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ABSTRACT 

Genetic algorithms (GAs) are useful for solving multimodal 

problems. It is quite difficult to search the search space of the 

multimodal problem with large dimensions. There is a 

challenge to use all the core of the system. The Dual 

Population GA (DPGA) attempts to explore and exploit 

search space on the multimodal problems. Parallel GAs 

(PGAs) are better option to optimize multimodal problems. 

OpenMP GA is parallel version of GA. The Dual Population 

GA (DPGA) uses an extra population called reserve 

population to provide additional diversity to the main 

population through crossbreeding. DPGA and PGA, both 

provide niching technique to find optimal solution. Paper 

presents the experimentation of DPGA, OpenMP GA and 

SGA. The experimentation results show that the performance 

of the OpenMP GA is remarkably superior to that of the SGA 

in terms of execution time and speed up.  OpenMP GA gives 

optimum solution in comparison with OpenMP GA and SGA 

for same parameter settings. 
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1. INTRODUCTION 
Genetic algorithms are based on theories of natural genetic 

and natural selection. GAs are useful to solve optimization 

problems. GA works on set of solutions and applies selection, 

crossover, mutation and survival selection iteratively to get 

the optimal solution.  Many Parallel GAs are proposed by 

various researchers to find optimal solution, speedup the 

searching time and utilize the resources like CPU (loosely or 

tightly coupled systems), memory etc. efficiently. PGAs are 

developed by suggesting niching technique to solve problem 

effectively.    

The Moore’s law, Amdahl’s law and Gustafson’s law say that 

the algorithm and functionality of CPU will improve in years 

of time [1].  

With the multicore processors getting cheaper and common, 

one cannot ignore their importance anymore. Multicore 

systems have multiple processing cores on same chip while 

multiprocessor systems have multiple chips inside a system. 

GAs need to be explored on multicore and HPC (High 

Performance Computing) computing paradigm. Many GA 

works uses multicore system for GAs but does not care about 

their CPU/core utilization. The algorithmically parallel DPGA 

but implemented sequential in C language, need to compare 

with programming parallel version of GA. 

Paper experimented serial DPGA algorithm, which is by 

algorithm design, parallel, but implemented serially in C 

language. OpenMP GA is simple serial GA but implemented 

parallely in C language using OpenMP pragmas. 

Paper focuses on issue of superiority of parallel programming 

implementation of serial algorithm versus design of parallel 

algorithm and serial implementation with respect to quality 

solution, processing speed and CPU utilization. 

The paper is organized as follow. Section 2 explains the 

related works. Section 3 describes the algorithm implemented 

and information about programming options. Section 4 reports 

the test data and experimental results for multimodal 

optimization problems and compares serial DPGA, OpenMP 

GA and SGA. Finally, section 5 provides conclusions. 

2. RELATED WORKS 
Literature survey given in [2], [3] are on advances, computing 

trends, application and perspective of Parallel Genetic 

Algorithm (PGA) [4]. In computing trends the important 

issues are architecture, OS, topologies and programming 

(Libraries). The programming languages are facilitated with 

set of special system calls or libraries like -Linda, OpenMP1, 

HPF, Parallel C and OCCAM (both for transputer networks), 

Java using communication libraries MPI (Message-Passing 

Interface)2, Express MPI,  PVM (Parallel Virtual Machine),  

POSIX threads and Java threads on SMP machines. There are 

many parallel programming options available in footnote 3, 4. 

Function optimization is carried out using many parallelizable 

metaheurestics such as Artificial Immune Algorithms (AIA) 

[5], Ant Colony Optimization (ACO) [6], Particle Swarm 

Optimization (PSO) [7], Artificial Neural Network (ANN) 

[8], Differential Evolution (DE) [9], Harmony Search (HS) 

[10], Bacteria Foraging Optimization (BFO) [11], Shuffled 

Frog Leaping (SFL) [12],  Artificial Bee Colony (ABC) [13], 

Biogeography-Based Optimization (BBO) [14], Gravitational 

Search Algorithm (GSA) [15], Grenade Explosion Method 

(GEM) [16], Teaching–learning-based optimization (TLBO) 

[17], etc.  Performance of parallel metaheurestics for function 

optimization need to be checked on computing paradigms 

such as Clusters computing, MPPs, Grids computing, 

GPGPU, cloud computing and Multicore/ HPC. Many 

metaheurestic’s performances are improved and checked on 

latest computing paradigms but as per the NFL (No Free 

Lunch) theorem [18], there is always chance that the 

particular metaheurestic performance might improve in terms 

of function evaluation, speedup [19] etc.  

1  https://computing.llnl.gov/tutorials/openMP/ 
2  http:// www.lam-mpi.org/ 
3  http://wotug.ukc.ac.uk/parallel/ 
4  http:// www.openmp.org 

https://computing.llnl.gov/tutorials/openMP/
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GAs are implemented over Clusters, MPPs [20], [21], Grids 

[22], [23], [24], [25], [26], [27], [28], [29], GPGPU [30], [31], 

[32], [33], cloud computing and Multicore/ HPC [34]. The 

GAs work on cluster, MPPs (Massively Parallel Processors), 

grid and cloud computing are in distributed environment can 

be called PGAs because of parallel hardware. The design of 

algorithm needs to be tuned with the hardware selected for 

implementation. The parameters to be considered are network 

delay, system configuration of each node in distributed 

system. Network delay plays important role on the 

performance of algorithm in case of distributed system. The 

programming on such parallel hardware is called loosely 

coupled programming. In case of Multicore/ HPC and 

GPGPU, also called PGAs, the design of algorithm needs to 

be tuned with the hardware selected for implementation. No 

such parameters need to be considered in tightly coupled 

system. The programming on such parallel hardware is called 

as tightly coupled programming. PGAs have capacity to run in 

parallel on many computing paradigms but finding suitable 

hardware and software will give optimal solution with optimal 

resource utilization.  

3. ALGORITHMS 
The three algorithms experimented on multimodal test 

functions are SGA, OpenMP GA and DPGA. Section 3.1 

explains the OpenMP GA and section 3.2 explain the DPGA.  

3.1 OpenMP GA 
OpenMP (Open Multiprocessing) is an API that supports 

shared memory  multiprocessing (tightly coupled) 

programming in C, C++, and Fortran, on most processor 

architectures and operating systems, including Solaris, AIX, 

HP-UX, GNU/Linux, Mac OS X, and Windows platforms. 

 

Figure 1 :Illustration of multithreading with the master 

thread forks off a number of threads for execute code in 

parallel. 

Open MP library works on the concept of thread. Library has 

many pragmas that parallelize the loops of the algorithm 

along with knowing the number of cores available on 

multicore processor.  The implementation of SGA with 

OpenMP multithreading will parallelize the algorithm. The 

master thread forks a specified number of slave threads and 

tasks are divided among them. The threads then run 

concurrently, with the runtime environment allocating threads 

to different processors or cores. The section of code which is  

meant to be run in parallel is marked accordingly, with a 

preprocessor directive that will cause the threads to form 

before the section is executed. After the execution of the 

parallelized code, the threads join back into the master thread, 

which continues onward to the end of the program. Figure 1 

illustrates the multithreading with the master thread forks off 

a number of threads to execute code in parallel. 

The flowchart of GA is given in figure 2. In OpenMP GA the 

various operators of SGA such as random number generator, 

initialization, fitness calculation are parallelized using 

pragmas, which reduce the amount of time to get the optimal 

solution and increases the CPU utilization on multicore 

system. 

 

Figure 2: Schematic diagram of GA 

Fitness Functions for SGA and OpenMP GA [35], [36] are the 

multimodal test functions. For example equation (1) is the 

Rosenbrock Test Function F(x) as an optimization problem. 

The global optimum lies inside a long, narrow, parabolic 

shaped flat valley.  

                  
  

 
       

     
       

     (1) 

Test area -2.048<= xi <= 2.048; where i=1,…, n; where n: 

Dimension. Its global minimum equal f(x) = 0 is obtainable 

for xi, where i = 1,…,n. 

3.2 DPGA  
DPGA is by design parallel but implemented serially [37]. 

DPGA has two distinct populations called main population 

MP and reserve population RP. Main population is having 

same role as that of the population of an ordinary GA. Main 

population aim to evolve to find a good solution with a high 

fitness value. The reserve population provides additional 

diversity to the main population.  The reserve population is 

employed as a reservoir for keeping chromosomes which are 

different from those of the main population.  
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http://en.wikipedia.org/wiki/Preprocessor_directive
http://en.wikipedia.org/wiki/Thread_%28computer_science%29


International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.19, February 2013  

31 

Start

Initialize main popsize, reserve

popsize, Pc, Pm, Stop criteria

Initialize main population Mp,

reserve population Rp

Calculate fitness of Main population fM

Calculate fitness of Reserve population fR

Calculate fitness for for Inbred Children of Mp

Inbreeding Process on main pop Mp

Selection Process for main pop Mp

Selection Process for reserve pop Rp

Inbreeding Process on reserve pop Rp

Calculate fitness for Inbred Children of Rp

Best two from Rp

Crossbreeding Process

Survival Selection for next Main pop Mp+1

Survival Selection for next Reserve pop Rp+1

Stop Criteria

Stop

Best two from

Mp

YN

 

Figure 3: Schematic diagram of serial DPGA  
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Table 1. Parameter setting for algorithms 

Initial Parameters  SGA OpenMP GA DPGA 

Main Population size   100 100 100 

Reserve Population size   -- -- 100 

Crossover Method  Single point Single point Single point 

Crossover point K  1 1 1 

Mutation Method  Flip Bit Flip Bit Flip Bit 

Crossover Probability (Pc)  0.7 0.7 0.7 

Mutation Probability (Pm)  0.03 0.03 0.03 

Dimension (D)  5 5 5 

No of Generation 2000 2000 2000 

Table 2. Problem Set- continuous non linear large scale benchmark problems 

Function 

Name 

 Equation Range Optimum 

value 

Rosenbrock 

(F1)                   
  

 
       

  

   

   

 

 

[-2.048 

,2.048] 

0 

Ackley 

(F2)                  
 

 
   

  

 

   

      
 

 
             

 

   

         

[-32.768 

,32.768] 

0 

Griewangk 

(F3)      
 

    
   

       
  

  
   

 

   

 

   

 
[-600 

,600] 

0 

Schwefel 

(F4)                   

 

   

  

 

[-500 

,500] 

-418.9829 

Rastrigin 

(F5)              
              

 

   

 
[-5.12 

,5.12] 

0 

 Table 3. Best Solution found and Execution Time for multimodal test functions 

Test 

function 

Best 

Solution 

Found 

for SGA 

Best 

Solution 

Found for 

OpenMP 

GA 

Best 

Solution 

Found 

for 

DPGA 

Time 

(sec) 

taken by 

SGA 

Time 

(sec) 

taken by 

OpenMP 

GA 

Time 

(sec) 

taken by 

DPGA 

F1 2.47E+00 4.79E+00 1.03E+00 11.38 4.32 3.45 

F2 1.38E-02 2.55E-03 1.30E-03 11.76 10.59 10.04 

F3 1.08E+00 3.25E+00 3.23E+00 10.75 4.61 3.65 

F4 -1.91E+03 -1.83E+03 -1.82E+03 10.29 3.94 3.02 

F5 5.18E-02 9.83E-01 4.96E-02 22.32 10.65 10 

Table 4.  Speed up gained for multimodal functions in comparison with SGA and OpenMP GA 

Test 

Function 

Speed up of DPGA compared with 

OpenMP GA (%) 

Speed up of DPGA 

compared with SGA (%) 

F1 20.13 69.58 

F2 05.20 14.62 

F3 20.82 66.04 

F4 23.35 70.65 

F5 15.12 55.20 
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Figure 4: Best solutions found by DPGA, OpenMP GA and SGA on multimodal test functions F1, F2, F3 and F5 

 

 

Figure 5: Best solutions found by DPGA, OpenMP GA and SGA on multimodal test functions F4 

 

 

 

 

 

 

 

Figure 6: Speed up gained in DPGA over OpenMP GA and SGA for multimodal test functions 
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Figure 7: Execution Time (in seconds) comparison for SGA, OpenMP GA & DPGA to find BSF for multimodal test functions 

Fitness Functions for Main Population fM(x) [35], [36]: The 

fitness function for main population is multimodal test 

functions. . For example equation (1) is the Rosenbrock Test 

Function F(x) as an optimization problem.  

Fitness Function for Reserve Population fR(x):  [38] [39] 


 


n

i

l

k

kkiR xm
n

xf
1 1

,

1
)(

              (2) 

xk  :  k
th gene of chromosome x from RP. 

mi,k: k
th gene of chromosome mi from  MP.  

n: Population Size of MP and RP 

l : Chromosome length. 

The equation (2) calculates the hamming distance of the kth 

gene chromosome from MP with kth gene of chromosome x 

from RP and assigns the fitness for reserve populating.  

The implementation of DPGA is carried out serially. Figure 3 

shows the schematic diagram of the serial DPGA. SDPGA is 

single threaded DPGA, so the exploration, exploitation, 

migration etc. are sequential.  

 

4. EXPERIMENTAL RESULTS 

4.1 Test Data 
The algorithm was evaluated on multimodal problems given 

in [35], [36]. The experimentation is carried out with five 

benchmark functions. The F1, F2, F3, F4 and F5 are 

multimodal functions. The test problem Set is shown in Table 

2.  

4.2  Results and Discussion   
In the experimentation, SGA, OpenMP GA and DPGA are 

implemented in C language over Linux platform on a Personal 

Computer (Intel Intel(R) Core (TM) i5 CPU 650 @ 3.20GHz 

processor with 2 cores and 4MB cache, 1 GB of memory and 

300 GB hard disk). Table 1 shows the parameter setting for 

SGA, OpenMP GA and DPGA algorithms. Comparison 

between SGA and OpenMP GA is made on the basis of 

execution time taken and speedup obtained. Equation number 

(3) is the formula for speed up calculation with respect to 

SGA. Equation number (4) is the formula for speed up 

calculation with respect OpenMP GA.    

         
                   –                   

                 
     

        (3) 

         

           
                         –                       

                       
     

         (4) 

Execution time is observed using GPprof software5. It is a 

performance analyzing and profiling tool, which collects and 

arranges statistics of our programs like execution time, CPU 

utilization, function calls, function wise memory and CPU 

utilization [40].  

Table 3 shows the comparison based on Best Solution Found 

and execution time in sec by SGA, OpenMP GA and DPGA. 

Figure 4 is a plot of Best Solution Found verses various 

multimodal test functions F1, F2, F3 and F5 considered. It 

shows that DPGA is outperforming in comparison with SGA 

and OpenMP GA for multimodal test functions except F3 in 

terms of quality of solution. Figure 5 is a plot of best solution 

found verses various multimodal test function F4. It shows 

that DPGA is outperforming in comparison with SGA and 

OpenMP GA for multimodal test function F4 in terms of 

quality of solution. 

Table 4 shows the comparison based on speed up achieved in 

percentage by DPGA over OpenMP GA and SGA for 

0 

5 

10 

15 

20 

25 

F1 F2 F3 F4 F5 

Time (sec) taken by SGA 
for best solution 

Time (sec) taken by 
OpenMP GA SGA for 
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5  http://www.cs.utah.edu/dept/old/texinfo/as/gprof.htm 

Execution Time (sec) 

Test 

function 
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multimodal test functions. Figure 6 is a plot of Speed up in 

percentage verses various multimodal test functions 

considered. It shows that DPGA outperforms in comparison 

with SGA and OpenMP GA for multimodal test functions in 

terms of speed up. It also shows that speedup achieved with 

DPGA against SGA is higher than OpenMP GA. Figure 7 is a 

plot of execution time in second verses various multimodal 

test functions considered. It shows that the DPGA is 

outperforming in comparison with SGA and OpenMP GA in 

terms of execution time taken to find best solutions.  

5. CONCLUSIONS 
Paper is representing the fact that the parallel hardware as 

well as algorithm with appropriate programming language 

will give optimal results, optimal resource utilization with 

speed up. The performance of the DPGA is remarkably 

superior to that of the SGA and OpenMP GA.  The 

multimodal functions take less time on DPGA than OpenMP 

GA and SGA to get the best solution. The quality of solution 

shown by DPGA is better as compare to SGA and OpenMP 

GA except F3 for given generation. The Speed up achieved by 

DPGA in comparison with SGA and OpenMP GA is 

remarkable. The average speed up shown by DPGA over SGA 

is ~55 % and over OpenMP GA is 15% 

The niching technique used in DPGA gives better result than 

parallel GA. The algorithmic design is more important than 

only parallel implementation. The combination of niching 

technique and parallelization in GA will gives better results 

than the niching and parallelization alone. 

Future scope is to experiment niching technique and 

parallelization in GA for Unimodal and multimodal function 

optimization. 
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