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ABSTRACT  
Feature reduction is one kind of pattern recognition and decision 

making technique, which can be achieved by using Fuzzy 

Weighted Gaussian Mixture Model (FWGMM) based on the 

Gaussian Mixture Model. This model helps to find relevant 

features by using Fuzzy ordered weighted average, which leads 

to determine the similarity of the density mixture. The salient 

feature of this approach is to find the relevant features 

simultaneously by employing fuzzy weighted approach. By 

applying Ordered Weighted Average (OWA), the feature 

weights are calculated and they are ordered using the 

membership values (oring criterion). Hence the feature weights 

are used as a regulator to determine the relevant features in 

feature reduction process. Maximum Ordered Weighted Average 

Likelihood (MOWAL) Framework adopts the Fuzzy Weighted – 

Gaussian Mixture Model (FW-GMM) for finding the 

component, which helps to discriminate the relevance of the 

features and improve the accuracy of density mixture.  
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1. INTRODUCTION 
In feature reduction, a number of techniques are proposed to 

select the relevant features from the datasets. In this paper, the 

features are selected based on weight wiє[0,1] using Maximum 

Weighted Likelihood framework. It is one of the promising 

techniques to identify the features which are relevant. In review 

of literature, the common weight finding mechanism is not 

available for selecting the relevance of features in GMM. So the 

features are selected using Ordered Weighted Average (OWA) 

approach by applying fuzzy decision technique. Fuzzy decision 

making process is an efficient method compared with other 

estimation approaches under incomplete or uncertain 

information. The OWA based ordered weighting can be applied 

to weigh the features by using membership values. Hence, 

Gaussian Mixture Model also plays a vital role in the form 

clustering initialization and it is trained by the Expectation 

Maximization Technique. The process stops until the relative 

log-likelihood is obtained by applying the preset threshold. The 

density of component Mixture is improved by applying fuzzy 

weighted approach and thereby identifying relevant features and 

reducing the feature subset.    
 

2. REVIEW OF LITERATURE 
 

In feature reduction, various approaches are employed for 

reducing the features by using the filter, wrapper and hybrid 

approach. One of the approaches is called Semi Supervised 

which identifies the features. In this approach, information 

theory analysis was employed and symmetry cross entropy 

distance measure was used to measure the difference of two 

random variables. The average symmetry cross entropy was 

used to measure the difference in degree of a multi-class 

problem [1]. Various methods were employed for the 

classification problem and seven feature selection techniques 

were used for evaluating imbalanced data sets. The receiver 

operating characteristic and area under the precision-recall curve 

metric can be used for finding the average performance for all 

classes. The likelihood metric was used to predict the 

performance of the model. The results revealed that very small 

number of features are selected using this approach for 

prediction [2].The wrapper approach was applied to evaluate the 

feature subset. And the performance was good compared to the 

earlier approaches but, the searching strategy of finding the 

feature subset stops with local maxima [3,4]. The feature 

saliency was measured in the form of relevance by applying the 

unequal weights. The likelihood criterion optimized the feature 

reduction by using weights in Expectation Maximization 

algorithm [5].The weights were introduced in the Maximum 

Weighted Likelihood framework, which yielded the component 

mixture and discriminated the features based on the relevance in 

the feature space [6]. The OWA optimization can be used into a 

mixed integer programming problem with monotonic weights, 

which were employed for higher dimensions [7]. 

 

3. MOTIVATION 

3.1 Weighted likelihood Estimation (WLE)  

The different weights are assigned to different samples, which 

are merged as relevant information into WLE function. The 

WLE for implication on α is defined as, 

WL (α) =  L1 ( x1, x2,……xn; α)
λ1  L1 ( x1, x2,……xn; α)

λ2     (1) 

where λ1 and λ2 are weights and they are used for 

finding the relevance of the likelihood. The non-negative 

weights are used for the experiment which is optimum. L1(x1, 

x2,...xn; α)  can be used instead of L2 ( x1, x2,……xn; β), which 

defines WL(α). This value is used as a marginal distribution of 

X’s and Y’s. The WL value depends on the X’s and it doesn’t 

depend on Y’s distributions. The value of X’s and Y’s are not 

independent and the weights of the likelihood function are 

modelled as the dependent one, which are not expressed in the 

marginals. Maximum Weighted Likelihood Estimator is 

obtained from likelihood function by maximizing the weights λ1 

and λ2. 
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The eq (1) can be used for the analysis to find out the 

WL estimation in terms of α. 

WL(α) =  λ1 ln L1 ( x1, x2,……xn; α) + λ2 ln L1 ( y1, y2,……yn; α)          

(2) 

       α 

 α
   

λ 

   
    

 
       – α     
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–α      

  

Where      α   = 
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λ  λ 
α  

λ 

λ  λ 
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Therefore the above equations are rewritten as  

          α     λ   α      λ   β        Where  λ     λ   = 1 

 

 

3.2 Maximum Weighted Likelihood (MWL) 

Learning Framework 

MWL estimation framework has been formulated with 

N observations. The following values x1, x2,…xN, are used for 

the forming the Mixture Model.   

      
        

   

          
                         (4)       

    
 

  

   

                   
    

In eq (4), xt( 1 ≤  t ≤ N) is a column vector of d-

dimensional features, i.e xt = [x1t, ………xdt] 
T, and Ө*=  {α*j , 

Ө*j }
k*  

j=1.  ,Ө* denotes the parameter set of the jth probability 

density function p(xt || Ө*j) in the Gaussian mixture model, k* is 

called as cluster number, α*j  denoted as the mixer portion of  jth  

component . Ө* is calculated by using N observations.  

   

                                                     (5) 

Hence, XN = {x1, x2…… xN}, and                 
    

is a maximum likelihood estimate of Ө*, The number of 

components  denoted by k and ML can be evaluated by EM 

algorithm. MWL framework finds the unequal weights and it’s 

applied into conventional maximum likelihood 

3.3 MOWAL Framework  

In this frame work, OWA averages are used and 

features are ordered based on the oring criterion in the feature 

space. In this context, framework finds the ordered weights and 

it is applied into conventional maximum likelihood. This 

framework does not increase candidate model complexity due to 

the regularization approach. The weighted likelihood functions : 
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(6) 

                                   

 

   

                         

 

   

 

             
           

       
                        

(7) 

where the posterior probability of jth component holds 

the value of xt, in the mixture, k value is an estimation of k* with 

k ≥ k* and ζ is a constant value. The g(j| xt , Ө)’s are  used in the  

weight functions and the following constraints are satisfied  

   

                
 
     

                                              

The weight functions are constructed using the following 

equations.  

                                                  (8) 

     

              
                              

             
  

In the above equation,  t is a small positive quantity.  

The weight can be calculated by using the xt ,and g(cxt , Ө) is a 

positive weight assigned to the log–likelihood of the winning 

component. The maximum value h(j| xt , Ө) is obtained in the 

component and it’s updated to select the xt.  The remaining 

components are considered as rival components, that are 

penalized due to the negative weight. The maximum weighted 

likelihood is estimated by updating the details of ӨMWL = 

argmaxӨ {Q (Ө,XN )}. 

3.4 Feature Relevance  

 The features are selected from the feature space based 

on relevance. The relevance of feature is identified by applying 

feature weights. If the feature is more relevant, the weight is 

large.  John G. Kohavi introduces the three types of relevance 

such as irrelevant, weakly relevant and strongly relevant. The 

highly relevant features are selected from the feature space, 

which is used for the data mining process. A feature X is weakly 

relevant which is not useful for the data mining process [8].  

3.5 Weighting Vs. Reduction  

Fu proposed a feature reduction algorithm, which 

assigns binary weights to features and identifies the optimal 

features by applying continuous weighting to the features in the 

feature space. The speed and performance can be improved by 

employing the weights for the feature reduction process. Feature 

reduction algorithms can reduce the dimensionality through 

weighting. The irrelevant features are removed in the learning 

phase. [9,10,11]. 
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3.6 Fuzzy sets 

A fuzzy set F containing X is characterized by the 

membership function, where X is a nonempty set. 

μF : X   [0, 1] 
where μA(x) is called as the membership degree of an element x 

in fuzzy set F for each x   X. 

F = {(x  μF(x))|x   X} 
Where A is a set of tuples.  Then F(x) can be written 

as μA(x). The fuzzy (sub) sets in X is called as F(X).  

 

If X = {x1, . , xn} is called as finite set and F is a fuzzy set in X  

and F can be rewritten as 

F = μ1/x1 + . . . + μn/xn 

Where μi/xi, i = 1, n denotes that μi is a membership grade of xi 

in F and plus sign is used as union of membership. 

3.7 Ordered Weighted Average (OWA)  

 In fuzzy set, aggregating multiple numeric criteria technique is 

used to design overall objective function based on weighted 

sum. Hence the preference of weights can be introduced, which 

is called as Ordered Weighted Average (OWA). The OWA 

aggregations in which ordered the weights based on relevance. 

This OWA aggregation is differing from other weighting 

approach as maximum, minimum and average [11] weights can 

be calculated. The main feature of this approach recognizes the 

patterns and decides the patterns with its decision making 

capability, whether it’s relevant or not. This operator helps us to 

recognize and decide the patterns from the maximum, arithmetic 

mean and minimum values. A predefined degree orness finds the 

optimistic to pessimistic value [12, 13, 14]. A maximum entropy 

approach is used to find the weight in a constrained non-linear 

optimization problem with a predefined degree of orness, which 

is an objective for the model [15, 16, 17].  A Minimum variance 

method is adopted for finding the minimum variability weights 

of the variables identified by this approach [18]. MinMax 

approach has been adopted for calculating the maximum 

difference of two adjacent weights by using Linear programming 

[19, 20, 21, 22,23].   

The equation for assigning the weights is given below. 

W(a1,...,aN) =  Σi=1N wi aσ     

 

where,   corresponds to a permutation of ai, which are ordered 

from the largest one to the lowest one. So, a1 will be the largest 

of the ai and aN will be the lowest of the ai. In this definition, pi 

corresponds to the weight of the ith data after ordering them. In 

this way, weights are introduced and the degree of relevance of 

the data is expressed as low, high and central data.  

The OWA operator has been mapped with n 

dimension F: Rn   R that has been associated with n vector.  

w  = (w1, w2  ……wn)T 

  where,   wi                      .   

   

 

   

    w     w         

F( a1……  n)   =          
   wj bj 

where, bj is the jth largest element of the bag 

<a1…..an>  

               The Weighting function can be calculated by using the 

following cases: 

Case 1:   Finding the Maximum  
 w*        ……  T   
Max(a1…   n) = max { a1…   n} 

Case 2:   Finding the Minimum  
                                     w*        ……  T   

Min(a1…   n) = min { a1…   n} 
Case 3:   Finding the Average  

                                   wA      /  …… /  T   

                                    F(a1…   n) =  
       

 
 

 
The significance of OWA operator is the re-ordering 

step, where the aggregate ai is not related with the weight wi.  

But weight is related with a particular ordered position of 

aggregate.  

3.8 Rival Penalization Expectation Maximization (RPEM) 

 

RPEM technique is a black box behind the Gaussian 

Mixture Model for feature reduction. In this process, the 

clustering process can be performed iteratively by learning. This 

technique scans all data points and finds a near optimal number 

of subsets. The proposed feature reduction approach yields the 

relevant and non-redundant features from the subset. Here the 

partitioning and feature reduction can be performed iteratively in 

several epochs.  

 

Proposed Algorithm  

Procedure Feature Re uc      F β γ,T) 

  pu   F β  γ,T) 
Output R 

1. F : X   [0, 1] 
F = μ1/x1 + . . . + μn/xn 

2. Calculate Weights: Fr  є F 

                    W’ =  
 

   
         

 
     

/* Feature reduction and Filtering*/ 
           R’          F –(Fr| Rankr < β  Fr  є F  
3.  R”                           /        
4.  R’’           Projection of R                     
5.    R            R” 

The above algorithm has been formulated for finding the 

weights 

                                   ……      

In each epoch, the weights can be calculated as 

winning component I(j|xt, Θ) =1, where j is considered as 

winning component. This weighted approach has been adopted 

in RPEM for finding the relevant component mixture and 

discarding irrelevant, redundant components in this process. 

RPEM algorithm finds the relevance weights and mixture by 

applying the following equation.  
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orness (w)     = 
 

   
         

 
     

 
   The algorithm can be modelled as mathematical problem  

 Maximize   orness (w)=   = 
 

   
         

 
     

        Subject to owa =       
   wi bi =O   0   O    

                  wi  =  w1  …   wn    = 1     wi,    …   
    

Each mixture is weighted and ordered winning 

components are identified  Rm → Rm such that Θ(y) =(θ1 (y), 

θ2(y), . . . , θn(y)), where θ1(y) ≥ θ2(y) ≥ ・ ・ ・ ≥ θn(y). It 

exists in each epoch τ of set I such that θi(y) = y τ(i) for i = 1, . . 

..n In this feature reduction process, the smaller weights are 

discarded and highest weights are used for finding the relevant 

features from n observations.  
 

4 .EXPERIMENTAL RESULTS 
In this proposed approach, kmax is set as 1/N, and βj ’s and 

γl’s to 0, which is equivalent to setting each αj to 1/N and wl to 

0.5. The remaining parameters are randomly initialized by the 

approach. The learning rates are η = 10−5, ηβ = 10−4. The initial 

centers of the clusters (μj's) are randomly chosen from the data 

points. 

 

Experiment 1:  In wine dataset, 178 data points with three 

classes are forming the Gaussian mixture of three components 

and weights namely w1 = 1, w2 = 0.7 and w3 = 0.6933. The 

feature weights of the three dimensions converge close to 1. The 

algorithm has accurately silhouetted the data points by using 

Fuzzy Weighed-Gaussian Mixture model structures in the first 

three dimensions, and component parameters are estimated.  

 

         
  

 
  

     
     

           
 

 
  

    
    

            
 

 
  

  
  

   

 

 

In this experiment, this approach selects the relevant 

features by reducing the feature space. In Table 1, the features 

are selected and it is weighted according to the membership 

values. In the first epoch, each data points are independent 

features from standard normal distribution.  

 

Table1: Feature Selection based on Weights in Wine dataset 

 

 

 

 

 

 

 

 

 

In the second epoch, the number of features are 

reduced due to the weights calculated by the algorithm 

depending on the relevance of  the feature and irrelevant features 

are removed. Hence, the features are ranked in descending order 

and three components are selected. In three intermediate runs, 

the components mixture are formed and the features are reduced 

by fuzzy filtering.  
 

 

 
 

 

 
 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Fig 1. µ(x)  vs. Wine Feature Weights 

 
   Fig 2. Orness values of wine Features (Window type) 

 

Fig.1 shows the various weights of features against the 

membership values. There is a compensative connective with a 

high degree of satisfaction of oring criteria. Fig.2 shows that the 

oring criterion reveals full compensation. The orness (w) is 

always denoted as a unit interval. It reveals that the nearer w is 

an oring criterion value, the nearer its value is to one. An OWA 

operator with top most weights (orness(w) ≥ 0.5) can be used for 

finding the good mixture model.  
 

Experiment 2: In Ionosphere dataset, 351 data points with two 

classes are forming the Gaussian mixture of two components. 

The feature weights w1 is 1 w2 is 0.828 and its value nearer to 1. 

In this approach, only the weight value nearer to 1 and a 

component has been added to improve the accuracy, namely 

orness (w) ≤ 0.5. The algorithm clusters the data points by using 

Gaussian mixture model in the three dimensions and component 

parameters are estimated.  

 
 

 

Table 2: Feature Selection based on Weights in Ionosphere 

dataset 
              

 

 

 

 

 

 

 

 

 

Epoch Selected features 

1 

2 

3 

F1,F2,F3,F4,F5,F6,F7,F8,F10,F12,F13 

F1,F2,F3,F4,F5,F6,F13 

F1,F2,F3,F4,F5,F6,F13 

Epoch Selected features 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

F1,F18,F19,F22,F25,F34 

 

F1,F2,F18,F20,F22, F24,F27,F34 

 

F1,F2,F18,F19, F20,F21.F22,F25,F28,F32,F34 

 

F1,F2,F6,F7,F12,F16,F18,F20,F22,F23,F26,F27,F30,F34 

 

F1,F2,F8,F18,F20,F22,F26,F27,F30,F34 

 

F1,F3,F18,F21,F22,F25,F29,F33,F34 

 

F1,F2,F18,F19,F21,F32,F33,F34 
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         In this filtering, six relevant features are selected by this 

approach in first epoch. In the second epoch, the number of 

features are increased as 8.In the third epoch, the eleven features 

are selected, in the fourth epoch, 14 features are selected. In the 

fifth epoch, the number of features is reduced to 10, In the sixth 

epoch, nine features are selected and in the seventh epoch eight 

features are selected by the algorithm. The above features are 

ranked according to the threshold value ≥0.5. Only two 

components are selected and they are highly relevant to the class 

variables.   

 
Fig 3. µ(x)  vs. Ionosphere feature Weights 

 
   Fig 4. Orness values of Ionosphere Features (Window type) 

 
 Fig 3 and 4 show that, the oring criterion reveals the 

compensation connective of weights and its membership values, 

where as the weights nearer to 1 is selected for the component 

mixture. But the oring criterion nearer to the threshold value is 

also selected for the refinement of Gaussian mixture.  

 
 Experiment 3: In Wdbc dataset, 569 data points with two 

classes are used to form the Gaussian mixture of three 

components with weights such as w1 = 0.7833, w2 = 0.6666 and 

w3=0.6333. The feature weights of the three dimensions 

converge close to 0.8. The weight value is nearer to 0.8 and the 

model has been built with Gaussian mixture. The algorithm 

clusters the various data points related to the centroid.   

 

In this experiment, several features are selected which 

are relevant.. Other features are selected by this algorithm in 

eleven epochs. The relevant features are ranked according to the 

threshold value ≥0.5. Only three components are selected and 

they are highly relevant to the class variables.   

 

 

 

 

 

 

 

 

 

 

 

Table 3 : Feature Selection based on Weights in Wdbc 

dataset 

  

 

 

 

 

 

 

Fig 5. µ(x)  vs. wdbc feature Weights 

 

Fig 5 shows that the oring criterion reveals the full 

compensation connective of weights and its membership values; 

whereas the weight nearer to a 0.8 is selected for the component 

mixture. But, the oring criterion above the criterion value is only 

selected for the mixture.  

 

 Experiment 4: In sonar dataset, 1000 data points with two 

classes are used to form Gaussian mixture of two components 

with weights such as w1 = 1, w2 = 0.8352. The feature weights of 

the two of the component dimensions converge close to 1, and 

one more component has been added for the accuracy of the 

Gaussian mixture below the threshold. In this sonar dataset, 

several features are selected which are relevant in this 

experiment in four epochs. Only highly relevant features are 

ranked according to the threshold value ≥0.5. The components 

are selected and they are highly relevant to the class variables. 

One more element is added with mixture which is less than the 

threshold value.  

 

Fig 6. µ(x) .vs. Sonar feature Weights 

 

 

 

 

 

 

 

Epoch Selected features 

1 

2 

3 

 

4 

F1,F8,F15,F18,F22,F23,F29,F31,F37,F38,F39,F43,F45,F47,F48,F50 

F1,F21,F23,F28,F29,F33,F38,F42,F44,F47,F48 

 

F1,F17,F18,F21,F29,F31,F32,F48 

 

F1,F3,F13,F15,F18,F19,F20,F21,F22,F23,F40,F45 
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Table 4: Feature Selection based on Weights in sonar dataset 
 

 

 In this analysis, the performance is evaluated with real 

world datasets. The comparison has been made with existing 

algorithm and the relevance of the feature has been identified by 

fuzzy weighting. Here, the different weights are calculated by 

using orness criterion. The weights are ordered and selected 

based on the threshold value. The accuracy of the proposed 

approach is evaluated in the form error rate. The proposed 

approach has been evaluated by dividing the dataset as training 

and test set. The mean and standard deviation are measures for 

finding the accuracy of the cluster similarity. This experiment 

reveals that the error rate is reduced by using proposed the 

approach and the cluster assignments of data points are different 

from the class labels in the dataset 

5. CONCLUSION 
The proposed feature reduction approach determines 

the most relevant features by using fuzzy weight. The orness 

criterion measure is to inspect the effectiveness of the feature 

weight by setting the value f(w) =w, wє[0,1].which is ordered 

and the lower level weights are discarded. The advantage of 

using fuzzy weighted Gaussian mixture is that the features are 

having strong relevance to form the density mixture. This new 

approach estimates the parameters and selects the highly 

weighted features for the density mixture. It reveals that the 

selected features’ relevance is strong and accuracy of the model 

is high.    
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Table 5  Accuracy of the  test sets for each algorithm 
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Epoch Selected features 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

8 

 

9 

 

10 

 

11 

F2,F3,F4,F5,F7,F8,F9,F10,F11,F13,F14,F16,F18 

 

F2,F3,F4,F5,F7,F8,F9,F10,F11,F12,F13,F14,F15,F16 

 

F2, F4, F6, F7, F12, F13, F15, F16. 

 

F6,F7,F10,F11,F12,F13,F14,F15,F16,F17,F19,F25,F29 

 

F6,F7,F10,F11,F12,F13,F14,F15,F16,F17,F18,F19,F20,F25,F29,F30 

 

F2,F4,F6,F7,F10,F11,F12,F13,F15,F16,F17,F18,F19,F20,F27,F29 

 

F6,F7,F10,F11,F12,F13,F15,F1,F20,F25,F26,F29 

F2,F3,F4,F5,F7,F8,F9,F10,F11,F14,F15,F16,F18 

  

F6,F7,F11,F12,F13,F15,F17,F18,F19,F20,F25,F27,F29,F30 

 

F4,F5,F7,F8,F9,F10,F11,F13,F14,F15,F16,F18 

 

F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15,F16,F17,F18 

 

Dataset Method Model Order 

 (Mean ±Std) 

Error Rate 

(Mean ±Std) 

wdbc 
d=30 

N=569 

K*=2 

RPEM 
GMClusFW 

IRFS-RPEM 

IRRFS-RPEM 
FW-RPEM 

1.7±0.4 
5.7±0.3 

2.3±0.4 

Fixed at 2 
Fixed at 2  

0.2610±0.0781 
0.1005±0.0349 

1.021±0.0546 

0.0897±0.0308 

0.0776±0.0268 

Sonar 

d=60 
N=1000 

K*=2 

RPEM 

GMClusFW 
IRFS-RPEM 

IRRFS-RPEM 

FW-RPEM 

2.3±0.8 

1.0±0.0 
2.8±0.6 

2.7±0.7  

       2.6±0.6 

0.4651±0.0532 

0.5000±0.0000 
3.625±0.0394 

0.3221±0.0333 

0.3120±0.0320 

Wine 
d=13 

N=178 

K*=3 

RPEM 
GMClusFW 

IRFS-RPEM 

IRRFS-RPEM 
FW-RPEM 

2.5±0.7 
3.3±1.4 

4.7±1.7 

3.1±0.5 

2.9±0.4 

0.0843±0.0261 
0.0673±0.0286 

0.0492±0.0182 

0.0509±0.0248 

0.0424±0.0234 
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