
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

28

Search-based Software Requirements Selection:
A Case Study

A. Charan Kumari

Department of Physics & Computer Science
Dayalbagh Educational Institute

Dayalbagh, Agra, India

K. Srinivas
Department of Electrical Engineering

Dayalbagh Educational Institute
Dayalbagh, Agra, India

ABSTRACT

This paper presents a Multi-objective Quantum-inspired

Hybrid Differential Evolution (MQHDE) for the solution of

software requirements selection problem and its application

on a real-world project. As the customer requirements change

from time to time, often software products are developed in an

iterative or incremental manner so as to deal with these

changing requirements. The problem is to identify a set of

requirements to be included in the next release of the software

product, by minimizing the cost and maximizing the customer

satisfaction. This problem is referred to as Multi-objective

Next Release Problem (MONRP) in the jargon of Search-

based Software Engineering (SBSE). The solution to the

problem of MONRP has been studied by researchers using

different metaheuristic search techniques. The efficiency of

the proposed MQHDE is tested on a real-world application

and the results are compared against the state-of-the-art multi-

objective evolutionary algorithm NSGA-II, and found that the

performance of MQHDE is promising and therefore can be

used with confidence for the solution of real-world instances

of MONRP.

General Terms

Software Engineering, Requirements Engineering.

Keywords

Search-based software engineering, Multi-objective

optimization, Multi-objective next release problem.

1. INTRODUCTION
Search-based Software Engineering (SBSE) has emerged as a

promising research field. This recent discipline involves the

modeling and resolution of complex software engineering

problems as optimization problems, especially with the use of

metaheuristics [1]. The term Search-based software

engineering was coined by Mark Harman and Bryan Jones in

2001 [1], and provided an insight into the application of the

metaheuristic search techniques to solve different problems in

the software engineering. Since then the researchers applied

the search techniques in different phases of the software

development life cycle starting from requirements

engineering[2], project planning and cost estimation[3],

through design[4], testing [5,6] and to maintenance[7]. Most

of the problems in SBSE are NP-hard and hence cannot be

solved efficiently by traditional optimization techniques

especially for the large problem instances. Therefore,

metaheuristic search techniques are used for the solution of

these problems. Though, Metaheuristic search techniques do

not guarantee to provide optimal solutions, yet, they can

obtain near-optimal solutions in a reasonable amount of

computational time. SBSE field is gaining popularity due to

its ability in handing the complex and large problem

instances.

In order to deal with the changing requirements of the

customers from time to time, often software products are

developed in an iterative or incremental manner. Companies

involved in developing and maintaining large complex

software systems require to determine the requirements of the

customers to be included into its next release. This problem

has been formulated as Next Release Problem (NRP) by

Bagnall et al. [2] and is widely referenced by researchers in

the field of search-based software engineering. The problem is

defined as to identify a set of requirements to be included into

the next release of the software product, by satisfying the

demands of the customers to the maximum extent, and at the

same time ensuring the minimum utilization of the resources

as far as possible. The goal of NRP is to balance customer

satisfaction, resource constraints and requirement

dependencies. In his paper he applied various techniques

including Greedy algorithms and simulated annealing on a set

of five randomly generated data sets with increasing

dimensionality of the problem.

Greer and Ruhe [8] proposed a Genetic algorithm based

approach for software release planning in an incremental

manner. In their paper they presented a new method called

EVOLVE for software releasing planning. Given a set of

requirements with their effort estimations and the grouping of

these requirements into priorities by the customers, the

method uses a Genetic Algorithm to derive potential release

plans with in the specified technical constraints. They studied

the applicability of the approach on a sample software project.

To model a more realistic and real life application, the NRP

has been formulated by Zhang et al. [9] as Multi-Objective

Next Release Problem (MONRP). As the objectives in real

applications are contradictory in nature, in his work he

formulated the problem as multi-objective and defined it as

the selection of candidate requirements for their

implementation in the next release of the software product, by

minimizing the cost of implementing the requirements in

terms of money, resources, time etc. and at the same time

maximizing the customer satisfaction by including these

requirements. Later Durillo.J. et al.[10] studied MONRP by

applying NSGA-II, Pareto GA, Single-objective GA and

Random Search on a set of six randomly generated data sets

and experimented with the scaling and boundary issues of the

MONRP.

Many researchers studied the MONRP from different

perspectives. Anthony Finkelstein et al. [11] introduced the

concept of fairness in requirements optimization using a new

formulation of MONRP by setting up three fairness models to

balance the requirements fulfillments among different

customers. They applied NSGA-II, The Two-Archive

algorithm and random search on two real world data sets and

reported the results. Sensitivity analysis in Requirement

Engineering is studied by Mark Harman et al. [12] to identify

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

29

requirements that are sensitive to inaccurate cost estimations.

After performing an empirical study on synthetic and real

world data set, they confirmed the assumption through

statistical analysis that, more expensive requirements and

higher level of inaccuracies tend to have greater impact on

NRP. The problem of balancing the requirements of today

with those of future, coined as Today/Future Importance

analysis (T/FIA) was addressed by Zhang et al. [13]. They

considered the problem of finding a suitable set of

requirements that balances the needs of today against the

needs for future. In their work three objective functions are

defined - to maximize the customer satisfaction for today, for

the future and to minimize the implementation cost. They

reported the results with this formulation on synthetic as well

real world data set.

The problem of MONRP is also solved using the recent trends

in evolutionary algorithms like quantum computing. Charan

Kumari et al. proposed a Quantum-inspired Elitist Multi-

objective Evolutionary Algorithm (QEMEA) [14] and Multi-

objective Quantum-inspired Hybrid Differential Evolution

(MQHDE) [15] for the solution of MONRP and studied its

performance on six benchmark problems derived from the

literature and found the results to be consistent and superior to

the results reported in the literature.

The basic model of MONRP is considered in this work due to

its wide applicability in all software companies and

manufacturing companies. As the solution of MONRP

problem is a supportive aid for the software engineers in

decision making during requirements engineering phase, the

data pertaining to a banking sector application project of an

International software development company is collected and

studied as a case study.

The rest of the paper is structured as follows. The formulation

of software requirements selection process as Multi-Objective

Next release Problem is presented in Section 2. The pseudo

code of MQHDE along with the detailed description of the

concepts is given in Section 3. Section 4 discusses the

efficacy of the proposed algorithm on a real-world application

project and reports the results. Finally, concluding remarks are

given in Section 5.

2. MULTI-OBJECTIVE NEXT RELEASE

PROBLEM
This section explains the Multi-objective Next Release

Problem for the selection of software requirements as devised

by Zhang et al. [9].

Assuming that for an existing software, there are ‘m’

customers {c1, c2, c3, .. cm} who proposed ‘n’ requirements

{ r1, r2, r3, …rn}, to be considered for the inclusion into next

release of the product. Based on the importance of the

customer, the company assigns a weight factor. Let the set of

relative weights associated with each customer cj (1 ≤ j ≤ m)

is denoted by Weight = { w1, w2, w3,......wm }, where wj ϵ

[0,1] and .1
1




m

j
w j

Let the cost associated with each requirement ri (1 ≤ i ≤ n) for

its implementation is designated by Cost = { cost1, cost2,

cost3,costn }. As the requirements priority differs from

customer to customer, each customer cj (1 ≤ j ≤ m) assigns a

priority value for each of their requirement ri (1 ≤ i ≤ n),

denoted by value (ri,cj).

The score of requirement ri can be calculated as

),(*
1

c jri

m

j
w jscorei values


 (1)

 The decision vector x = {x1, x2, x3,xn } ϵ {0,1} is a

solution vector that indicates the requirements that are to be

included in the next release of the software product. The

decision variable xi takes a value 1, if the requirement is

selected for the next release and a 0, otherwise.

The two objectives to optimize can be formulated as

xi

n

i
t if *minimize

1
cos1 


 (2)

 xi

n

i
scoreif *maximize

1
2 


 (3)

The main goal in implementing the MONRP is to find a set of

requirements that are to be included in the next release of the

software product by minimizing the cost and at the same time

maximizing the customer satisfaction.

3. Multi-objective Quantum-inspired

Hybrid Differential Evolution

Differential Evolution (DE) is a stochastic, population based

evolutionary algorithm [16] which has been widely applied

for solving multi-dimensional global optimization problems in

various fields. But, the design of its mutation and crossover

operators makes it inapt for many combinatorial optimization

problems over binary space. On the other hand, on some

attempted problems Quantum-inspired Evolutionary

Algorithms (QEAs) [17] performed better than evolutionary

techniques due to their ability to balance exploration and

exploitation of the search space, robust search and efficiency

in representation scheme. In this section we present a state-

of-the-art elitist Multi-objective Quantum-inspired Hybrid

Differential Evolution algorithm (MQHDE) [15] which is

designed not only to make DE suitable for effectively

handling combinatorial optimization problems but it also

effectively combines the strengths of Differential Evolution,

Genetic Algorithm and the principles of Quantum Computing

and extends it to Multi-objective optimization framework for

the solution of Multi-objective Next Release Problem. The

other main features of MQHDE are as follows:

 It uses an efficient and powerful quantum representation.
This representation provides probabilistically a linear

superposition of multiple states and thereby brings an

additional element of randomness and new dimension

into the algorithm. It reduces the population size,

improves the search capability and even speedup the

convergence.

 It strikes the right balance between exploration of the

search space and exploitation of the reached good

regions in the search space.

 It also effectively hybridizes Differential Evolution and

Genetic Algorithm to make the search more effective. In

every generation 50% of the Quantum population is

obtained using a Quantum Mutation operator specially

designed for multi-objective framework to guide the

individuals towards better solutions (i.e. which increase

proximity to the Pareto-optimal front). The designed

mutation operator is adaptive and quite versatile making

the approach almost parameter free and easy to use

unlike Quantum-inspired Evolutionary algorithms, where

the use of quantum rotational gates require careful

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

30

designing of the lookup table for the rotational angle and

the direction for updating the quantum individuals which

is problem specific and improper design of lookup table

may lead to poor performance of the algorithm. The

remaining quantum population is obtained using

Quantum Uniform crossover.

 Maintains sufficient diversity in the population.

 Use of Elitism ensures that the quality of solutions in the

population does not deteriorate and this is further

strengthened by the used representation and the quantum

mutation and crossover operators.

 Use of time tested Fast Non-domination Sorting [18].

 Does not require the maintenance of external archive for

storing non-dominated solutions.

 Scalability to more number of objectives

 Consistent performance in terms of Quality Pareto

solutions with good spread, more number of solutions in

the obtained front and Faster convergence.

This section describes the framework of the MQHDE. The

pseudo code of MQHDE is presented in Algorithm1.

3.1 Representation
MQHDE employs a probabilistic representation that is based

on the concepts of qubits. It maintains a quantum population

Q = (q1,q2,q3,….qn) of size ‘n’, where qi is a qubit individual

defined as

),...3,2,1( imiiiqi  , (4)

where m is the length of the qubit individual. The probability

that qubit is in state ‘0’ is represented by
2

 ij
 and in state

‘1’ by

2

1  ij . Each
 ij

is initialized in the range [-1, 1].

Each qubit individual qi is observed to make a binary solution

Pi , using the following pseudo code.

procedure Observe(q)

begin

 j = 1

 while (j < m)

 {

 if (rand[0,1] <
2

 ij)

 pij = 0

 else

 pij = 1

 end;

 j = j + 1

 }

end

3.2 Mutation operator

The Mutation operator of DE is applied on qubit individuals

and is represented as [19]

 qi(t)
 = qelite (t-1) + F * (qr1(t-1) – qr2(t-1)) (5)

where r1 and r2 are two random numbers, and are distinct and

also different from the running index i. The parameter t

denotes the generation number. qelite is an elite picked up

randomly from the elites belonging to the best non-dominated

front obtained in the previous quantum population. F is the

mutation control parameter and is generally set in the range of

[0, 2]. The designed mutation operator is adaptive and quite

versatile making the approach almost parameter free and easy

to use.

 Algorithm1: Pseudo code of MQHDE

1: t = 0

2: Initialize Q(t) a population of ‘N’ qubit individuals with

 ‘m’ qubits in each.

3: Obtain P(t) by observing the states of Q(t).

4: Evaluate fitness of P(t).

5: Perform fast non-dominated sort on P(t)

6: while not termination condition do

7: t = t +1

8: Obtain 50% of the offspring population Q(t) using the

 quantum mutation operator applied on parent

 population Q(t-1) and elites of Q(t-1) as shown below:

 qi(t)
 = qelite(t-1) + F * (qr1(t-1) – qr2(t-1)),

 where r1 ≠ r2 ≠ i and F ϵ [0,2].

9: Obtain the remaining offspring population of Q(t) using

 Quantum uniform crossover.

10: Obtain P(t) by observing the states of Q(t).

11: Evaluate the fitness of P(t).

12: Perform fast non-dominated sort on P(t-1) U P(t)

13: Form Q(t) by accommodating distinct quantum

 individuals pertaining to the different Pareto-fronts

 starting from the best front by taking crowding

 distance into consideration.

3.3 Crossover Operator
The crossover operation operates on the original Quantum

individuals. In MQHDE, Uniform crossover is used with a

crossover probability of 0.8. In this process, each offspring

quantum individual is generated by randomly selecting each

quantum gene from either of the two selected quantum

individual parents.

3.4 Selection
The qubit individuals of the next generation are selected after

performing a fast non-dominated sorting [18] on the population

obtained by combining parent and offspring populations. In

this process, for each solution two entities are computed -

domination count np, the number of solutions which dominate

the solution p and Sp, a set of solutions that the solution p

dominates. Hence, all solutions in the first nondominated front

will have their domination count as zero. Then, for each

solution p with np = 0, the domination count of each member

(q) of its set Sp is decremented by one. Then the second

nondominated front is identified as all q for which the

domination count becomes zero. The process is repeated until

all the fronts are identified.

The quantum population Q(t) for the next generation is

obtained by accommodating the quantum individuals

belonging to various Pareto-fronts starting from the first

front. In case, the number of quantum individuals present in

the considered Pareto front is less than or equal to the number

of vacant slots, then all the solutions of the front are

accommodated. Otherwise, based on the available slots

quantum individuals are selected by taking crowding distance

measure into consideration, to ensure diversity.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

31

4. CASE STUDY: PERFORMANCE

EVALUATION OF MQHDE ON A REAL-

WORLD INSTANCE OF MONRP
This section presents the solution of real world instance of

MONRP problem concerning a banking project using

MQHDE. This data is provided by a large multinational

software development company but the identity of the

company and the project details cannot be revealed due to the

company’s policies and privacy issues related to an ongoing

project. In this section the performance of MQHDE is

examined with respect to the well-known state-of-the-art

multi-objective evolutionary algorithm NSGA-II. The

description of the problem and the other details are presented

in the beginning of this section followed by the results

obtained by the two algorithms. The performance of the

algorithms is evaluated based on different metrics, after

performing 100 independent runs. An in-depth analysis of the

obtained results is presented towards the end of this section.

4.1 Problem Description
The data set consists of 10 customers and 60 requirements.

Each customer is ranked with some weight factor on the scale

of 1.0 to 10.0; revealing the importance of the customer to the

company. The cost of implementing each requirement is

provided in terms of GBP. Each customer assigned a grade to

each requirement on a scale of 0 to 5 indicating the priority of

the requirement.

4.2 Algorithmic Parameters
The population size is taken as 100. The performance

measures are calculated after 10000 function evaluations. In

NSGA-II, tournament selection is used for the selection of

parents. The genetic operators used are - Single point

crossover with a crossover probability of 0.9 and bitwise

random mutation with a mutation probability of 0.1. In

MQHDE, the mutation control parameter F is randomly

initialized between 0 and 2, and a uniform crossover with a

crossover probability of 0.8 is considered.

4.3 Metrics for Performance Evaluation
All comparisons are based on qualitative and quantitative

measures. Qualitative comparison is based on the plots of the

final Pareto fronts obtained. For assessing the quality of the

results obtained by the multi-objective algorithms two issues

are generally taken into consideration: (i) convergence

towards the Pareto-optimal front (ii) maintaining the diversity

in the obtained solutions. In this paper, we have considered

three metrics – (a) Generational Distance (GD) to measure

closeness of the obtained solutions to the Pareto optimal front

(b) Spread (∆) to measure the diversity among the obtained

solutions and (c) Hypervolume (HV) for measuring both

closeness and diversity.

In order to compute Generational distance and Spread metrics,

a Pareto optimal front is required. As Pareto optimal front is

not known in this case, a reference Pareto optimal front is

constructed by collecting the non-dominated solutions

obtained during 50 independent runs of the MQHDE and

NSGA-II.

 Metric for Convergence
The Generational Distance (GD) [20] metric calculates the

average distance of the obtained solutions from the Pareto

optimal front as

Q

Q

i
d i

GD





















1

2

21

 , (6)

Where di is the Euclidean distance between the solution i in

the obtained front and the nearest member of Pareto optimal

front and Q represents the number of solutions in the

obtained front. This metric is applied after normalizing the

objective function values. For an ideal distribution, this metric

takes a value zero.

 Metric for Diversity
The spread metric ∆ [20] measures the extent of spread by the

obtained solutions

 


   



 

M
m

dQd e
m

M
m

Q
i

dd id e
m

1
1

1
1

1 , (7)

where di can be any distance measure between consecutive

solutions and is the mean value of these distance measures.

The parameter
 is the distance between the extreme

solutions of obtained front and Pareto optimal front

corresponding to the m-th objective function. M corresponds

to the number of objective functions and Q represents the

number of solutions in the obtained front. This metric is

applied after normalizing the objective function values. This

metric takes a value of zero, for an ideal distribution,

 Metric for Convergence and Diversity
The Hypervolume (HV) [20] metric calculates the volume

covered by the members of the obtained front in the objective

space. Mathematically, for each solution i ϵ Q (number of

solutions in the obtained front), a hypercube νi is constructed

with a reference point w and the solution i as the diagonal

corners of the hypercube. The reference point is found by

taking the maximum possible objective values. And as the

objective function values are of differing magnitude, the

objective function values are normalized and (1, 1) is taken as

the reference point. A union of all the hyper cubes is found

and its hypervolume is calculated.

)
1

(
Q
i ivolumeHV


  , (8)

The statistical results are collected after performing 100

independent runs, and the results are tabulated and also

illustrated by statistical box plots.

Table 1. Results of performance metrics

 NSGA-II MQHDE

 Mean Std. Mean Std.

Generational

Distance

0.001650 0.000615 0.000624 0.000153

Spread 0.794417 0.043972 0.369149 0.030922

Hypervolume 0.662813 0.024792 0.722523 0.009454

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

32

4.4 Performance Evaluation
The Pareto fronts obtained by NSGA-II and MQHDE after

10000 function evaluations are shown in Figure 1. The visual
analysis of the Pareto fronts reveals that MQHDE is able to

strike a balance between exploration and exploitation of the

search space in terms of convergence and diversity. NSGA-II

is able to converge better but not succeeded in maintaining the

diversity. And also the range of solutions obtained by

MQHDE is higher than NSGA-II.

The mean and standard deviation of the all the three metrics

for both the algorithms are listed in Table 1. It is apparent

from the reported results in Table 1 that the performance of

MQHDE is superior to NSGA-II in terms of achieving

convergence and in maintaining good diversity in the

solutions. The smaller values of the Generational distance and

spread of MQHDE indicates the exploitation and exploration

capabilities of the algorithm. The larger value of

Hypervolume metric measuring both the convergence and

diversity also proves the efficacy of the algorithm over

NSGA-II. The smaller values of the standard deviation in all

the three metrics, proves the consistent performance of

MQHDE.

Figures 2, 3 and 4 shows respectively the box plots of

Generational Distance, Spread and Hypervolume indicators

found by NSGA-II and MQHDE. We can see that the values

obtained by MQHDE are superior to the ones obtained by

NSGA-II. Furthermore, as the notches in each box plot do not

overlap, we can conclude, with 95% confidence, that the true

medians do differ.

5. CONCLUSION
This paper presents a new state-of-the-art elitist Multi-

objective Quantum-inspired Hybrid Differential Evolution

Algorithm for the solution of MONRP which is a vital

problem in Search-Based Software Engineering and has broad

applicability in software and manufacturing industries.

MQHDE combines the strengths of Quantum Computing,

Differential Evolution and Genetic Algorithms to maintain the

right balance between exploration and exploitation of the

search space. The designed mutation operator is adaptive and

quite versatile making the approach almost parameter free and

eeasy to use. The efficacy of MQHDE for the solution of

Multi-Objective Next release problem is evaluated on a

MONRP problem pertaining to a real-world banking

application. The features of MQHDE help it delivers

consistent performance in terms of convergence to the optimal

front, maintaining good spread among the Pareto-optimal

solutions, and fast convergence compared to NSGA-II. The

comparison of MQHDE and NSGA-II is based upon the

obtained Pareto fronts, range of extreme points and the

performance indicators –Generational Distance (GD), Spread

(∆) and Hypervolume (HV). The results not only prove the

effectiveness and efficiency of MQHDE in the solution of

(a). Pareto front obtained by NSGA-II

(b). Pareto front obtained by MQHDE

(c). Pareto front obtained by NSGA-II & MQHDE

Figure 1 : Pareto fronts

Figure 2 : Box plot of Generational Distance

indicator by (1) NSGA-II (2) MQHDE

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

33

MONRP but also indicate the superior performance of

MQHDE over NSGA-II. The performance of MQHDE is

promising and therefore can be used with confidence for the

solution of even larger real-world instances of MONRP.

6. ACKNOWLEDGMENTS

The authors are extremely grateful to Revered Prof. P. S.

Satsangi, Chairman, Advisory Committee on Education,

Dayalbagh Educational Institutions, for continued guidance and

support.

7. REFERENCES

[1]. Mark Harman, Bryan F.Jones. 2001. “Search-based

software engineering”, Information and software

Technology, 833-839.

[2]. A. Bagnall, V. Rayward-Smith, and I.Whittley. 2001.

“The next release problem”, Information and software

technology, 883-890.

[3]. J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M.

Toro. 2001. “An evolutionary approach to estimating

software development projects”, Information and

Software Technology, 875–882.

[4]. R. Lutz. 2001. “Evolving good hierarchical

decompositions of complex systems”, Journal of

Systems Architecture, 613–634.

[5]. P. McMinn, M. Harman, D. Binkley, and P. Tonella.

2006. “The species per path approach to search-based

test data generation”, International Symposium on

Software Testing and Analysis, 13–24.

 [6]. R M Hierons, Z Li, M Harman. 2008. “Search

Algorithms for Regression Test Case Prioritization”,

IEEE Transactions on Software Engineering, 225-237.

 [7]. M. O’Keeffe and M. O’Cinneide. 2006. “Search-based

software maintenance”, Conference on Software

Maintenance and Reengineering ,249–260.

[8]. D.Greer and G.Ruhe. 2004. “Software release planning :

an evolutionary and iterative approach”, Information &

Software Technology, 243-253.

[9]. Zhang . Y, M. Harman, and A. S. Mansouri, 2007. “The

Multi-Objective Next Release Problem”, GECCO:

proceedings of the 9th annual conference on genetic and

evolutionary computation, 1129–1136.

[10]. Durillo, J., J., Y. Zhang, E. Alba, A. J. Nebro, 2009. “A

study of the multi-objective next release problem”,

SBSE: proceedings of the 2009 1st international

symposium on search based software engineering, 49–

58.

[11]. Finkelstein A, Harman M, Mansouri SA, Ren J, Zhang

Y. 2009. “A search based approach to fairness analysis in

requirement assignments to aid negotiation, mediation

and decision making”, Requirement Eng , 231–245.

[12]. M. Harman, J. Krinke, J. Ren, and S. Yoo. 2009. “Search

Based Data Sensitivity Analysis Applied to Requirement

Engineering”, Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation,

1681–1688.

[13]. Yuanyuan Zhang, Enrique Alba, Juan J. Durillo, Sigrid

Eldh and Mark Harman. 2010 .“Today/Future

importance analysis”. Proceedings of the 12th Annual

Conference on Genetic and Evolutionary Computation.

[14]. A.Charan Kumari, K.Srinivas and M.P.Gupta. 2012.

“Software Requirements Selection using Quantum-

inspired Elitist Multi-objective Evolutionary Algorithm”.

Proceedings of the IEEE-International Conference on

Advances in Engineering, Science and Management,

782-787.

[15]. A. Charan Kumari, K. Srinivas and M. P. Gupta,

“Software Requirements Optimization Using Multi-

Objective Quantum-Inspired Hybrid Differential

Evolution”, EVOLVE – A Bridge between Probability,

Set Oriented Numerics, and Evolutionary Computation II

Advances in Intelligent Systems and Computing, 107-

120.

 [16]. K. Price and R. Storn, 1995. “Differential Evolution – a

simple and efficient adaptive scheme for global

optimization over continuous spaces”, Technical Report,

International Computer Science Institute, Berkley.

Figure 3 : Box plot of spread indicator by

 (1) NSGA-II (2) MQHDE

Figure 4 : Box plot of Hypervolume indicator by

(1) NSGA-II (2) MQHDE

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.21, February 2013

34

[17]. Han, K. H. and J. H. Kim, 2002. “Quantum-inspired

Evolutionary Algorithm for a Class of Combinatorial

Optimization”, IEEE Transactions on Evolutionary

Computation, 580-593.

 [18].Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan.,

2002. “A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II”, IEEE Transactions on

Evolutionary Computation, 182-197.

[19] Su, H. and Yang, Y. 2008. “Quantum-inspired

differential evolution for binary optimization”,

The 4-th international conference on natural

computation, 341–346.

[20]. Deb, K.. 2001. “Multi-Objective Optimization using

Evolutionary Algorithms”. Wiley Chichester, UK.

