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ABSTRACT 
Distance measures is very important  in some clustering and 

machine learning techniques. At present there are many such 

measures for determining the dissimilarity between the feature-

vectors, but it is very important to make a choice that depends 

on the problem to be solved. This paper proposes a simple but 

robust distance measure called Reference Distance Weighted, 

for calculating distance between  feature-vectors  with real 

values. The basic attribute that distinguishes it from other 

measures is that the distance is measured from one of the 

feature-vector, considered as a reference system, to other 

feature-vectors. In fact  this reference vector belongs to a class 

of a classification system. A second distinctive attribute is that 

its value does not depend on the orders of magnitude of the 

different characteristics of vectors. In addition, through a 

parameter called factor of relevance, each feature receives a 

weight in terms of its influence, because different features have 

different influence on dissimilarity estimation depending on the 

final problem to be solved. An extension of the proposed 

distance allows working with hybrid vectors, ie real and logical 

values. Future research directions are also provided. 
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1. INTRODUCTION  

Over the time, for the processes of classification and 

recommendation have been proposed a number of distances to 

determine the dissimilarity between two feature-vectors , some 

of the most popular being: Hamming distance (DH) [1], 

Minkovski distance (DM) [2], Euclidean distance (DE), 

Manhattan distance (DMH) and Chebyshev distance (DC).  

The Minkowski distance is a metric which is a generalization of 

the Euclidean, Manhattan and Chebyshev distances.  

For two feature-vectors                    
and                  , where n is the number of 

features:  

            
  

 
   

                   (1) 

 

If p=1 is obtained              
 
            (2) 

 

If p=2 is obtained              
  

           (3) 

 

If p=±∞, by passing to the limit are obtained: 

 

                                     (4) 

and 

                                   (4’) 

 

With all the popularity of indicators mentioned above, they do 

not always offer the best solution for all types of data and 

problems, as mentioned in [5] and [6]. There are a lots of other 

measures dedicated to particular problems [7, 8, 9, 10, 11,  etc 

]. It is clear that all of them have advantages and 

disadvantages, as there are so far a general measure, 

good/optimal for all types of problems. 

 

2. THEORETICAL CONSIDERATIONS 
The following proposes a new measure to evaluating the 

dissimilarity of two feature-vectors, called Reference Distance 

Weighted, noted with RDW. The term "reference" shows that 

the distance is measured from a reference system, ie from the 

feature-vector specific to a class of problems/objects to the 

feature-vector of the problem/object to be classified.  The term 

"weighted" has two meanings: the first show that each feature 

have a specific  weight / relevance / importance in final 

problem to be solved; the second meaning refers to how big is 

the difference between two features relative to the reference 

feature value. 

The RDW indicator was designed to use it in systems of 

equations classification, process that depend on some 

characteristics of associated matrices, such as: size, sparsity, 

number of non-zero values on the main diagonal, nonzero 

elements distribution, symmetry, positivity  etc. Some of these 

features of matrices have been successfully used in other 

classification processes, relevant examples are given by 

Shuting Xu in [13, [14] and by T. George in [16].  

RDW can be seen as a function:                 . The 

relation for computing RDW value is: 
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with:   

-n number of features considered; 

-u={u1,u2,…,un} is the feature-vector of reference, associated to 

a class, vector from whom the distance is measured; 

-v={v1,v2,…,vn}  is the feature-vector associated to the problem 

that must be solved or object that must be classified, vector up 

to which is measured the distance; 

-α={α1, α2, …αn}, is  a vector called relevance vector, whose 

components αi are parameters specific for each feature in part 

and assigned to each feature, called relevance factor, 

proportional to the importance/weight of the respective feature 

under the conditions of problem to be solved. 

In relation (5) the case ui = 0 is excluded to avoid dividing by 

zero. 

Remark 1: The generalization of relation (5), ie including the 

situation ui = 0, can be done by introducing a correction factor 

ɛ: 

                                
where ri  represent the magnitude of vi value. For example, if vi 

  [1,9], we have ri = 1 leading to ɛi=0.01, a value that will 

http://en.wikipedia.org/wiki/Metric_%28mathematics%29
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Manhattan_distance
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affect a very little the RDW value in conditions when ui = 0, as 

can be seen in relation: 

            
    

 
       

  
       

 

 
 (6) 

 

The feature-vector u is regarded as a reference for the feature-

vector v, which is a natural approach in conditions which u is 

attached to a particular class of problems/objects and vector v 

is attached to the problem/object to be classified and is reported 

to the known classes of problems/objects. The approach 

proposed here, that problem/object relates to class and not vice 

versa, differentiates the proposed indicator RDW from other 

indicators used in classification problems. 

The major advantage of using RDW in calculating the degree of 

dissimilarity is the fact that the value of this indicator depends 

on the percents in which differ the characteristics of v towards 

the characteristics of u and not from the absolute values of the 

differences between these values,  such as the Minkowski type 

distances. 

From the mode definition                  and for 

         ,      
  in accordance with relation (6) we 

have the following properties of the proposed RDW distance: 

Property1: RDW (u, v, α) ≥ 0, axiom of positivity; 

Property2: RDW (u, v, α) = 0 if and only if u = v, ie    
            ,  axiom of coincidence; 

Property3:                       if     (   
                         : non-symmetry; 

Property4:          such that               
              : relaxed symmetry  [3]; 

Property5:   
                                     

  
                                   
where     is a constant, relaxed triangle inequality [3, 4]; 

Remark 2: triangle property is verified only in particular cases. 

The situation can be assimilated to a weighted directed graph in 

which the vectors u, v and w are vertices and RDW values are 

weighted edges between these vertices, as shown in Figure 1. 

 
Figure 1 The analogy: relaxed triangle inequality - weighted 

directed graph 

 

Remark3: If                          
     

                           
    ; 

If conditions  

             and               
are eliminated,  then: 

                             

 

Theorem:  For                     with strictly 

monotone sequences,  and 

                                    and    
                 

  , the function                   

is an unimodal function that has a single minimal mode. 

Proof:  because in relation (6) the terms αi  and ui  are constant 

for a given class from a classification problem,  in correlation 

with definition and properties of strictly monotone sequences 

and that the terms in relation (6) have only positive values for 

each feature it is obvious that               strictly 

monotone sequences for each feature in part, the sequence of 

values generated by RDW(u,v,α) function will be a unimodal 

sequence. 

Some observations are required to be made:  

- if at least one sequence of values for a feature is not strictly 

monotone, RDW(u, v, α) function  is not unimodal, it is 

multimodal, ie there are more minimum in considered interval 

from Rn. In this case the function RDW(u,v,α) is unimodal on 

subintervals for which the strict monotonicity property is 

satisfied; 

- if RDW(u,v,α)  function is not unimodal, in some conditions it 

can be transformed into one unimodal RDW(u,v',α) if:  

a) are excluded from processing those features that are not 

strictly monotonous, on condition that the vector v' contains at 

least one component;  

b) by assigning very low values (tending to zero) to αi that 

corresponds to not strictly monotonous features. Null values 

for αi are not allowed, opposite case would mean that the 

feature has zero relevance and must not be considered. 

Applicability: exclusion from the analysis of those features that 

are not strictly monotone sequence allows optimization 

process, ie adjusting one or more characteristics that are 

remaining in analysis, in order to "approach" the problem to be 

solved by a class of problems for which the solution is 

convenient. 

Table 1 helps to a better understanding of RDW. In this 

instance have been considered u = {u1, u2, u3} = (1, 2, 3) the 

reference feature-vector from a class. Table 1 contains the 

calculated values of RDW for different vectors vk and different 

relevance vectors αk for a given vector u. 

 

Table 1. Examples for RDW measure 
Reference feature-vector u={1, 2, 3} 

Ex. vk=(v1,v2,v3) Relevance vector   

α=(α1, α2, α3) 

RDW(u,v) 

1 (1, 2, 3) (1, 1, 1) 0,000 

2 (1, 3, 2) (1, 1, 1) 0,277 

3 (2, 1, 3) (1, 1, 1) 0,500 

4 (2, 3, 1) (1, 1, 1) 0,722 

5 (3, 1, 2) (1, 1, 1) 0,944 

6 (3, 2, 1) (1, 1, 1) 0,888 

7 (1, 2, 3) (1, 1, 2) 0,000 

8 (1, 3, 2) (1, 1, 2) 0,388 

9 (2, 1, 3) (1, 1, 2) 0,500 

10 (2, 3, 1) (1, 1, 2) 0,944 

11 (3, 1, 2) (1, 1, 2) 1,055 

12 (3, 2, 1) (1, 1, 2) 1,111 

13 (1, 2, 3) (1, 2, 2) 0,000 

14 (1, 3, 2) (1, 2, 2) 0,555 

15 (2, 1, 3) (1, 2, 2) 0,666 

16 (2, 3, 1) (1, 2, 2) 1,111 

17 (3, 1, 2) (1, 2, 2) 1,222 

18 (3, 2, 1) (1, 2, 2) 1,111 

19 (1, 2, 3) (2, 2, 2) 0,000 

20 (1, 3, 2) (2, 2, 2) 0,555 

21 (2, 1, 3) (2, 2, 2) 1,000 

22 (2, 3, 1) (2, 2, 2) 1,444 

23 (3, 1, 2) (2, 2, 2) 1,888 

24 (3, 2, 1) (2, 2, 2) 1,777 

25 (2, 2, 3) (1, 1, 1) 0,333 

26 (2, 4, 3) (1, 1, 1) 0,666 

27 (2, 4, 6) (1, 1, 1) 1,000 

28 (0, 2, 3) (1, 1, 1) 0,333 

29 (0, 0, 3) (1, 1, 1)            0,666 

30 (0, 0, 0) (1, 1, 1) 1,000 

 

Due to non-symmetry property of RDW is introduced a new 

indicator called Inverse Reference Distance Weighted, noted 
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with IRDW. IRDW is defined like RDW except that the distance 

is measured from the feature-vector v of problem to be solved 

to the reference feature-vector u. Thus, for the general case, ie 

without restriction to the vector v: 

             
    

 
       

  
       

 

 
  (7) 

 

IRDW introduction was necessary to define another indicator 

that brings new advantages in dissimilarity measure using 

feature vectors. This new indicator, denoted by ΔRDW is the 

absolute value of difference between RDW and IRDW: 

 

                  (8) 

 

Experiments that reflect relevance ΔRDW are presented in Table 

2. 

Property6: ΔRDW indicator determine in Rn hyperspace a 

hyperplane HRDW with the property that all points in HRDW 

verify the relation ΔRDW = 0 in relation to the origin  O = {0,0, 

... 0) of Rn. 

This means that zero values for ΔRDW and equal but nonzero 

values for RDW and IRDW for two or more feature-vectors 

does not mean that those vectors are identical, but they 

determine different points in a same hyperplane. 

Property7:  For the u and α constant and an uniform variation 

in the same direction (ascending or descending) with the same 

value ri (called ratio) of the feature-vectors vi
k, the function 

RDW(u, v, α) is  linear and strictly monotone.  

Property is not valid for RDWI(u,v,α) and for the ΔRDW(u,v,α). 

Property8:                              symmetry 

axiom. 

Property9:  RDW(u,v, α)=IRDW(v,u, α)  and  RDW(v,u, 

α)=IRDW(u,v, α) 

 

The complexity of the problems to be solved often require 

hybrid feature-vectors, ie combinations of real and logical 

values. One such example would be the feature-vector of a 

matrix that can have features such as sparsity (real), symmetry 

(boolean), diagonally dominant (boolean), number of non-zero 

values (real) etc. The feature-vector splitting in two 

homogeneous vectors in terms of the data types and use an 

adequate measures for each -for example RDW for real values 

and DH (Hamming distance [1]) for logical values-, seems at 

first sight an acceptable solution. But after calculating 

separately these distances, the question is how do we classify 

accordingly if there are two indicators of different type. One 

option would be to convert the DH value from logical into a 

real value. This can be done with a good approximation if 

TRUE is replaced by 1 respectively FALSE with 0. Knowing 

that for two vectors u and v we have the Hamming distance 

                ie                     where 

                    and using the substitutions      
         , will be obtained for DH(ui,vi) the values 1 or 0, 

which can be summed up to RDW value. An "adjustment" of 

these values regarding the boolean component contribution to 

the total value of RDW can be made using the appropriate 

component αi from the relevance vector α. 

Therefore, the relation (6) becomes: 

            
      

 
   

 
 (9) 

where       

    
  

       
                                                        

                                        

                                          

  

 

Important note: Generally, the feature-vectors values are 

strictly positive real numbers, or logical values and as a 

consequence there is no need of correction factor ɛ in relations 

proposed before, which will increase accuracy and simplify the 

calculation. 

 

3. EXAMPLES AND COMMENTS 

There were performed a series of experiments to study the 

relevance and properties of proposed indicator RDW and those 

derivates from it, IRDW and ΔRDW , resulting several 

observations as follows: 

1) zero value for RDW(u,v,α) indicates a perfect 

similarity of the two vectors u and v (examples 1, 7, 13 and 19 

in Table 1) and represents the ideal case for a classification 

problem; 

2) the ideal  case does not depend on relevance vector α 

(examples 1,7,13 and 19 from Table 1; 

3) experiments regarding the influence of feature-vector 

v: 

-for a uniform variation (with the same ratio) and strictly 

monotone of one or more components of vk on both sides of the 

reference vector u, is obtained linear and symmetrical 

variations of RDW values. RDW sequence values is unimodal 

and symmetric, as can be seen in Figure 2. This experiment 

exemplifies the theorem from the previous section. In example 

presented in figure 2 the working parameters was: u={1,2,3}, 

v=(v1,v2,v3},                               , 

α={1,1,1} 

 

 
Figure 2 An example for theorem: RDW(u,v,α) is unimodal 

 

-in Figure 3 is exemplified the case when at least for a feature 

in vk, the values sequence is not monotonous. In this case 

RDW(u,v,α) function is multimodal, with several minimum 

values. The working parameters was: u={1,2,3}, α={1,1,1}; 

 
Figure 3 A multimodal RDW(u,v,α) function  

 

4) an example of property 3, ie RDW (u, v) ≠ RDW (v, 

u):  if u = {1,2,3,4}, v={4,3,2,1} and α={1,1,1} is obtained 

RDW (u, v, α) = 1.203 and RDW (v, u, α) = 11.146; 

5) examples for triangle inequality: if u={1,2,3,4}, 

a={2,4,6,8}, b={3,6,9,12} and α={1,1,1,1}, we obtain: 

i))  RDW(u,a)=1, RDW(a,b)=0.5 and RDW(u,b)=2 ie 

RDW(u,b) > RDW(u,a) + RDW(a,b): not verify the triangle 

inequality; 

but 

ii))  RDW(b,u)=0.667, RDW(a,u)=0.5, RDW(b,a)=0.333 ie 

RDW(b,u)<RDW(b,a)+RDW(a,u) : verify the triangle 

inequality. 
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6) The relevance-vector α affect only RDW values, 

without affecting the positions of minimum,  global or local,  

on the abscissa, as can be seen in Figure 4. 

 
Figure 4. The influence of relevance vector α 

 

Also, it is possible to use different sequences for relevance-

vector α depending on certain conditions, such as for example 

depending on vi value. An example: for v1<10 will be used 

α={1,1,1} respectively α={2,1,1}  for v1> = 10. 

7) The relevance of ∆RDW indicator can be seen in Table 

2 respectively Figure 5.  Working parameters was u={1,2,3,4} 

and α={1,1,1,1}. ΔRDW values close to zero show a greater 

degree of dissimilarity between vectors u and v.  

 
Table 2 ∆RDW relevance 

Ex. v1 v2 v3 v4 RDW IRDW  ∆RDW   DMH 
1 1,0 2,0 3,0 4,0 0,0000 0,0000 0,0000 0,00 
2 2,0 2,0 3,0 4,0 0,2500 0,1250 0,1250 1,00 
3 1,0 3,0 3,0 4,0 0,1250 0,0833 0,0417 1,00 
4 1,0 2,0 4,0 4,0 0,0833 0,0625 0,0208 1,00 
5 1,0 2,0 3,0 5,0 0,0625 0,0500 0,0125 1,00 
6 2,0 3,0 4,0 5,0 0,5208 0,3208 0,2000 4,00 
7 3,0 3,0 4,0 5,0 0,7708 0,3625 0,4083 5,00 
8 2,0 4,0 4,0 5,0 0,6458 0,3625 0,2833 5,00 
9 2,0 3,0 5,0 5,0 0,6042 0,3583 0,2458 5,00 
10 2,0 3,0 4,0 6,0 0,5833 0,3542 0,2292 5,00 
11 2,0 3,0 3,0 4,0 0,3750 0,2083 0,1667 2,00 
12 2,0 2,0 4,0 4,0 0,3333 0,1875 0,1458 2,00 
13 2,0 2,0 3,0 5,0 0,3125 0,1750 0,1375 2,00 
14 1,0 3,0 4,0 4,0 0,2083 0,1458 0,0625 2,00 
15 1,0 3,0 3,0 5,0 0,1875 0,1333 0,0542 2,00 
16 1,0 2,0 3,0 4,1 0,0062 0,0061 0,0002 0,10 
17 1,1 2,0 3,0 4,0 0,0250 0,0227 0,0023 0,10 

 

 
Figure 5 ∆RDW relevance 

 

8) Comparison with other metrics 

i) A set of experiments first were made under the 

conditions of theorem enunciated in section 2. An example can 

be seen in Figure 6. 

 

 
Figure 6 Comparison with other metrics 

 

ii) There are situations when measures such as DMH, 

DE and DC, unlike RDW, have a low sensitivity, sometimes 

zero, to relative large variations in the features values of vi,  

which recommend the use of RDW measure in classification 

problems. An example of this is given in Table 3. Thus, for 

feature-vector values equal to {0,3,3}, {2,2,2} and {1,1,4} 

corresponding values for DMH, DE, DC+∞ and DC-∞ have the 

same values, while RDW values differs. In this example u = 

{1,2,3} and α = {1,1,1}. 

 

Table 3 RDW relevance 

v1 v2 v3 RDW DMH DE DC+∞ DC-∞ 

0 -1 -3 1,500 10 6,78 6 0 

2 3 4 0,611 3 1,73 1 2 

3 4 5 1,222 6 3,46 2 3 

4 9 -2 2,722 15 9,11 7 4 

4 8 -1 2,444 13 7,81 6 4 

6 8 5 2,889 13 8,06 6 6 

7 8 1 3,222 14 8,72 6 7 

1 2 3 0,000 0 0,00 0 1 

2 2 3 0,333 1 1,00 1 2 

0 3 3 0,500 2 1,41 1 0 

1 1 4 0,278 2 1,41 1 1 

2 2 2 0,444 2 1,41 1 2 

7 6 6 3,000 13 7,81 6 7 

7 5 10 3,278 16 9,70 7 7 

7 4 7 2,778 12 7,48 6 7 

1 2 2 0,111 1 1,00 1 1 

10 2 6 3,333 12 9,49 9 10 

 

The advantage of using the ∆RDW in compared with other 

indicators and way in which its values clearly indicate the 

extent to which vectors differ regardless of the size of the 

features is illustrated in Table 4. In this example, the three 

features have different orders of magnitude and example show 

very clearly the advantage of using ∆RDW to measure the 

distance between two vectors, in the sense that it is not 

influenced by magnitude orders of features values.  

Thus, in the first group (eg 2, 3 and 4) each feature value was 

doubled from baseline. In the three cases for the same variation 

in percent (100%) of each feature, it obtained the same 

variations for RDW, IRDW and ∆RDW, which is correct, unlike 

the values obtained with other indicators.  

In second group (eg 5, 6 and 7) to the value of each feature was 

added value 1. In third group  (eg 8, 9 and 10) to value of each 

feature was added 200. In both situations indicators DMH, DE, 

DC+∞  and DC+∞ show the same increase in distance which is 

not relevant. 
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Table 4 The relevance of RDW family indicators 

ex v1 v2 v3 RDW IRDW ∆RDW DMH DE DC+∞ DC+∞ 

1 1 10 100 0 0 0,000000 0 0 0 0 

2 2 10 100 0,333333 0,166667 0,166667 1 1 1 0 

3 1 20 100 0,333333 0,166667 0,166667 10 10 10 0 

4 1 10 200 0,333333 0,166667 0,166667 100 100 100 0 

5 2 10 100 0,333333 0,166667 0,166667 1 1 1 0 

6 1 11 100 0,033333 0,030303 0,003030 1 1 1 0 

7 1 10 101 0,003333 0,0033 0,000033 1 1 1 0 

8 201 10 100 66,66667 0,331675 66,334992 200 200 200 0 

9 1 210 100 6,666667 0,31746 6,349206 200 200 200 0 

10 1 10 300 0,666667 0,222222 0,444444 200 200 200 0 

 

4. CONCLUSIONS   
The definition and experiments show that RDW, IRDW and 

∆RDW indicators are not influenced by orders of magnitude of 

different features. 

RDW, IRDW and ∆RDW are sensitive to percentual difference 

in which is ui and vi are and not to the absolute difference 

between these values, as happens at DMH or DE indicators. 

The frequency of cases in which for very different feature-

vectors are obtained equal values for RDW is much lower, 

even insignificant, in comparison with other indicators like 

DMH, DE or DC. Such situations -equal values for very 

different situations- can lead to wrong classifications. 

RDW values vary in a reasonable range of values, which is 

quite narrow, relatively independent of the orders of 

magnitude of the components from feature-vectors. 

The RDW value is independent from the number of features, 

as happens for example to DMH and DE. This property allows 

in some cases to be excluded from the analysis an 

"uncomfortable" feature, without RDW value to be affected to 

a great extent. 

Using the relevance vector α allows sensitization of RDW 

indicator to weight/importance of each feature in part. 

ΔRDW indicator, which is a measure of the difference 

between direct and inverse RDW distance bring added 

certainty regarding the degree of similarity of two feature-

vectors, its low values indicating a "similarity "greater of 

those two vectors. 

Values of characteristics from feature-vectors is most often 

the values of physical quantities, chemical, etc., often 

different, with different measurement units (pieces, m, m2, m3, 

kg, N, kg/m3 etc). The proposed approach is more natural in 

the sense that the value of RDW not having units of 

measurement (by simplification), its interpretation is simple 

and scientifically correct: "distance/difference between vector 

u and v is 7% compared to the reference-vector u ". In the case 

of other indicators may sound rather strange, "the distance 

between u and v is 16 kg-newtons-meters ...". 

Through the substitutions true →1 and false → 0,  RDW 

indicator can be used in situations where feature-vectors are 

hybrids (real and boolean values). 

The immediate goal is to use the proposed indicator in a 

classification/recommendation system for partitioning systems 

of equations when solving these on a parallel computer. 

Twenty features of the associated matrix have been selected 

"size, bandwidth, average bandwidth [12], symmetry, 

positivity, sparsity, profile, euclidean norms, distributions of 

nonzero elements per row/column etc" for this purpose. Some 

of these features have been successfully used in the 

classification process, relevant examples are given by Shuting 

Xu in [13] and in his doctoral thesis [14] and by T. George in 

his doctoral thesis [15]. 

The first results, regarding partitioning in parallel conjugate 

gradient, are encouraging but inconclusive because we do not 

know yet what is the importance, the relevance and the weight 

of each feature in part on  the mentioned parallel process. 

Studies and experiments in this direction will be made in the 

future.  

Another future work is to use the proposed indicator in the 

selection/recommendation the preconditoning and the parallel 

numerical method for solving a system of linear equations. 
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