
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.2, February 2013

37

An Optimized Algorithm for Enhancement of
Performance of Distributed Computing System

Pankaj Saxena

Department of Computer Applications
Teerthanker Mahaveer University, Moradabad

(U.P), INDIA.

Kapil Govil, PhD.

Department of Computer Applications
Teerthanker Mahaveer University, Moradabad

(U.P), INDIA.

ABSTRACT

Distributed Computing System (DCS) presents a platform

consisting of multiple computing nodes connected in some

fashion to which various modules of a task can be assigned. A

node is any device connected to a computer network. Nodes

can be computers or various other network applications. A

task should be assigned to a processor whose capabilities are

most appropriate for the execution of that task. In a DCS, a

number of tasks are allocated to different processors in such a

way that the overall performance in terms of time, cost should

be minimized and reliability should be maximized. For a large

set of tasks that is being allocated into a DCS, several

allocation methods are possible. These allocations can have

significant impact on quality of services such as time, cost or

reliability. Execution time is the time in which a single

instruction is executed. Execution cost can be termed as the

amount of value of resource used. In DCS reliability is highly

dependent on its network and failures of network have

adverse impact on the system performance. In DCS the whole

workload is divided into small and independent units, called

tasks and it allocates onto the available processors. In this

paper a simple algorithm for task allocation in terms of

optimum time or optimum cost or optimum reliability is

presented where the numbers of tasks are more then the

number of processors.

Keywords

Distributed Computing System (DCS), Task, Time, Cost,

Reliability.

1. INTRODUCTION
In this paper we consider the problem of designing an

algorithm in a Distributed Computing System (DCS) for

handling a set of tasks for getting the optimized results in

terms of time or cost or reliability. A task is a piece of code

that is to be executed and task allocation [10, 18, 20] refers to

the way that tasks are chosen, assigned, and coordinated. It is

the process that results in specific processor being engaged to

process in specific tasks. Task allocation [14, 19, 23]

algorithms assign any particular task to specific processor in

the distributed network for execution. In DCS for optimized

results the cost [3] of system and time factors should be

minimized. A highly reliable system is one that will continue

working for a long period of time. Reliability [5, 24] analysis

is one of the important parameters to achieve the system

efficiency. In a DCS [7], a number of tasks may need to be

allocated to different processors such that the reliability of

processing successfully these tasks modules is maximized.

Execution time is the time in which a single instruction is

executed. Execution cost [9] can be termed as the amount of

value of resource used [8]. It means paying something to

achieve some services. Reliability [16] is defined to be the

probability that the system will not fail during the time that it

is processing the tasks. Different processors used in

distributed systems typically vary in cost [13] based

depending on their computing efficiencies. Task allocation

[15, 17] is also often done based on estimates of the

computation time of each task on each processor. In this

paper, we have presented an algorithm, considering DCS with

heterogeneous processors in order to achieve optimal time,

cost and reliability by allocating the tasks to the processors, in

such a way that the load of tasks [25] on each processor is

balanced [6]. The required processing power for these

applications can not be achieved with a single processor.

One approach to this problem is to use DCS that

concurrently process an application program by using

multiple processors. To optimize the performance of a DCS,

several issues arise such as the minimization of time and cost

as well as maximization of system reliability.

2. OBJECTIVE
The objective of the present paper is to determine a task

allocation [4, 22] scheme so as to enhance the performance of

Distributed Computing System (DCS) by minimizing the

overall execution cost, or execution time or maximizing the

reliability [4] in order to optimize system utilization. The type

of assigning task [11] to the processor is static [1, 2, 12,] in

nature in this paper. Here we have taken an example of

distributed network [21] where the number of processors is

lesser in comparison to the number of tasks. Performance is

measured in terms of either time or cost or reliability of the

modules of a task that have to process on the processors of the

network.

3. NOTATIONS
T : Set of tasks

P : Set of processors

CM : Communication Matrix

PCTR : Processor Cost Time Reliability

MPCTR : Modified Processor Cost Time Reliability

FPCTR : Fused Processor Cost Time Reliability

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.2, February 2013

38

4. TECHNIQUE
For obtaining the optimal time or cost or reliability for each

task initially the emphasis will be on those modules of tasks

which have the maximum probability of data transfer. Now, in

case of time and cost the elements will be added and in case

of reliability they will be multiplied. We have considered a set

of task T, which contains three tasks t1, t2, and t3, a set of

processors P which contains three processors p1, p2 and p3,

also every task contains some number of modules. Now we

have taken a matrix in which the time, cost and reliability of

modules are defined and define a communication matrix by

considering the communication between tasks. On the basis of

highest communication we get a matrix namely FPCTR (,,).

Now from this table we can get the separate tables for time,

cost and reliability. Load count is taken as an integer variable

which contains binary values either 1 or 0. We will assign it a

value 0 to the processor if no task is assigned otherwise a

value 1 will be assigned to the load count. By considering that

the preference should be given to the idle processor we assign

load count as 1 or 0. The function for obtaining the overall

execution time [Etime], cost [Ecost], and reliability

[Ereliablity] is as follows-





















  
 

n

1i

n

1j

ijijxETEtime

(i)





















  
 

n

1i

n

1j

ijijxECEcost

(ii)





















  
 

n

1i

n

1j

ijijxERyEreliablit

(iii)






Otherwise0,

processor j toassigned is task i if,1
 xWhere,

thth

ij

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

5. ALGORITHM
Step 1: Start Algorithm

Step 2: Take the set of different tasks T, Set of different

processors P and different modules in each task.

Step 3: Input the matrix PCTR (,,). Select time/cost/reliability

data corresponding to each task as needed.

Step 4: Input matrix CM (,,) by considering the

communication time between modules of each task.

Step 5: Consider each task on the basis of time or cost or

reliability.

Step 6: On the basis of Step 5 we get the matrix MPCTR

(,,).This matrix will be derived from matrix PCTR

(,,).

Step 7: Fused the modules of tasks in MPCTR (,,), on the

basis of highest communication we get the matrix

FPCTR (,,).

Step 8: From FPCTR(,,) we can take bifurcate tables for time,

cost and reliability with table names Table I for Time,

Table II for Cost and Table III for Reliability. The

tasks will be allocated on the basis of minimization of

time and cost and maximization of reliability.

Step 9: Assign a load count 0 to the processor if no task is

assigned and give preference to this processor in

such a way that an idle processor should be busy for

allocating task; otherwise assign a load count as 1.

Step 10: Calculate Etime, Ecost and Ereliability form the table

in step 9.

Step 11: End algorithm

6. IMPLEMENTATION
Let us consider a set of tasks T. This set consists three tasks t1,

t2, and t3.We may define it as, T= {t1, t2, t3}. Now, consider

the task t1 has a set of task M1. This set consists the five

modules. We may define it as, M1= {m11, m12, m13, m14, m15}.

Now, for task t2 consider the set of task M2. This set consists

the four modules. We may define it as, M2= {m21, m22, m23,

m24}. Now, for task t3 consider the set of task M3. This set

consists the six modules. We may define it as, M3= {m31, m32,

m33, m34, m35, m36}. The total number of processors are three

and it can be define as, P= {p1, p2, p3}. The graphical

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.2, February 2013

39

representation of this problem is shown in figure 1.

Figure 1: Processors and Tasks

For different task t1, t2 and t3 there are three set of tasks M1,

M2 and M3. These set of tasks contains different individual

tasks components which are called modules. The processing

time (t), cost (c) and reliability (r) of each module of every

task on various processors are known and mentioned in the

matrix namely, PCTR (,,)-

999899.02900140999671.02300150999221.02400170m

999667.02300130999111.02500140999221.02700120m

999788.02200120999444.02400110999222.02900140mt

999555.02750130999447.02500140999123.02800170m

999200.02000140999229.02100150999444.02300180m

999123.02400150999412.02300165999567.02800170m

999333.02390170999334.02390170999555.02700160m

999899.02360180999786.02560160999123.02800150mt

999678.02200175999765.02100170999227.02700180m

999800.02400120999666.02600160999100.02800110m

999700.02000110999566.02800130999120.02200120m

999988.02300160999456.02200170999150.02700160m

999899.02600150999342.02700145999231.02600150mt

999787.02300130999234.02200135999188.02700140m

999234.02500140999132.02300127999276.02500132m

rctrctrctModulesTasks

pppProcessors

36

35

343

33

32

31

24

232

22

21

15

14

131

12

11

321

































The considered communication time amongst the modules of

each task is mentioned in the matrices, namely CM (,,).

For task t1, the matrix CM (1,) is as:



























0m

40m

140m

3460m

58640m

mmmmm

15

14

13

12

11

1514131211

For task t2, the matrix CM (2,) is as:























0m

50m

280m

3520m

mmmm

24

23

22

21

24232221

For task t3, the matrix CM (3,) is as:





























0m

60m

180m

6770m

24430m

153420m

mmmmmm

36

35

34

33

32

31

363534333231

Here it is considered that task t1 is based on the constraint of

execution time (one may choose the either cost or reliability

constraint), task t2 is based on the constraint of cost (one may

choose the either time or reliability constraint), and task t3 is

based on the constraint of reliability (one may choose the

either time or cost constraint).

Hence, we can use the following form of data from matrix

PCTR (,,) i.e. execution time for task t1, execution cost for

task t2, and execution reliability for task t3 and can get the

matrix namely MPCTR (,,) in the following way-

P 3

P 2 P 1

t 1

t 2

t 3

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.2, February 2013

40

999899.0999671.0999221.0m

999667.0999111.0999221.0m

999788.0999444.0999222.0mt

999555.0999447.0999123.0m

999200.0999229.0999444.0m

999123.0999412.0999567.0m

239023902700m

236025602800mt

220021002700m

240026002800m

110130120m

160170160m

150145150mt

130135140m

140127132m

rctrctrctModulesTasks

pppProcessors

36

35

343

33

32

31

24

232

22

21

15

14

131

12

11

321































































Now, the task t1 have five modules so on the basis of highest

communication the modules m11&m14, m12&m13 will be

fused. The task t2 have four modules so on the basis of highest

communication the modules m22&m23 will be fused. The task

t3 have six modules so on the basis of highest communication

the modules m34&m35, m33&m36, m31&m32 will be fused. The

resulting matrix namely FPCTR (,,) will be-











































998323.0998641.0999011.0m*m

999454.0999118.0998344.0m*mt

999455.0998555.0998443.0m*m

239023902700m

240026002800mt

456046605500m*m

110130120m

280280290m*mt

300297292m*m

rctrctrctModulesTasks

PPpProcessors

3231

36333

3534

24

212

2322

15

13121

1411

321

Now, from the table FPCTR (,,), we can get the three tables

namely Table I, Table II and Table III which are given below-

Table I

110280300p

130280297p

120290292p

mm*mm*m

3

2

1

1513121411

Table II

239024004560p

239026004660p

270028005500p

mmm*m

3

2

1

24212322

Table III

998323.0999454.0999455.0p

998641.0999118.0998555.0p

999011.0998344.0998443.0p

m*mm*mm*m

3

2

1

323136333534

In the context of Table I we have to assign unallocated task to

processor where load count will take place when we assign

any task to the processor. In Table I we have to allocate

module m11*m14 to any processor which has load count 0

and/or less execution time. So we assign m11*m14 to processor

p1and mark load count 1 to processor p1.for m12*m13, we

assign it to processor p2 with load count 1 and m15 to

processor p3 with load count 1.

Table IV

1110mp

6821280m*mp

1292m*mp

EtimeCount LoadTimeTasks AlllocatedProcessors

153

13122

14111

Results of Table IV can be shown graphically as in figure 2-

Figure 2: Time for tasks

Similarly we can compute allocation on the basis of execution

cost and are mentioned in Table V

0
100
200
300
400

m11*m14 m12*m13 m15

p1 p2 p3

Time

eee

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.2, February 2013

41

Table V

12400mp

1029012390mp

15500m*mp

EcostCount LoadCostTasks AlllocatedProcessors

213

242

23221

Results of Table V can be shown graphically as in figure 3-

Figure 3: Cost for tasks

Computation for execution reliability is mentioned in table

VI-

Table VI

1999455.0m*mp

997585.01999118.0m*mp

1999011.0m*mp

yEreliablitCount LoadReliablityTasks AlllocatedProcessors

35343

36332

32311

Results of Table VI can be shown graphically as in figure 4-

Figure 4: Reliability for tasks

4. CONCLUSION
The performance tests show that the proposed algorithm is

almost always superior in comparison with others by

providing different inputs. In the present paper we have taken

a problem where the numbers of tasks are greater then the

number of processors in a Distributed Computing System

(DCS). The presented algorithm describes an efficient way to

calculate the optimal results for time, cost and reliability. The

three tasks taken in this paper which are t1, t2, and t3 are

solved in such a way to process the task t1 in minimum time,

to process the task t2 in minimum cost and to process the task

t3 in maximum reliability. The calculated optimal results can

be shown the following table-

997585.0m*mm*mm*mt

10290mmm*mt

682mm*mm*mt

yEreliablitEcostEtimepppTasks

OptimalOptimalOptimalProcessors

3534363332313

212423222

15131214111

321







5. REFERENCES
[1]. Braun Tracy, D., Siegel Howard Jay, Maciejewski

Anthony, A., and Hong Ye, 2008. Static resource

allocation for heterogeneous computing environments

with tasks having dependencies, priorities, deadlines,

and multiple versions. Journal of Parallel and

Distributed Computing, Volume 68, Issue 11, 1504-

1516.

[2]. Bo Yang, Huajun Hu, and Suchang Guo, 2009. Cost-

oriented task allocation and hardware redundancy

policies in heterogeneous distributed computing

systems considering software reliability. Journal of

Computers & Industrial Engineering, Volume 56,

Issue 4, 1687-1696.

[3]. Dr. Kapil Govil, 2011. Processing Reliability based a

Clever Task Allocation Algorithm to Enhance the

Performance of Distributed Computing Environment.

International Journal of Advanced Networking and

Applications, Volume 3, Issue 1, 1025-1030.

[4]. Deo Prakash Vidyarthia, and Anil Kumar Tripathib,

2001. Maximizing reliability of distributed computing

system with task allocation using simple genetic

algorithm. Journal of Systems Architecture, Volume

47, Issue 6, 549-554.

[5]. Ghjh Edward, A., Billard, Joseph, C., and Pasquale,

1997. Load balancing to adjust for proximity in some

network topologies. Journal of Parallel Computing,

Volume 22, Issue 14, 2007-2023.

[6]. Herlihy Maurice, and Luchangco Victor, 2008.

Distributed computing and the multicore revolution.

Journal of ACM SIGACT News, Volume 39, Issue 1,

62-72.

[7]. Henri Casanova, Frederic Desprez, and Frederic Suter,

2010. On cluster resource allocation for multiple

parallel task graphs. Journal of Parallel and

Distributed Computing, Volume 70, Issue 12, 1193-

1203.

[8]. Hsieh, Chung-Chi, and Hsieh Yi-Che, 2003.

Reliability and cost optimization in distributed

computing systems. Journal of Computers &

Operations Research, volume 30, Issue 8, 1103-1119.

[9]. Kołodziej Joanna, and Xhafa Fatos, 2007. Modern

approaches to modeling user requirements on resource

and task allocation in hierarchical computational grids.

0.9989
0.999

0.9991
0.9992
0.9993
0.9994
0.9995

m31*m32 m33*m36 m34*m35

p1 p2 p3

Reliability

0
1000
2000
3000
4000
5000
6000

m22*m23 m24 m21

p1 p2 p3

Cost

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.2, February 2013

42

International Journal of Applied Mathematics and

Computer Science, Volume 21, Issue 2, 243–257.

[10]. Marwa Shouman, Gamal Attiya, Ibrahim, Z., Morsi,

2011. Static Workload Distribution of Parallel

Applications in Heterogeneous Distributed Computing

Systems with Memory and Communication Capacity

Constraints. International Journal of Computer

Applications, Volume 34, Issue 6, 18-24.

[11]. Manoj, B.S., Sekhar Archana, and Siva Ram Murthy,

C., 2009. A state-space search approach for optimizing

reliability and cost of execution in distributed sensor

networks, Journal of Parallel and Distributed

Computing, Volume 69, Issue 1, 12-19.

[12]. Manisha Sharma, Harendra Kumar, and Deepak Garg,

2012. An Optimal Task Allocation Model through

Clustering with Inter-Processor Distances in

Heterogeneous Distributed Computing Systems.

International Journal of Soft Computing and

Engineering, Volume 2, Issue 1, 50-55.

[13]. Nirmeen, A., Bahnasawy, Fatma Omara, Magdy, A.,

Koutb, and Mervat Mosa, 2011. A new algorithm for

static task scheduling for heterogeneous distributed

computing system. International Journal of

Information and Communication Technology

Research, Volume 1, Issue 1, 10-19.

[14]. Pankaj Saxena, Kapil Govil, Rajendra Belwal, and

Umesh Kumar, 2011. An efficient approach for

optimal task allocation through optimizing processing

time in Distributed Network. In Proceeding of

International Conference on the Next Generation

Information Technology Summit, Amity University,

Noida, January 27-28.

[15]. Pankaj Saxena, Dr. Kapil Govil, Neha Agrawal,

Saurabh Kumar, and Deep Narayan Mishra, 2012. An

approach for allocating tasks in optimized time in a

distributed processing environment. International

Journal of Innovative Research and Development,

Volume 1, Issue 5, 431-437.

[16]. Pankaj Saxena, and Dr. Kapil Govil, 2012. A time

efficient algorithm for static allocation of tasks on

processors in a distributed computing system. In

Proceeding of International Conference on System

Modeling & Advancement in Research Trends,

Teerthanker Mahaveer University, Moradabad, Oct

20-21.

[17]. Pankaj Saxena, Dr. Kapil Govil, Gaurav Saxena,

Saurabh Kumar, and Neha Agrawal, 2012. An

algorithmic approach and comparative analysis of task

assignment to processor for achieving time efficiency

in process completion. International Journal of

Applied Engineering and Technology, Volume 2,

Issue 1, 114-119.

[18]. Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, and

Yi-Te Wang, 2007. Task allocation for maximizing

reliability of a distributed system using hybrid particle

swarm optimization, Journal of Systems and Software,

Volume 80, Issue 5, 724-735.

[19]. Pradeep Kumar Yadav, Singh, M.P., and Kuldeep

Sharma, 2011. Task Allocation Model for Reliability

and Cost optimization in Distributed Computing

System, International Journal of Modeling, Simulation

and Scientific Computations, Volume 2, Issue 2, 1-19.

[20]. Qin-Ma Kang, Hong He, Hui-Min Song, and Rong

Deng, 2010. Task allocation for maximizing

reliability of distributed computing systems using

honeybee mating optimization, Journal of Systems and

Software, Volume 83, Issue 11, 2165–2174.

[21]. Santhanam Srinivasan, and Niraj, K., Jha, 1999.

Safety and Reliability Driven Task Allocation in

Distributed Systems, IEEE Transactions on Parallel

and Distributed Systems, Volume 10, Issue 3, 238-

251.

[22]. Shatz, S.M., Wang, J.P., Goto, M., 1992. Task

Allocation for Maximizing Reliability of Distributed

Computer Systems, IEEE Transaction on Computers,

Volume 41, Issue 9, 1156-1168.

[23]. Ueno Yoichiro, Miyaho, and Suzuki Shuichi, 2009.

Disaster recovery mechanism using widely distributed

networking and secure metadata handling technology,

Workshop on Use of P2P, GRID and agents for the

Development of Content Networks, 45-48.

[24]. Vidyarthi, D.P., and Tripathi, A.K., 2001.Maximizing

reliability of distributed computing system with task

allocation using simple genetic algorithm, Journal of

System Architecture, Volume 47, Issue 6, 549-554.

[25]. Zubair Khan, Ravinder Singh, and Jahangir Alam,

2012. Task allocation using fuzzy inference in parallel

and distributed system, Journal of Information and

Operations Management, Volume 3, Issue 2, 322-326.

