. > A[j] is added in the sorted sequence A

[1... j-1]

4. i ← j - 1

5. while i >= 0 and A [i] > key

6. A [i +1] ← A[i]

7. i ← i -1

8. A [i +1] ← key

3.4.5 Stability
As insertion sort is a stable algorithm, enhanced insertion

sort is also stable as a sorting algorithm is stable if

whenever there are two records R and S with

the same key and with R appearing before S in the

original list, R will appear before S in the sorted list.

Table showing comparisons:

Table2: Comparison with recently used algorithm

 Enhanced
Insertion
Sort

Bubble
Sort

Selection
Sort

Insertion
Sort

Best Case
Complexit

y

 O(n)

 O(n2)

 O(n2)

 O(n)

Average

Case
Complexit
y

Less than

O(n1.585)

 O(n2)

 O(n2)

O(n2)

Worst Case

Less than

O(n1.585)

 O(n2)

 O(n2)

 O(n2)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

39

Table3:Comparison with various enhanced algorithms

Enhanced
Insertion
Sort

Enhanced
Selection
Sort[3]

SMS
Algorithm[
8]

Enhanced
Bubble
Sort[3]

Best Case

Complexity

 O(n)

 O(n2)

 O(nlgn)

 O(nlgn)

Average

Case
Complexity

Less than
O(n1.585)

O(n2)

 O(nlgn)

 O(nlgn)

Worst Case

Less than
O(n1.585)

 O(n2)

 O(nlgn)

 O(nlgn)

4. CONCLUSION
This work focuses to provide an enhancement in

insertion sort and making enhanced insertion sort
more efficient for bigger list as it gives less than

O(n1.585) complexity in worst case and reduces near

about half comparison. I t does not requires

scanning all elements, because of its hit method it

provides a boost to sorting, also reduces the

number of comparisons while sorting an array as

compared to O(n
2

) complexity of insertion sort, in
fact it is O(n) in best as well as so met imes in

average case. Furthermore the proposed algorithm is

compared with some recent used algorithms like

bubble sort, selection sort etc. Basically its complexity

varies from O(n) to O(n1.585) .

5. ACKNOWLEDGEMENT
I would like to express my gratitude to all those who

gave me the possibility to complete this work. I would

like to thank my GOD for giving me strength to

complete this task and to my mentor, Mr. Parveen

Kumar for providing support and material related to

the area of this research.

6. REFERENCES
[1] Cormen T, Leiserson C, Rivest R and Stein C. 2001.

Introduction to Algorithms, Tata Mc Graw Hill.

[2] Surmeet Kaur, Tarundeep Singh Sodhi and Parveen

Kumar, May 2012. Freezing Sort, International

Journal of Applied Information Systems VOL2.

[3] Jehad Alnihoud and Rami Mansi, 2010. An

Enhancement of Major Sorting Algorithms, The

International Journal of Information Technology

VOL7.

[4] Rupesh Srivastava, Tarun Tiwari Sweetesh Singh,

2009. Bidirectional Expansion–Insertion Algorithm

for Sorting. Second International Conference on

Emerging Trend in Engineering and Technology,

ICETET-09.

[5] Muhammad Anjum Qureshi 2010. Qureshi Sort: A

new sorting Algorithm.

[6] Seymour Lipschutz, 2011. Data Structures with C,

Shaum Series.

[7] Wang Min, 2010. Analysis on 2-Element Insertion

Sort Algorithm, International Conference on

Computer Design And Appliations (ICCDA).

[8] Rami Mansi,2010. Enhanced Quick Sort Algorithm

International Arab Journal of Information

Technology.

[9] Basit Shahzad and Muhammad Tanvir Afzal,

2007.Enhanced Shell Sort Algorithm, World

Academy of Science,Engineering and Technology.

[10] Sultanullah Jadoon, Salman Faiz Solehria,

MubashirQayum. Optimized Selection Sort

Algorithm is faster than Insertion Sort Algorithm: a

Comparative Study, International Journal of Electrical

and Computer Sciences.

