
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

29

Dual Population Genetic Algorithm (GA) versus OpenMP
GA for Multimodal Function Optimization

A. J. Umbarkar

Department of Information Technology,
Walchand College of Engineering,

Sangli, MS, India.

M. S. Joshi
Department of Electronics Engineering,

Government College of Engineering,
Aurangabad, MS, India

ABSTRACT

Genetic algorithms (GAs) are useful for solving multimodal

problems. It is quite difficult to search the search space of the

multimodal problem with large dimensions. There is a

challenge to use all the core of the system. The Dual

Population GA (DPGA) attempts to explore and exploit

search space on the multimodal problems. Parallel GAs

(PGAs) are better option to optimize multimodal problems.

OpenMP GA is parallel version of GA. The Dual Population

GA (DPGA) uses an extra population called reserve

population to provide additional diversity to the main

population through crossbreeding. DPGA and PGA, both

provide niching technique to find optimal solution. Paper

presents the experimentation of DPGA, OpenMP GA and

SGA. The experimentation results show that the performance

of the OpenMP GA is remarkably superior to that of the SGA

in terms of execution time and speed up. OpenMP GA gives

optimum solution in comparison with OpenMP GA and SGA

for same parameter settings.

Keywords

Genetic Algorithm (GA), Dual Population GA (DPGA),

Serial DPGA, Open Multi Processing (OpenMP), Multimodal

Function, Non-linear optimization problems.

1. INTRODUCTION
Genetic algorithms are based on theories of natural genetic

and natural selection. GAs are useful to solve optimization

problems. GA works on set of solutions and applies selection,

crossover, mutation and survival selection iteratively to get

the optimal solution. Many Parallel GAs are proposed by

various researchers to find optimal solution, speedup the

searching time and utilize the resources like CPU (loosely or

tightly coupled systems), memory etc. efficiently. PGAs are

developed by suggesting niching technique to solve problem

effectively.

The Moore’s law, Amdahl’s law and Gustafson’s law say that

the algorithm and functionality of CPU will improve in years

of time [1].

With the multicore processors getting cheaper and common,

one cannot ignore their importance anymore. Multicore

systems have multiple processing cores on same chip while

multiprocessor systems have multiple chips inside a system.

GAs need to be explored on multicore and HPC (High

Performance Computing) computing paradigm. Many GA

works uses multicore system for GAs but does not care about

their CPU/core utilization. The algorithmically parallel DPGA

but implemented sequential in C language, need to compare

with programming parallel version of GA.

Paper experimented serial DPGA algorithm, which is by

algorithm design, parallel, but implemented serially in C

language. OpenMP GA is simple serial GA but implemented

parallely in C language using OpenMP pragmas.

Paper focuses on issue of superiority of parallel programming

implementation of serial algorithm versus design of parallel

algorithm and serial implementation with respect to quality

solution, processing speed and CPU utilization.

The paper is organized as follow. Section 2 explains the

related works. Section 3 describes the algorithm implemented

and information about programming options. Section 4 reports

the test data and experimental results for multimodal

optimization problems and compares serial DPGA, OpenMP

GA and SGA. Finally, section 5 provides conclusions.

2. RELATED WORKS
Literature survey given in [2], [3] are on advances, computing

trends, application and perspective of Parallel Genetic

Algorithm (PGA) [4]. In computing trends the important

issues are architecture, OS, topologies and programming

(Libraries). The programming languages are facilitated with

set of special system calls or libraries like -Linda, OpenMP1,

HPF, Parallel C and OCCAM (both for transputer networks),

Java using communication libraries MPI (Message-Passing

Interface)2, Express MPI, PVM (Parallel Virtual Machine),

POSIX threads and Java threads on SMP machines. There are

many parallel programming options available in footnote 3, 4.

Function optimization is carried out using many parallelizable

metaheurestics such as Artificial Immune Algorithms (AIA)

[5], Ant Colony Optimization (ACO) [6], Particle Swarm

Optimization (PSO) [7], Artificial Neural Network (ANN)

[8], Differential Evolution (DE) [9], Harmony Search (HS)

[10], Bacteria Foraging Optimization (BFO) [11], Shuffled

Frog Leaping (SFL) [12], Artificial Bee Colony (ABC) [13],

Biogeography-Based Optimization (BBO) [14], Gravitational

Search Algorithm (GSA) [15], Grenade Explosion Method

(GEM) [16], Teaching–learning-based optimization (TLBO)

[17], etc. Performance of parallel metaheurestics for function

optimization need to be checked on computing paradigms

such as Clusters computing, MPPs, Grids computing,

GPGPU, cloud computing and Multicore/ HPC. Many

metaheurestic’s performances are improved and checked on

latest computing paradigms but as per the NFL (No Free

Lunch) theorem [18], there is always chance that the

particular metaheurestic performance might improve in terms

of function evaluation, speedup [19] etc.

1 https://computing.llnl.gov/tutorials/openMP/
2 http:// www.lam-mpi.org/
3 http://wotug.ukc.ac.uk/parallel/
4 http:// www.openmp.org

https://computing.llnl.gov/tutorials/openMP/

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

30

GAs are implemented over Clusters, MPPs [20], [21], Grids

[22], [23], [24], [25], [26], [27], [28], [29], GPGPU [30], [31],

[32], [33], cloud computing and Multicore/ HPC [34]. The

GAs work on cluster, MPPs (Massively Parallel Processors),

grid and cloud computing are in distributed environment can

be called PGAs because of parallel hardware. The design of

algorithm needs to be tuned with the hardware selected for

implementation. The parameters to be considered are network

delay, system configuration of each node in distributed

system. Network delay plays important role on the

performance of algorithm in case of distributed system. The

programming on such parallel hardware is called loosely

coupled programming. In case of Multicore/ HPC and

GPGPU, also called PGAs, the design of algorithm needs to

be tuned with the hardware selected for implementation. No

such parameters need to be considered in tightly coupled

system. The programming on such parallel hardware is called

as tightly coupled programming. PGAs have capacity to run in

parallel on many computing paradigms but finding suitable

hardware and software will give optimal solution with optimal

resource utilization.

3. ALGORITHMS
The three algorithms experimented on multimodal test

functions are SGA, OpenMP GA and DPGA. Section 3.1

explains the OpenMP GA and section 3.2 explain the DPGA.

3.1 OpenMP GA
OpenMP (Open Multiprocessing) is an API that supports

shared memory multiprocessing (tightly coupled)

programming in C, C++, and Fortran, on most processor

architectures and operating systems, including Solaris, AIX,

HP-UX, GNU/Linux, Mac OS X, and Windows platforms.

Figure 1 :Illustration of multithreading with the master

thread forks off a number of threads for execute code in

parallel.

Open MP library works on the concept of thread. Library has

many pragmas that parallelize the loops of the algorithm

along with knowing the number of cores available on

multicore processor. The implementation of SGA with

OpenMP multithreading will parallelize the algorithm. The

master thread forks a specified number of slave threads and

tasks are divided among them. The threads then run

concurrently, with the runtime environment allocating threads

to different processors or cores. The section of code which is

meant to be run in parallel is marked accordingly, with a

preprocessor directive that will cause the threads to form

before the section is executed. After the execution of the

parallelized code, the threads join back into the master thread,

which continues onward to the end of the program. Figure 1

illustrates the multithreading with the master thread forks off

a number of threads to execute code in parallel.

The flowchart of GA is given in figure 2. In OpenMP GA the

various operators of SGA such as random number generator,

initialization, fitness calculation are parallelized using

pragmas, which reduce the amount of time to get the optimal

solution and increases the CPU utilization on multicore

system.

Figure 2: Schematic diagram of GA

Fitness Functions for SGA and OpenMP GA [35], [36] are the

multimodal test functions. For example equation (1) is the

Rosenbrock Test Function F(x) as an optimization problem.

The global optimum lies inside a long, narrow, parabolic

shaped flat valley.

 (1)

Test area -2.048<= xi <= 2.048; where i=1,…, n; where n:

Dimension. Its global minimum equal f(x) = 0 is obtainable

for xi, where i = 1,…,n.

3.2 DPGA
DPGA is by design parallel but implemented serially [37].

DPGA has two distinct populations called main population

MP and reserve population RP. Main population is having

same role as that of the population of an ordinary GA. Main

population aim to evolve to find a good solution with a high

fitness value. The reserve population provides additional

diversity to the main population. The reserve population is

employed as a reservoir for keeping chromosomes which are

different from those of the main population.

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Processor_architecture
http://en.wikipedia.org/wiki/Processor_architecture
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Solaris_%28operating_system%29
http://en.wikipedia.org/wiki/IBM_AIX
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Runtime_environment
http://en.wikipedia.org/wiki/Preprocessor_directive
http://en.wikipedia.org/wiki/Thread_%28computer_science%29

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

31

Start

Initialize main popsize, reserve

popsize, Pc, Pm, Stop criteria

Initialize main population Mp,

reserve population Rp

Calculate fitness of Main population fM

Calculate fitness of Reserve population fR

Calculate fitness for for Inbred Children of Mp

Inbreeding Process on main pop Mp

Selection Process for main pop Mp

Selection Process for reserve pop Rp

Inbreeding Process on reserve pop Rp

Calculate fitness for Inbred Children of Rp

Best two from Rp

Crossbreeding Process

Survival Selection for next Main pop Mp+1

Survival Selection for next Reserve pop Rp+1

Stop Criteria

Stop

Best two from

Mp

YN

Figure 3: Schematic diagram of serial DPGA

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

32

Table 1. Parameter setting for algorithms

Initial Parameters SGA OpenMP GA DPGA

Main Population size 100 100 100

Reserve Population size -- -- 100

Crossover Method Single point Single point Single point

Crossover point K 1 1 1

Mutation Method Flip Bit Flip Bit Flip Bit

Crossover Probability (Pc) 0.7 0.7 0.7

Mutation Probability (Pm) 0.03 0.03 0.03

Dimension (D) 5 5 5

No of Generation 2000 2000 2000

Table 2. Problem Set- continuous non linear large scale benchmark problems

Function

Name

 Equation Range Optimum

value

Rosenbrock

(F1)

[-2.048

,2.048]

0

Ackley

(F2)

[-32.768

,32.768]

0

Griewangk

(F3)

[-600

,600]

0

Schwefel

(F4)

[-500

,500]

-418.9829

Rastrigin

(F5)

[-5.12

,5.12]

0

 Table 3. Best Solution found and Execution Time for multimodal test functions

Test

function

Best

Solution

Found

for SGA

Best

Solution

Found for

OpenMP

GA

Best

Solution

Found

for

DPGA

Time

(sec)

taken by

SGA

Time

(sec)

taken by

OpenMP

GA

Time

(sec)

taken by

DPGA

F1 2.47E+00 4.79E+00 1.03E+00 11.38 4.32 3.45

F2 1.38E-02 2.55E-03 1.30E-03 11.76 10.59 10.04

F3 1.08E+00 3.25E+00 3.23E+00 10.75 4.61 3.65

F4 -1.91E+03 -1.83E+03 -1.82E+03 10.29 3.94 3.02

F5 5.18E-02 9.83E-01 4.96E-02 22.32 10.65 10

Table 4. Speed up gained for multimodal functions in comparison with SGA and OpenMP GA

Test

Function

Speed up of DPGA compared with

OpenMP GA (%)

Speed up of DPGA

compared with SGA (%)

F1 20.13 69.58

F2 05.20 14.62

F3 20.82 66.04

F4 23.35 70.65

F5 15.12 55.20

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

33

Figure 4: Best solutions found by DPGA, OpenMP GA and SGA on multimodal test functions F1, F2, F3 and F5

Figure 5: Best solutions found by DPGA, OpenMP GA and SGA on multimodal test functions F4

Figure 6: Speed up gained in DPGA over OpenMP GA and SGA for multimodal test functions

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

F1 F2 F3 F5

Best Solution Found for SGA

Best Solution Found for OpenMP GA

Best Solution Found for DPGA

-1.95E+03

-1.90E+03

-1.85E+03

-1.80E+03

-1.75E+03

F4

Best Solution Found for SGA

Best Solution Found for OpenMP GA

Best Solution Found for DPGA

0

10

20

30

40

50

60

70

80

F1 F2 F3 F4 F5

Speed up of DPGA compared with OpenMP GA (%)

Speed up of DPGA compared with SGA (%)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

34

Figure 7: Execution Time (in seconds) comparison for SGA, OpenMP GA & DPGA to find BSF for multimodal test functions

Fitness Functions for Main Population fM(x) [35], [36]: The

fitness function for main population is multimodal test

functions. . For example equation (1) is the Rosenbrock Test

Function F(x) as an optimization problem.

Fitness Function for Reserve Population fR(x): [38] [39]

n

i

l

k

kkiR xm
n

xf
1 1

,

1
)(

 (2)

xk : k
th gene of chromosome x from RP.

mi,k: k
th gene of chromosome mi from MP.

n: Population Size of MP and RP

l : Chromosome length.

The equation (2) calculates the hamming distance of the kth

gene chromosome from MP with kth gene of chromosome x

from RP and assigns the fitness for reserve populating.

The implementation of DPGA is carried out serially. Figure 3

shows the schematic diagram of the serial DPGA. SDPGA is

single threaded DPGA, so the exploration, exploitation,

migration etc. are sequential.

4. EXPERIMENTAL RESULTS

4.1 Test Data
The algorithm was evaluated on multimodal problems given

in [35], [36]. The experimentation is carried out with five

benchmark functions. The F1, F2, F3, F4 and F5 are

multimodal functions. The test problem Set is shown in Table

2.

4.2 Results and Discussion
In the experimentation, SGA, OpenMP GA and DPGA are

implemented in C language over Linux platform on a Personal

Computer (Intel Intel(R) Core (TM) i5 CPU 650 @ 3.20GHz

processor with 2 cores and 4MB cache, 1 GB of memory and

300 GB hard disk). Table 1 shows the parameter setting for

SGA, OpenMP GA and DPGA algorithms. Comparison

between SGA and OpenMP GA is made on the basis of

execution time taken and speedup obtained. Equation number

(3) is the formula for speed up calculation with respect to

SGA. Equation number (4) is the formula for speed up

calculation with respect OpenMP GA.

 –

 (3)

 –

 (4)

Execution time is observed using GPprof software5. It is a

performance analyzing and profiling tool, which collects and

arranges statistics of our programs like execution time, CPU

utilization, function calls, function wise memory and CPU

utilization [40].

Table 3 shows the comparison based on Best Solution Found

and execution time in sec by SGA, OpenMP GA and DPGA.

Figure 4 is a plot of Best Solution Found verses various

multimodal test functions F1, F2, F3 and F5 considered. It

shows that DPGA is outperforming in comparison with SGA

and OpenMP GA for multimodal test functions except F3 in

terms of quality of solution. Figure 5 is a plot of best solution

found verses various multimodal test function F4. It shows

that DPGA is outperforming in comparison with SGA and

OpenMP GA for multimodal test function F4 in terms of

quality of solution.

Table 4 shows the comparison based on speed up achieved in

percentage by DPGA over OpenMP GA and SGA for

0

5

10

15

20

25

F1 F2 F3 F4 F5

Time (sec) taken by SGA
for best solution

Time (sec) taken by
OpenMP GA SGA for
best solution

Time (sec) taken by
DPGA for best solution

5 http://www.cs.utah.edu/dept/old/texinfo/as/gprof.htm

Execution Time (sec)

Test

function

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

35

multimodal test functions. Figure 6 is a plot of Speed up in

percentage verses various multimodal test functions

considered. It shows that DPGA outperforms in comparison

with SGA and OpenMP GA for multimodal test functions in

terms of speed up. It also shows that speedup achieved with

DPGA against SGA is higher than OpenMP GA. Figure 7 is a

plot of execution time in second verses various multimodal

test functions considered. It shows that the DPGA is

outperforming in comparison with SGA and OpenMP GA in

terms of execution time taken to find best solutions.

5. CONCLUSIONS
Paper is representing the fact that the parallel hardware as

well as algorithm with appropriate programming language

will give optimal results, optimal resource utilization with

speed up. The performance of the DPGA is remarkably

superior to that of the SGA and OpenMP GA. The

multimodal functions take less time on DPGA than OpenMP

GA and SGA to get the best solution. The quality of solution

shown by DPGA is better as compare to SGA and OpenMP

GA except F3 for given generation. The Speed up achieved by

DPGA in comparison with SGA and OpenMP GA is

remarkable. The average speed up shown by DPGA over SGA

is ~55 % and over OpenMP GA is 15%

The niching technique used in DPGA gives better result than

parallel GA. The algorithmic design is more important than

only parallel implementation. The combination of niching

technique and parallelization in GA will gives better results

than the niching and parallelization alone.

Future scope is to experiment niching technique and

parallelization in GA for Unimodal and multimodal function

optimization.

6. ACKNOWLEDGMENTS
Authors are grateful to T. Park and K.R. Ryu, Pusan National

University, Dept. of Computer Engineering, Jangjeon-Dong

San 30, Gumjeong-Gu, Busan. Without their DPGA work,

this work would have been impossible. Authors also express

thanks to all reviewers for their valuable reviews and

comments.

7. REFERENCES
[1] August A.D., Chiou K.P.D, Sendag R., Yi J.J., (2010).

“Programming Multicores: Do Application Programmers

Need to Write Explicitly Parallel Programs?”, Computer

Architecture Debates in IEEE MICRO, pp. 19-32.

[2] Konfrst Z., (2004). “Parallel Genetic Algorithm:

Advances, Computing Trends, application and

Perspective”, In proceeding of 18th International Parallel

and Distributed Processing Symposium [IPDPS’04],

IEEE Computer Society.

[3] Cant´u-Paz E., (2000). “Efficient and Accurate Parallel

Genetic Algorithms”, Kluwer Academic Publishers.

[4] Cantú-Paz E., (2002). “A Survey of Parallel Genetic

Algorithms”, Department of Computer Science and

Illinois Genetic Algorithms Laboratory University of

Illinois at Urbana-Champaign.

[5] Farmer J.D., Packard N., Perelson A., (1986). “The

immune system, adaptation and machine learning”,

Physica 22 pp.187–204.

[6] Dorigo M., (1992). “Optimization, learning and natural

algorithms”, PhD Dissertation, Politecnico di Milano,

Italy.

[7] Kennedy J., Eberhart R.C., (1995). “Particle swarm

optimization”, Proceedings IEEE International

Conference on Neural Networks, Piscataway, pp. 1942–

1948.

[8] Hykin S. S., (1999). Neural Network: A comprehensive

Foundation, Prentice hall, pp. 1-889.

[9] Storn R., Price K., (1997). “Differential evolution–a

simple and efficient heuristic for global optimization

over continuous spaces”, J. Glob. Optim. 11, pp. 341–

359.

[10] Geem Z.W., Kim J.H., Loganathan G.V., (2001). “A new

heuristic optimization algorithm: Harmony Search

Simul”, the Soc. for Model and Simul. Int. 76(2), pp. 60–

68.

[11] Passino K.M., (2002). “Biomimicry of bacterial foraging

for distributed optimization and control”, IEEE Control

Syst. Mag. 22, pp.52–67.

[12] Eusuff E., Lansey E., (2003). “Optimization of water

distribution network design using the shuffled frog

leaping algorithm”, J. Water Resour. Plan Manag. ASCE

129, pp. 210–225.

[13] Karaboga D., (2005). “An idea based on honey bee

swarm for numerical optimization”, Technical Report-

TR06, Erciyes University, Engineering Faculty,

Computer Engineering Department, Turkey.

[14] Simon D., (2008). “Biogeography-based optimization”,

IEEE Trans Evol. Comput. 12, pp. 702–713.

[15] Rashedi E., Nezamabadi-pour H., Saryazdi S., (2009).

“GSA: a gravitational search algorithm” Inf Sci 179, pp.

2232–2248.

[16] Ahrari A., Atai A., (2010). “Grenade Explosion Method-

A novel tool for optimization of multimodal functions”,

Appl Soft Comput 10(4), pp. 1132–1140.

[17] Rao R.V., Savsani V.J., (2012). “Mechanical Design

Optimization Using Advanced Optimization

Techniques”, Springer Series in Advanced

Manufacturing, Springer-Verlag London.

[18] Yu X., Gen M., (2010) Introduction to Evolutionary

Algorithms, Springer-Verlag London Limited, pp. 105-

111.

[19] Luque G., Alba E., (2011). Parallel Genetic Algorithms,

Springer.

[20] Gagn´e C., Parizeau M., Dubreuil M., (2003). “The

Master-Slave Architecture for Evolutionary

Computations Revisited”, Proceedings of the Genetic

and Evolutionary Computation Conference, Chicago, IL,

2, pp. 1578-1579.

[21] Lin S., Punch W., Goodman E., (1994). “Coarse-grain

parallel genetic algorithms: categorization and analysis”,

In IEEE Symposium on Parallel and Distributed

Processing, pp. 27–36.

[22] Hauser R., Männer R., (1994). “Implementation of

Standard Genetic Algorithms on MIMD Machines”, In

Parallel Problem Solving from Nature [PPSN3], pp. 504-

513.

[23] Tanese R., (1987). “Parallel Genetic Algorithm for a

Hypercube”, In Proceedings of the Second International

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.19, February 2013

36

Conference on Genetic Algorithms [ICGA2], pp. 177-

183.

[24] Tanese R., (1989). “Distributed Genetic Algorithms”, In

Proceedings of the Third International Conference on

Genetic Algorithms [ICGA3], pp. 434-439.

[25] Voigt H. M., Born J., Santibanez-Koref I., (1991)

“Modeling and Simulation of Distributed Evolutionary

Search Processes for Function Optimization”, In Parallel

Problem Solving from Nature [PPSN1], pp. 373-380.

[26] Voigt H. M., Born J., Santibanez-Koref I., (1992).

“Hierarchically Structured Distributed Genetic

Algorithm”, In Parallel Problem Solving from Nature

[PPSN2], pp. 145-154.

[27] Imade H., Morishita R., Ono I., Ono N., Okamoto M.,

(2003). “A grid-oriented genetic algorithm for estimating

genetic networks by s-systems”, SICE 2003 Annual

Conference, 3(4-6), pp. 2750–2755.

[28] Herrera J., Huedo E., Montero R., Llorente I., (2005). “A

gridoriented genetic algorithm”, In Advances in Grid

Computing - EGC 2005, pp. 315–322.

[29] Imade H., Morishita R., Ono I., Ono N., Okamoto M.,

(2004). “A grid-oriented genetic algorithm framework

for bioinformatics”, New Gen. Comput., 22(2), pp. 177–

186.

[30] Wong M., Wong T., (2006). “Parallel hybrid genetic

algorithms on consumer-level graphics hardware”, in

Congress on Evolutionary Computation, Canada, pp.

2972-2980.

[31] Arora R., Tulshyan R., Deb K., (2010). “Parallelization

of binary and real-coded genetic algorithm on GPU using

CUDA”, in Congress on Evolutionary Computation, pp.

1-8.

[32] Vidal P. Alba E., (2010). “A multi-GPU implementation

of a cellular genetic algorithm”, in 2010 IEEE Congress

on Evolutionary Computation.

[33] Oiso M., Matumura Y., (2011). “Accelerating Steady-

state genetic algorithms based on CUDA architecture”, ,

in 2011 IEEE Congress on Evolutionary Computation,

pp. 687-692.

[34] Zheng L., et. al. (2011). “Architecture-based

Performance Evaluation of Genetic Algorithms on

Multi/Many-core Systems”, In proceeding of: 14th IEEE

International Conference on Computational Science and

Engineering, CSE 2011, Dalian, China, pp. 321-334.

[35] Molga M., Smutnicki C., (2005) “Test functions for

optimization needs- 2005, unpublished.

[36] Mohan C., Deep K., (2009). “Optimization Techniques”

first edition, New Age International Publication.

[37] Umbarkar A.J. and Joshi M.S., (2012). "Serial DPGA vs

Parallel Multithreaded DPGA: Threading Aspects", in

Proceedings of the International Conference on Soft

Computing for Problem Solving (SOCPROS 2011)"

AISC 130, Springer pp.37-49.

[38] Park T., Ryu K.R., (2007). “A dual population genetic

algorithm with evolving diversity”, In IEEE Congress on

Evolutionary Computation (CEC2007), pp. 3516–3522.

[39] Park T., Ryu K.R., (2008). “Dual population genetic

algorithm for Nonstationary Optimization”, Proc.

Genetic Evol. Comput. Conf. (GECCO’08), pp. 1025-

1032, 2008.

[40] Susan L., Graham P.B., Kessler M.K., McKusick,

“gprof: a Call Graph Execution Profiler1”, Electrical

Engineering and Computer Science Department

University of California, Berkeley, California.

