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ABSTRACT 

Distributed Computing System (DCS) presents a platform 

consisting of multiple computing nodes connected in some 

fashion to which various modules of a task can be assigned. A 

node is any device connected to a computer network. Nodes 

can be computers or various other network applications. A 

task should be assigned to a processor whose capabilities are 

most appropriate for the execution of that task. In a DCS, a 

number of tasks are allocated to different processors in such a 

way that the overall performance in terms of time, cost should 

be minimized and reliability should be maximized. For a large 

set of tasks that is being allocated into a DCS, several 

allocation methods are possible. These allocations can have 

significant impact on quality of services such as time, cost or 

reliability. Execution time is the time in which a single 

instruction is executed. Execution cost can be termed as the 

amount of value of resource used. In DCS reliability is highly 

dependent on its network and failures of network have 

adverse impact on the system performance. In DCS the whole 

workload is divided into small and independent units, called 

tasks and it allocates onto the available processors. In this 

paper a simple algorithm for task allocation in terms of 

optimum time or optimum cost or optimum reliability is 

presented where the numbers of tasks are more then the 

number of processors. 
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1. INTRODUCTION 
In this paper we consider the problem of designing an 

algorithm in a Distributed Computing System (DCS) for 

handling a set of tasks for getting the optimized results in 

terms of time or cost or reliability. A task is a piece of code 

that is to be executed and task allocation [10, 18, 20] refers to 

the way that tasks are chosen, assigned, and coordinated. It is 

the process that results in specific processor being engaged to 

process in specific tasks. Task allocation [14, 19, 23] 

algorithms assign any particular task to specific processor in 

the distributed network for execution. In DCS for optimized 

results the cost [3] of system and time factors should be  

minimized. A highly reliable system is one that will continue 

working for a long period of time. Reliability [5, 24] analysis 

is one of the important parameters to achieve the system 

efficiency. In a DCS [7], a number of tasks may need to be 

allocated to different processors such that the reliability of 

processing successfully these tasks modules is maximized. 

Execution time is the time in which a single instruction is 

executed. Execution cost [9] can be termed as the amount of 

value of resource used [8]. It means paying something to 

achieve some services. Reliability [16] is defined to be the 

probability that the system will not fail during the time that it 

is processing the tasks. Different processors used in 

distributed systems typically vary in cost [13] based 

depending on their computing efficiencies. Task allocation 

[15, 17] is also often done based on estimates of the 

computation time of each task on each processor. In this 

paper, we have presented an algorithm, considering DCS with 

heterogeneous processors in order to achieve optimal time, 

cost and reliability by allocating the tasks to the processors, in 

such a way that the load of tasks [25] on each processor is 

balanced [6]. The  required  processing  power  for  these 

applications  can not be achieved  with  a  single  processor.  

One approach  to  this  problem  is  to  use  DCS that 

concurrently  process an  application program  by  using  

multiple  processors. To optimize the performance of a DCS, 

several issues arise such as the minimization of time and cost 

as well as maximization of system reliability.  

2. OBJECTIVE 
The objective of the present paper is to determine a task 

allocation [4, 22] scheme so as to enhance the performance of 

Distributed Computing System (DCS) by minimizing the 

overall execution cost, or execution time or maximizing the 

reliability [4] in order to optimize system utilization. The type 

of assigning task [11] to the processor is static [1, 2, 12,] in 

nature in this paper. Here we have taken an example of 

distributed network [21] where the number of processors is 

lesser in comparison to the number of tasks. Performance is 

measured in terms of either time or cost or reliability of the 

modules of a task that have to process on the processors of the 

network. 

3. NOTATIONS 
T   :  Set of tasks 

P   :  Set of processors 

CM   :  Communication Matrix 

PCTR   :  Processor Cost Time Reliability 

MPCTR   :             Modified Processor Cost Time Reliability 

FPCTR      :             Fused Processor Cost Time Reliability 
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4. TECHNIQUE 
For obtaining the optimal time or cost or reliability for each 

task initially the emphasis will be on those modules of tasks 

which have the maximum probability of data transfer. Now, in 

case of time and cost the elements will be added and in case 

of reliability they will be multiplied. We have considered a set 

of task T, which contains three tasks t1, t2, and t3, a set of 

processors P which contains three processors p1, p2 and p3, 

also every task contains some number of modules. Now we 

have taken a matrix in which the time, cost and reliability of 

modules are defined and define a communication matrix by 

considering the communication between tasks. On the basis of 

highest communication we get a matrix namely FPCTR (,,). 

Now from this table we can get the separate tables for time, 

cost and reliability. Load count is taken as an integer variable 

which contains binary values either 1 or 0. We will assign it a 

value 0 to the processor if no task is assigned otherwise a 

value 1 will be assigned to the load count. By considering that 

the preference should be given to the idle processor we assign 

load count as 1 or 0. The function for obtaining the overall 

execution time [Etime], cost [Ecost], and reliability 

[Ereliablity] is as follows- 
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5. ALGORITHM 
Step 1: Start Algorithm 

Step 2: Take the set of different tasks T, Set of different 

processors P and different    modules in each task. 

Step 3: Input the matrix PCTR (,,). Select time/cost/reliability 

data corresponding to each task as needed. 

Step 4: Input matrix CM (,,) by considering the 

communication time between modules of each task. 

Step 5: Consider each task on the basis of time or cost or 

reliability. 

Step 6: On the basis of Step 5 we get the matrix MPCTR 

(,,).This matrix will be derived from matrix PCTR 

(,,). 

Step 7: Fused the modules of tasks in MPCTR (,,), on the 

basis of highest communication we get the matrix 

FPCTR (,,). 

Step 8: From FPCTR(,,) we can take bifurcate tables for time, 

cost and reliability with table names Table I for Time, 

Table II for Cost and Table III for Reliability. The 

tasks will be allocated on the basis of minimization of 

time and cost and maximization of reliability. 

Step 9: Assign a load count 0 to the processor if no task is 

assigned and give preference to this processor in 

such a way that an idle processor should be busy for 

allocating task; otherwise assign a load count as 1. 

Step 10: Calculate Etime, Ecost and Ereliability form the table 

in step 9. 

Step 11: End algorithm 

6. IMPLEMENTATION 
Let us consider a set of tasks T. This set consists three tasks t1, 

t2, and t3.We may define it as, T= {t1, t2, t3}. Now, consider 

the task t1 has a set of task M1. This set consists the five 

modules. We may define it as, M1= {m11, m12, m13, m14, m15}. 

Now, for task t2 consider the set of task M2. This set consists 

the four modules. We may define it as, M2= {m21, m22, m23, 

m24}. Now, for task t3 consider the set of task M3. This set 

consists the six modules. We may define it as, M3= {m31, m32, 

m33, m34, m35, m36}. The total number of processors are three 

and it can be define as, P= {p1, p2, p3}. The graphical 
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representation of this problem is shown in figure 1. 

 

Figure 1: Processors and Tasks 

For different task t1, t2 and t3 there are three set of tasks M1, 

M2 and M3. These set of tasks contains different individual 

tasks components which are called modules. The processing 

time (t), cost (c) and reliability (r) of each module of every 

task on various processors are known and mentioned in the 

matrix namely, PCTR (,,)- 
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The considered communication time amongst the modules of 

each task is mentioned in the matrices, namely CM (,,). 

For task t1, the matrix CM (1,) is as:  
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For task t2, the matrix CM (2,) is as:  
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For task t3, the matrix CM (3,) is as:  
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Here it is considered that task t1 is based on the constraint of 

execution time (one may choose the either cost or reliability 

constraint), task t2 is based on the constraint of cost (one may 

choose the either time or reliability constraint), and task t3 is 

based on the constraint of reliability (one may choose the 

either time or cost constraint).       

Hence, we can use the following form of data from matrix 

PCTR (,,) i.e. execution time for task t1, execution cost for 

task t2, and execution reliability for task t3 and can get the 

matrix namely MPCTR (,,) in the following way- 

P 3 

P 2 P 1 

t 1 

t 2 

t 3 
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Now, the task t1 have five modules so on the basis of highest 

communication the modules m11&m14, m12&m13 will be 

fused. The task t2 have four modules so on the basis of highest 

communication the modules m22&m23 will be fused. The task 

t3 have six modules so on the basis of highest communication 

the modules m34&m35, m33&m36, m31&m32 will be fused. The 

resulting matrix namely FPCTR (,,) will be- 
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Now, from the table FPCTR (,,), we can get the three tables 

namely Table I, Table II and Table III which are given below- 

Table I 
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Table III 
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In the context of Table I we have to assign unallocated task to 

processor where load count will take place when we assign 

any task to the processor. In Table I we have to allocate 

module m11*m14 to any processor which has load count 0 

and/or less execution time. So we assign m11*m14 to processor 

p1and mark load count 1 to processor p1.for m12*m13, we 

assign it to processor p2 with load count 1 and m15 to 

processor p3 with load count 1. 

Table IV 
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Results of Table IV can be shown graphically as in figure 2- 

 

 

 

 

 

Figure 2: Time for  tasks 

Similarly we can compute allocation on the basis of execution 

cost and are mentioned in Table V 
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Table V 
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Results of Table V can be shown graphically as in figure 3- 

 

Figure 3: Cost for tasks 

Computation for execution reliability is mentioned in table 

VI- 

Table VI 
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Results of Table VI can be shown graphically as in figure 4- 

 

Figure 4: Reliability for tasks 

4. CONCLUSION 
The performance tests show that the proposed algorithm is 

almost always superior in comparison with others by 

providing different inputs. In the present paper we have taken 

a problem where the numbers of tasks are greater then the 

number of processors in a Distributed Computing System 

(DCS). The presented algorithm describes an efficient way to 

calculate the optimal results for time, cost and reliability. The 

three tasks taken in this paper which are t1, t2, and t3 are 

solved in such a way to process the task t1 in minimum time, 

to process the task t2 in minimum cost and to process the task 

t3 in maximum reliability. The calculated optimal results can 

be shown the following table- 
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