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ABSTRACT 

This paper presents a Multi-objective Quantum-inspired 

Hybrid Differential Evolution (MQHDE) for the solution of 

software requirements selection problem and its application 

on a real-world project. As the customer requirements change 

from time to time, often software products are developed in an 

iterative or incremental manner so as to deal with these 

changing requirements. The problem is to identify a set of 

requirements to be included in the next release of the software 

product, by minimizing the cost and maximizing the customer 

satisfaction. This problem is referred to as Multi-objective 

Next Release Problem (MONRP) in the jargon of Search-

based Software Engineering (SBSE). The solution to the 

problem of MONRP has been studied by researchers using 

different metaheuristic search techniques. The efficiency of 

the proposed MQHDE is tested on a real-world application 

and the results are compared against the state-of-the-art multi-

objective evolutionary algorithm NSGA-II, and found that the 

performance of MQHDE is promising and therefore can be 

used with confidence for the solution of real-world instances 

of MONRP.   

General Terms 

Software Engineering, Requirements Engineering. 

Keywords 

Search-based software engineering, Multi-objective 
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1. INTRODUCTION 
Search-based Software Engineering (SBSE) has emerged as a 

promising research field. This recent discipline involves the 

modeling and resolution of complex software engineering 

problems as optimization problems, especially with the use of 

metaheuristics [1]. The term Search-based software 

engineering was coined by Mark Harman and Bryan Jones in 

2001 [1], and provided an insight into the application of the 

metaheuristic search techniques to solve different problems in 

the software engineering. Since then the researchers applied 

the search techniques in different phases of the software 

development life cycle starting from requirements 

engineering[2], project planning and cost estimation[3], 

through design[4], testing [5,6] and to maintenance[7]. Most 

of the problems in SBSE are NP-hard and hence cannot be 

solved efficiently by traditional optimization techniques 

especially for the large problem instances.  Therefore, 

metaheuristic search techniques are used for the solution of 

these problems. Though, Metaheuristic search techniques do 

not guarantee to provide optimal solutions, yet, they can 

obtain near-optimal solutions in a reasonable amount of 

computational time. SBSE field is gaining popularity due to 

its ability in handing the complex and large problem 

instances. 

In order to deal with the changing requirements of the 

customers from time to time, often software products are 

developed in an iterative or incremental manner. Companies 

involved in developing and maintaining large complex 

software systems require to determine the requirements of the 

customers to be included into its next release. This problem 

has been formulated as Next Release Problem (NRP) by 

Bagnall  et al. [2] and is widely referenced by researchers in 

the field of search-based software engineering. The problem is 

defined as to identify a set of requirements to be included into 

the next release of the software product, by satisfying the 

demands of the customers to the maximum extent, and at the 

same time ensuring the minimum utilization of the resources 

as far as possible. The goal of NRP is to balance customer 

satisfaction, resource constraints and requirement 

dependencies. In his paper he applied various techniques 

including Greedy algorithms and simulated annealing on a set 

of five randomly generated data sets with increasing 

dimensionality of the problem.  

Greer and Ruhe [8] proposed a Genetic algorithm based 

approach for software release planning in an incremental 

manner. In their paper they presented a new method called 

EVOLVE for software releasing planning. Given a set of 

requirements with their effort estimations and the grouping of 

these requirements into priorities by the customers, the 

method uses a Genetic Algorithm to derive potential release 

plans with in the specified technical constraints. They studied 

the applicability of the approach on a sample software project.  

To model a more realistic and real life application, the NRP 

has been formulated by Zhang et al. [9] as Multi-Objective 

Next Release Problem (MONRP).  As the objectives in real 

applications are contradictory in nature, in his work he 

formulated the problem as multi-objective and defined it as 

the selection of candidate requirements for their 

implementation in the next release of the software product, by 

minimizing the cost of implementing the requirements in 

terms of money, resources, time etc. and at the same time 

maximizing the customer satisfaction by including these 

requirements. Later  Durillo.J. et al.[10] studied MONRP by 

applying  NSGA-II, Pareto GA, Single-objective GA and 

Random Search on a set of six randomly generated data sets 

and experimented with the scaling and boundary issues of the 

MONRP.  

Many researchers studied the MONRP from different 

perspectives. Anthony Finkelstein et al. [11] introduced the 

concept of fairness in requirements optimization using a new 

formulation of MONRP by setting up three fairness models to 

balance the requirements fulfillments among different 

customers. They applied NSGA-II, The Two-Archive 

algorithm and random search on two real world data sets and 

reported the results. Sensitivity analysis in Requirement 

Engineering is studied by Mark Harman et al. [12] to identify 
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requirements that are sensitive to inaccurate cost estimations. 

After performing an empirical study on synthetic and real 

world data set, they confirmed the assumption through 

statistical analysis that, more expensive requirements and 

higher level of inaccuracies tend to have greater impact on 

NRP. The problem of balancing the requirements of today 

with those of future, coined as Today/Future Importance 

analysis (T/FIA) was addressed by Zhang et al. [13]. They 

considered the problem of finding a suitable set of 

requirements that balances the needs of today against the 

needs for future. In their work three objective functions are 

defined - to maximize the customer satisfaction for today, for 

the future and to minimize the implementation cost. They 

reported the results with this formulation on synthetic as well 

real world data set.  

The problem of MONRP is also solved using the recent trends 

in evolutionary algorithms like quantum computing. Charan 

Kumari et al. proposed a Quantum-inspired Elitist Multi-

objective Evolutionary Algorithm (QEMEA) [14] and Multi-

objective Quantum-inspired Hybrid Differential Evolution 

(MQHDE) [15] for the solution of MONRP and studied its 

performance on six benchmark problems derived from the 

literature and found the results to be consistent and superior to 

the results reported in the literature. 

The basic model of MONRP is considered in this work due to 

its wide applicability in all software companies and 

manufacturing companies. As the solution of MONRP 

problem is a supportive aid for the software engineers in 

decision making during requirements engineering phase, the 

data pertaining to a banking sector application project of an 

International software development company is collected and 

studied as a case study.  

The rest of the paper is structured as follows. The formulation 

of software requirements selection process as Multi-Objective 

Next release Problem is presented in Section 2. The pseudo 

code of MQHDE along with the detailed description of the 

concepts is given in Section 3. Section 4 discusses the 

efficacy of the proposed algorithm on a real-world application 

project and reports the results. Finally, concluding remarks are 

given in Section 5. 

2. MULTI-OBJECTIVE NEXT RELEASE 

PROBLEM 
This section explains the Multi-objective Next Release 

Problem for the selection of software requirements as devised 

by Zhang et al. [9].   

 

Assuming that for an existing software, there are ‘m’ 

customers   {c1, c2, c3, .. cm}  who proposed ‘n’ requirements  

{ r1, r2, r3, …rn}, to be considered for the inclusion into next 

release of the product.  Based on the importance of the 

customer, the company assigns a weight factor.  Let the set of 

relative weights associated with each customer cj (1 ≤ j ≤ m) 

is denoted by Weight = { w1, w2, w3,......wm }, where wj ϵ 

[0,1] and   .1
1




m

j
w j    

 

Let the cost associated with each requirement ri ( 1 ≤ i ≤ n) for 

its implementation is designated by Cost = { cost1, cost2, 

cost3, .....costn }.  As the requirements priority differs from 

customer to customer, each customer cj ( 1 ≤ j ≤ m) assigns a 

priority value for each of their requirement ri ( 1 ≤ i ≤ n),  

denoted by value (ri,cj). 

The score of requirement ri  can be calculated as 

),(*
1

c jri

m

j
w jscorei values


                        (1) 

 

      The decision vector x = {x1, x2, x3, .....xn } ϵ {0,1} is a 

solution vector that indicates the requirements that are to be 

included in the next release of the software product. The 

decision variable xi takes a value 1, if the requirement is 

selected for the next release and a 0, otherwise.  

 

The two objectives to optimize can be formulated as 

xi

n

i
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The main goal in implementing the MONRP is to find a set of 

requirements that are to be included in the next release of the 

software product by minimizing the cost and at the same time 

maximizing the customer satisfaction. 

3. Multi-objective Quantum-inspired 

Hybrid Differential Evolution 

Differential Evolution (DE) is a stochastic, population based 

evolutionary algorithm [16] which has been widely applied 

for solving multi-dimensional global optimization problems in 

various fields. But, the design of its mutation and crossover 

operators makes it inapt for many combinatorial optimization 

problems over binary space. On the other hand, on some 

attempted problems Quantum-inspired Evolutionary 

Algorithms (QEAs) [17] performed better than evolutionary 

techniques due to their ability to balance exploration and 

exploitation of the search space, robust search and efficiency 

in representation scheme.   In this section we present a state-

of-the-art elitist Multi-objective Quantum-inspired Hybrid 

Differential Evolution algorithm (MQHDE) [15] which is 

designed not only to make DE suitable for effectively 

handling combinatorial optimization problems but it also 

effectively combines the strengths of Differential Evolution, 

Genetic Algorithm and the principles of Quantum Computing 

and extends it to Multi-objective optimization framework for 

the solution of Multi-objective Next Release Problem. The 

other main features of MQHDE are as follows: 

 It uses an efficient and powerful quantum representation. 
This representation provides probabilistically a linear 

superposition of multiple states and thereby brings an 

additional element of randomness and new dimension 

into the algorithm. It reduces the population size, 

improves the search capability and even speedup the 

convergence. 

 It strikes the right balance between exploration of the 

search space and exploitation of the reached good 

regions in the search space. 

 It also effectively hybridizes Differential Evolution and 

Genetic Algorithm to make the search more effective. In 

every generation 50% of the Quantum population is 

obtained using a Quantum  Mutation operator specially 

designed for multi-objective framework  to guide the 

individuals towards better solutions ( i.e. which increase 

proximity to the Pareto-optimal front). The designed 

mutation operator is adaptive and quite versatile making 

the approach almost parameter free and easy to use 

unlike Quantum-inspired Evolutionary algorithms, where 

the use of quantum rotational gates require careful 
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designing of the lookup table for the rotational angle and 

the direction for updating the quantum individuals which 

is problem specific and improper design of lookup table 

may lead to poor performance of the algorithm. The 

remaining quantum population is obtained using 

Quantum Uniform crossover.  

 Maintains sufficient diversity in the population. 

 Use of Elitism ensures that the quality of solutions in the 

population does not deteriorate and this is further 

strengthened by the used representation and the quantum 

mutation and crossover operators. 

 Use of time tested Fast Non-domination Sorting [18]. 

 Does not require the maintenance of external archive for 

storing non-dominated solutions. 

 Scalability to more number of objectives  

 Consistent performance in terms of Quality Pareto 

solutions with good spread, more number of solutions in 

the obtained front and Faster convergence. 

This section describes the framework of the MQHDE. The 

pseudo code of MQHDE is presented in Algorithm1.  

3.1 Representation 
MQHDE employs a probabilistic representation that is based 

on the concepts of qubits. It maintains a quantum population 

Q = (q1,q2,q3,….qn)  of size ‘n’, where qi is a qubit individual 

defined as  

                        
),...3,2,1(  imiiiqi      ,                            (4)                                                                              

where m is the length of the qubit individual. The probability 

that qubit is in state ‘0’ is represented by 
2

 ij
  and in state 

‘1’ by  

2

1  ij . Each 
 ij

is initialized in the range [-1, 1].  

 

Each qubit individual qi is observed to make a binary solution 

Pi , using the following pseudo code. 

 

procedure  Observe(q) 

begin 

 j = 1 

 while (j < m) 

 { 

     if (rand[0,1] < 
2

 ij ) 

          pij = 0 

     else 

          pij = 1 

     end; 

     j = j + 1 

 } 

end 

3.2 Mutation operator 

The Mutation operator of DE is applied on qubit individuals 

and is represented as [19] 

 

    qi(t)
   =  qelite (t-1)  + F * (qr1(t-1) – qr2(t-1) )            (5)  

                                      

where r1 and r2 are two random numbers, and are  distinct and 

also different from the running index i. The parameter t 

denotes the generation number. qelite is an elite picked up 

randomly from the elites belonging to the best non-dominated 

front obtained in the previous quantum population.  F is the 

mutation control parameter and is generally set in the range of 

[0, 2].  The designed mutation operator is adaptive and quite 

versatile making the approach almost parameter free and easy 

to use.   

 

 Algorithm1: Pseudo code of MQHDE 

1: t = 0 

2: Initialize  Q(t) a population of ‘N’ qubit individuals with  

   ‘m’  qubits in each. 

3: Obtain P(t) by observing the states of Q(t). 

4: Evaluate fitness of P(t). 

5: Perform  fast non-dominated   sort on  P(t) 

6: while not termination condition do 

7:      t   =  t +1 

8:      Obtain 50% of the offspring population Q(t)  using the   

         quantum mutation  operator  applied on  parent              

         population  Q(t-1)  and elites of Q(t-1) as   shown below: 

 qi(t)
   =  qelite(t-1)  + F * (qr1(t-1) – qr2(t-1) ),  

   where r1 ≠ r2  ≠ i   and     F ϵ [0,2].  

9:      Obtain the remaining offspring population of Q(t)   using 

          Quantum uniform crossover.  

10:     Obtain P(t) by observing the states of Q(t). 

11:     Evaluate the fitness of P(t). 

12:     Perform  fast non-dominated   sort on  P(t-1) U P(t)  

13:     Form Q(t)  by  accommodating  distinct   quantum  

           individuals  pertaining to   the different   Pareto-fronts  

          starting   from   the best   front  by taking crowding    

          distance into consideration.      

 

3.3 Crossover Operator 
The crossover operation operates on the original Quantum 

individuals. In MQHDE, Uniform crossover is used with a 

crossover probability of 0.8. In this process, each  offspring 

quantum individual is generated by randomly selecting each 

quantum gene from either of the two selected quantum 

individual parents. 

3.4 Selection 
The qubit individuals of the next generation are selected after 

performing a fast non-dominated sorting [18] on the population 

obtained by combining parent and offspring populations. In 

this process, for each solution two entities are computed - 

domination count np, the number of solutions which dominate 

the solution p and  Sp, a set of solutions that the solution p  

dominates.  Hence, all solutions in the first nondominated front 

will have their domination count as zero. Then, for each 

solution p with np = 0, the domination count of each member 

(q) of its set Sp  is decremented by one. Then the second 

nondominated front is identified as all q for which the 

domination count becomes zero. The process is repeated until 

all the fronts are identified. 

The quantum population Q(t) for the next generation is 

obtained by accommodating  the   quantum  individuals  

belonging to   various   Pareto-fronts   starting   from   the  first   

front.  In case, the number of quantum individuals present in 

the considered Pareto front is less than or equal to the number 

of vacant slots, then all the solutions of the front are 

accommodated. Otherwise, based on the available slots 

quantum individuals are selected by taking crowding distance 

measure into consideration, to ensure diversity.   
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4. CASE STUDY: PERFORMANCE 

EVALUATION OF MQHDE ON A REAL-

WORLD INSTANCE OF MONRP   
This section presents the solution of real world instance of 

MONRP problem concerning a banking project using 

MQHDE. This data is provided by a large multinational 

software development company but the identity of the 

company and the project details cannot be revealed due to the 

company’s policies and privacy issues related to an ongoing 

project.  In this section the performance of MQHDE is 

examined with respect to the well-known state-of-the-art 

multi-objective evolutionary algorithm NSGA-II. The 

description of the problem and the other details are presented 

in the beginning of this section followed by the results 

obtained by the two algorithms. The performance of the 

algorithms is evaluated based on different metrics, after 

performing 100 independent runs. An in-depth analysis of the 

obtained results is presented towards the end of this section. 

4.1 Problem Description 
The data set consists of 10 customers and 60 requirements. 

Each customer is ranked with some weight factor on the scale 

of 1.0 to 10.0; revealing the importance of the customer to the 

company. The cost of implementing each requirement is 

provided in terms of GBP. Each customer assigned a grade to 

each requirement on a scale of 0 to 5 indicating the priority of 

the requirement. 

4.2 Algorithmic Parameters  
The population size is taken as 100. The performance 

measures are calculated after 10000 function evaluations. In 

NSGA-II, tournament selection is used for the selection of 

parents. The genetic operators used are - Single point 

crossover with a crossover probability of 0.9 and bitwise 

random mutation with a mutation probability of 0.1. In 

MQHDE,   the mutation control parameter F is randomly 

initialized between 0 and 2, and a uniform crossover with a 

crossover probability of 0.8 is considered. 

4.3 Metrics for Performance Evaluation 
All comparisons are based on qualitative and quantitative 

measures. Qualitative comparison is based on the plots of the 

final Pareto fronts obtained. For assessing the quality of the 

results obtained by the multi-objective algorithms two issues 

are generally taken into consideration: (i) convergence  

towards the Pareto-optimal front (ii) maintaining the diversity 

in the obtained solutions. In this paper, we have considered 

three metrics – (a) Generational Distance (GD) to measure 

closeness of the obtained solutions to the Pareto optimal front 

(b) Spread (∆) to measure the diversity among the obtained 

solutions and (c) Hypervolume (HV) for measuring both 

closeness and diversity. 

 

In order to compute Generational distance and Spread metrics, 

a Pareto optimal front is required. As Pareto optimal front is 

not known in this case, a reference Pareto optimal front is 

constructed by collecting the non-dominated solutions 

obtained during 50 independent runs of the MQHDE and 

NSGA-II. 

 

 Metric for Convergence 
The Generational Distance (GD) [20] metric calculates the 

average distance of the obtained solutions from the Pareto 

optimal front as 

                  
Q

Q

i
d i

GD




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
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Where di is the Euclidean distance between the solution i in 

the obtained front and the nearest member of Pareto optimal 

front and Q represents the number of solutions  in the 

obtained front. This metric is applied after normalizing the 

objective function values. For an ideal distribution, this metric 

takes a value zero. 

 Metric for Diversity   
The spread metric ∆ [20] measures the extent of spread by the 

obtained solutions 
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where di  can be any distance measure between consecutive 

solutions and    is the mean value of these distance measures. 

The parameter   
 is the distance between the extreme 

solutions of obtained front and Pareto optimal front 

corresponding to the m-th objective function.  M corresponds 

to the number of objective functions and Q represents the 

number of solutions in the obtained front. This metric is 

applied after normalizing the objective function values.  This 

metric takes a value of zero, for an ideal distribution, 

 

 Metric for Convergence and Diversity 
The Hypervolume (HV) [20] metric calculates the volume 

covered by the members of the obtained front in the objective 

space.  Mathematically, for each solution i ϵ Q (number of 

solutions in the obtained front),  a hypercube νi  is constructed  

with a reference point w and the solution i as the diagonal 

corners of the hypercube.  The reference point is found by 

taking the maximum possible objective values. And as the 

objective function values are of differing magnitude, the 

objective function values are normalized and (1, 1) is taken as 

the reference point.  A union of all the hyper cubes is found 

and its hypervolume is calculated.   

)
1

(
Q
i ivolumeHV


   , (8) 

The statistical results are collected after performing 100 

independent runs, and the results are tabulated and also 

illustrated by statistical box plots. 

 

 

Table 1. Results of performance metrics 

 NSGA-II MQHDE 

 Mean Std. Mean Std. 

Generational 

Distance 

0.001650 0.000615 0.000624 0.000153 

Spread 0.794417 0.043972 0.369149 0.030922 

Hypervolume 0.662813 0.024792 0.722523 0.009454 
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4.4 Performance Evaluation 
The Pareto fronts obtained by NSGA-II and MQHDE after  

10000 function evaluations are shown in Figure 1. The visual  
analysis of the Pareto fronts reveals that MQHDE is able to 

strike a balance between exploration and exploitation of the 

search space in terms of convergence and diversity. NSGA-II 

is able to converge better but not succeeded in maintaining the 

diversity. And also the range of solutions obtained by 

MQHDE is higher than NSGA-II. 

The mean and standard deviation of the all the three metrics 

for both the algorithms are listed in Table 1. It is apparent 

from the reported results in Table 1 that the performance of 

MQHDE is superior to NSGA-II in terms of achieving 

convergence and in maintaining good diversity in the 

solutions. The smaller values of the Generational distance and 

spread of MQHDE indicates the exploitation and exploration 

capabilities of the algorithm. The larger value of 

Hypervolume metric measuring both the convergence and 

diversity also proves the efficacy of the algorithm over 

NSGA-II. The smaller values of the standard deviation in all 

the three metrics, proves the consistent performance of 

MQHDE. 

 

Figures 2, 3 and 4 shows respectively the box plots of 

Generational Distance, Spread and Hypervolume indicators 

found by NSGA-II and MQHDE. We can see that the values 

obtained by MQHDE are superior to the ones obtained by 

NSGA-II. Furthermore, as the notches in each box plot do not 

overlap, we can conclude, with 95% confidence, that the true 

medians do differ.  
 

 
 

 

 

 

5. CONCLUSION 
This paper presents a new state-of-the-art elitist Multi-

objective Quantum-inspired Hybrid Differential Evolution 

Algorithm for the solution of MONRP which is a vital 

problem in Search-Based Software Engineering and has broad 

applicability in software and manufacturing industries. 

MQHDE combines the strengths of Quantum Computing, 

Differential Evolution and Genetic Algorithms to maintain the 

right balance between exploration and exploitation of the 

search space. The designed mutation operator is adaptive and 

quite versatile making the approach almost parameter free and 

eeasy to use. The efficacy of MQHDE for the solution of 

Multi-Objective Next release problem is evaluated on a 

MONRP problem pertaining to a real-world banking 

application. The features of MQHDE help it delivers 

consistent performance in terms of convergence to the optimal 

front, maintaining good spread among the Pareto-optimal 

solutions, and fast convergence compared to NSGA-II. The 

comparison of MQHDE and NSGA-II is based upon the 

obtained Pareto fronts, range of extreme points and the 

performance indicators –Generational Distance (GD), Spread 

(∆) and Hypervolume (HV). The results not only prove the 

effectiveness and efficiency of MQHDE in the solution of 

(a). Pareto front obtained by NSGA-II 

 

 

 

(b). Pareto front obtained by MQHDE 

(c). Pareto front obtained by NSGA-II & MQHDE 

Figure 1 : Pareto fronts  

 

Figure 2 : Box plot of Generational Distance 

indicator by (1) NSGA-II (2) MQHDE 
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MONRP but also indicate the superior performance of 

MQHDE over NSGA-II.  The performance of MQHDE is 

promising and therefore can be used with confidence for the 

solution of even larger real-world instances of MONRP.  
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