
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

1

Eliminating Homogeneous Cluster Setup for Efficient

Parallel Data Processing

Piyush Saxena
M.Tech (CS&E)
Amity University,

Noida, India

Satyajit Padhy
M.Tech (CS&E)
Amity University,

Noida, India

Praveen Kumar
Assistant Professor,

Amity University,
Noida, India

ABSTRACT

This project proposes to eliminate homogeneous cluster setup

in a parallel data processing environment. A homogeneous

cluster setup supports static nature of processing which is a

huge disadvantage for optimising the response time towards

clients. Parallel data processing is performed more often in

today’s internet and it is very important for the server to

deliver the services to its client in optimal time. In order to

avail utmost client satisfaction, the server needs to eliminate

homogeneous cluster setup that is encountered usually in

parallel data processing. The homogeneous cluster setup is

static in nature and dynamic allocation of resources is not

possible in this kind of environment. The project will also

make sure that the user gets its entire requirement fulfilled in

optimal time. This will improve the overall resource

utilization and, consequently, reduce the processing cost.

General Terms

Map reduce algorithm, Homogeneous cluster setup

Keywords

Data mining, Data warehousing, Parallel data processing.

1. INTRODUCTION
In today’s digital generation, a huge amount of data is been

processed parallel in the internet. Providing optimal data

processing with good response time improvises the output of

parallel data processing. There are many users that try to

access the same data over the web and it is a challenging task

for the server to deliver optimal result. The vast amount of

data they have to deal with every day has made traditional

database solutions prohibitively expensive. Instead, these

companies have popularized an architectural paradigm based

on a large number of commodity servers. There are problems

like processing large documents split into several independent

subtasks, distributed among the available nodes, and

computed in parallel.

Parallel data processing is a key feature in accessing and

operating on huge set of data’s. [2] There are several ways

available to process data parallel which improvises time and

response. Today’s framework has a huge disadvantage that

can be termed by a homogeneous cluster setup. A

homogeneous cluster setup is a cluster of nodes which

consists of a cluster head node and many sensor nodes

connected to it. The cluster head node is responsible to direct

a task to the sensor nodes for executing it. In a homogeneous

cluster setup, all the sensor nodes avail uniform battery energy

and all of them terminate at the same instant of time. The

main disadvantage with a homogeneous cluster setup is that it

is static in nature, i.e. once all the sensor nodes are created

and started to execute then no more extra sensor nodes can be

added further in that cluster.

It is quite evident that the static nature of a homogeneous

cluster setup is a huge disadvantage in parallel data

processing. Once the nodes are created and have started

executing there cannot be addition of any further nodes if

required to be added dynamically. The dynamic factors are

absent basically if there exists a homogeneous cluster setup.

In this proposed project, the job manager acts like a cluster

head node and all the task managers act like sensor nodes. The

objective of this project is to motivate dynamic allocation of

resources which can be achieved more efficiently if we

eliminate homogeneous cluster setup.

[4]To be more precise, there is a job manager (main server) is

allocated with a job it then divides that job into many sub jobs

and it allocates to each task manager. Now once this cluster is

setup and the parallel data processing begins, there can be no

possible ways by which we can add more task managers or

eliminate any executed task managers until all have executed.

This is an ambiguous situation when there can be no resource

allocation during the middle of data processing. This creates a

problem for the server (Job Manager) to offer complete results

to its users. Parallel data processing is more efficient if it can

be executed dynamically and this dynamic environment

improves the optimum response time. If we eliminate the

homogeneous cluster setup, any number of sensor nodes can

be created at any instant of time.

2. BACKGROUND
There are several amount data being processed in today’s

web. There are several challenges during parallel processing

of this huge amount of data. During our research [5], there

were many ambiguities we came across regarding parallel

data processing.

 The ambiguities were like:-

1) Delayed response time due to homogeneous cluster

setup

2) Resources cannot be allocated dynamically once the

number of task managers are created (static cluster)

3) High traffic if data with many peers in action

4) Data access used to be slower if the required data is

unavailable with the server.

All these challenges being very generic, the most important

problem was if the data to be accessed by the user was of

huge size than the processing becomes slower. Facing these

challenges regarding parallel data processing, there was a

straightforward approach that was deployed in our proposed

project.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

2

The first scenario that [1] was applied in our research is the

use of map reduce algorithm. This algorithm is the most

effective algorithm that can be used for parallel data

processing of large data. This map reduce algorithm stated a

divide & conquer structure of working with data. This

algorithm made it easier for the host server (job manager) to

handle the job efficiently. It breakdowns the job into many

sub jobs and execute them individually with the help of task

managers.

The second scenario was all about eliminating the

homogeneous cluster setup [19] of network. This will allow

the allocation of resources dynamically to the host server at

any instant of time. In order to eliminate homogeneous cluster

setup, we need to avoid static nature of the cluster of nodes

and allow addition of task managers to the cluster at any

instant of time. The transformation of homogeneous cluster to

heterogeneous cluster network will avoid static nature of the

cluster and even reduce the overall hardware cost. Dynamic

allocation of resources allows optimizing the parallel data

processing in a new manner. This methodology offers a new

scope of viewing these given challenges and moulding it to

operate in an efficient manner.

The experiment is analyzed by taking into account various

time slots that allows imagining the whole operation between

job manager, task manager & user.

Once a user has fit his program into the required map and

reduce pattern, the execution framework takes care of splitting

the job into subtasks, distributing and executing them. A

single Map Reduce job always consists of a distinct map and

reduce program. Server - Client computing or networking is a

distributed application architecture that partitions tasks or

workloads between service providers (servers) and service

requesters, called clients.

Often clients and servers operate over a computer network on

separate hardware. A server machine is a high-performance

host that is running one or more server programs which share

its resources with clients. A client also shares any of its

resources; Clients therefore initiate communication sessions

with servers which await incoming requests.

Processing is based on implementation of the theorem uses

(network-based) search operations as off the shelf building

blocks. Thus, the NAP query evaluation methodology is

readily deployable on existing systems, and can be easily

adapted to different network storage schemes. In this case, the

queries are evaluated in a batch. We propose the network-

based anonymization and processing (NAP) framework, the

first system for K- anonymous query processing in road

networks. NAP relies on a global user ordering that satisfies

reciprocity and guarantees K-anonymity. [11] We identify the

ordering characteristics that affect subsequent processing, and

qualitatively compare alternatives. Then, we propose query

evaluation techniques that exploit these characteristics. In

addition to user privacy, NAP achieves low computational

and communication costs, and quick responses overall. It is

readily deployable, requiring only basic network operations.

3. PROJECT SYSTEM OVERVIEW
In recent years a variety of systems has been proposed to

facilitate web warehousing has been developed. Although

these systems typically share common goals (e.g. to hide

issues of parallelism or fault tolerance), they aim at different

fields of application. [7] Map Reduce algorithm is designed to

run data analysis jobs on a large amount of data, i.e. in order

to improvise the parallel data processing between large

number of nodes (users) and servers.

The proposed system also demonstrates the discrete allocation

of resources that are not available on the host server but are

available on remote servers, parallel while processing the

present data. The proposed framework allows a platform for

the server and users in efficient and optimized parallel data

processing. It allows the job manager to allocate resources [4]

at any instant of time and this improvises the response time.

Hence the problem of a homogeneous cluster network is

eliminated and thus it is more optimized approach.

Once a user has fit his data for processing into the required

map and reduce pattern [13], the execution framework takes

care of splitting the job into subtasks, distributing and

executing them. A single Map Reduce job always consists of

a distinct map and reduce pattern. The mapping is done by the

job manager to its entire task manager with individual sub

tasks and finally all the task managers execute each of their

tasks and reduce it to one single solution and return it back to

the user. The map-reduce algorithm works as a divide &

conquer approach and it is very efficient in parallel data

processing. The proposed system also offers dynamic

allocation of resources to any of the task managers during

execution. The allocated resources are then available on the

host server always and it can be operated later.

4. FUNCTIONAL REQUIREMENTS
In software engineering, a functional requirement defines a

function of a software system or its component. A function is

described as a set of inputs, the behavior, and outputs.

Functional requirements may be calculations, technical

details, data manipulation and processing and other specific

functionality that define what a system is supposed to

accomplish.

The client/server model is a computing model that acts as a

distributed application which partitions tasks or workloads

between the providers of a resource or service, called servers,

and service requesters, called clients. Often clients [8] and

servers communicate over a computer network on separate

hardware, but both client and server may reside in the same

system. A server machine is a high performance host that is

running one or more server programs which share their

resources with clients. A client does not share any of its

resources, but requests a server's content or service function.

Clients therefore initiate communication sessions with servers

which await incoming requests. Whereas the Servers take the

request from the client and try to fulfill these requests by

providing the resources the clients need.

A job manager is a computer application for controlling,

managing and splitting the request of resources/files from the

client. The job manager accepts the job to be executed as a

request from the client and accordingly splits it as large

number of packets. This large number of packets is allocated

to the task managers for executing it in optimal time.

Generally large in number Task Managers are the part of the

software that manage the responses given by the Job Manager

and try to execute these responses n return the result of these

set of responses to the client. The task manager is responsible

for executing the individual packets allocated to them by the

job manager.

5. OBJECTIVE OF THE PROJECT
The objectives and purpose for this project are to improvise

and optimize the scenario of parallel data processing by

eliminating homogeneous cluster setup [12]. Millions of data

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

3

are accessed in the web by the user and it is the utmost

responsibility of the server to provide satisfaction to the user.

It is always viable to be on the other side but dealing with

such huge amount of data everyday makes the situation more

complicated. Hence there are very few loopholes in the

current framework but these are enough to degrade the

performance in parallel data processing.

Therefore the main objective and purpose of this project is to

optimize [2] parallel data processing by avoiding

homogeneous cluster setup. In order to avail utmost client

satisfaction, the host server needs to be upgraded with the

latest technology to fulfil all requirements. The homogeneous

cluster setup is static in nature the proposed map reduce

algorithm is used in this generic framework that can be

deployed in this scenario. Another important goal of this

project is to allocate resources or data dynamically to the host

server (job manager) so that every requirement of resources

can be fulfilled at any instant of time. The current problem of

formation of a homogeneous cluster setup is eliminated so

that any number of sensor nodes or task managers can be

created at any instant of time. The static nature of existing

framework of parallel data processing is terminated. This

allows higher and sharper response time and avoiding delay in

transfer. The below figure states that the job manager upon

receiving a job divides it into many packets (files) and the

task mangers execute those packets at an instant of time. The

time is stated in the figure and the actual response time is

highly optimised with the proposed framework.

The job manager should be aligned [17] with all its task

managers to avail maximum optimization. The task managers

are mapped by the job manager with many jobs and they all

solve it individually which is later reduced to return it back to

the client. This allows the load for the execution to be shared

and the overall execution of huge sized data is more feasible

in less time. Typically data of huge size are the toughest

challenge to be dealt in the web for parallel data processing.

This project makes sure that the user gets its entire

requirement fulfilled in optimal time.

 We discussed pros and cons of Map Reduce and classified its

improvements. Map Reduce is simple [1] but provides good

scalability and fault-tolerance for massive data processing.

The performance evaluation gives a first impression on how

the ability to assign specific jobs to specific task manager of a

processing job, as well as the possibility to automatically

allocate/de-allocate virtual machines in the course of a job

execution, can help to improve the overall resource utilization

and, consequently, reduce the processing cost.

Fig 1: Architecture of proposed system

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

4

Fig 2: Command line output showing time instances of packet retrievals

6. MODULES OF THE PROJECTED

SYSTEM
Client

This module deals with the Client or the Customer whose

needs are to be fulfilled. The client always requests [10] to the

server for executing a particular operation and send a response

back to it accordingly. Nevertheless a client is always volatile

about its operation. In our proposed project, the client selects

the file that it wants to download. After the file is selected the

client clicks on the download button. It is obvious though that

the client always tries to request to download a file in this

scenario. After clicking the download button, it waits for the

server to send a response back. The status of the downloading

interface is shown to the client so as to it can check the status

of the downloading. The client is demonstrated by building a

simple interface which consists of simple components. The

client interface is event driven and the concept of swings in

java is largely implemented. The client interface consists of a

text area which displays all the files that are available

presently in the database [6]. The text area is updated

dynamically as per the uploading of resources dynamically.

The name in the title bar of the interface is named as select

file which basically states to select a file to download. There

are two swing buttons included named as download and

cancel. Both these buttons are event driven and upon clicking

on the button a specified event takes place. The download

button allows downloading a file and the cancel button closes

the client interface.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

5

Fig 3: Client Interface

Server

A server is a computer system that is responsible for servicing

the request made by the client. The server is normally located

remotely [3] and is used to service requests from multiple

clients. The server is always responsible for maintaining

resources and allocating them as required by the host clients.

The server even manages and controls data processing

between server & client. In today’s modern multiprocessor

architecture, parallel data processing plays an important role.

In order to have efficient parallel data processing where many

clients participate to execute certain tasks, the server needs to

execute data processing faster and efficiently. In our proposed

project the server is an entity that services the request made

by the client. The client request for downloading a file and the

server makes it sure that the file is downloaded and opened at

the end of downloading for the clients. The server interface

consists of two important criterions that are job manager and

task manager. The server interface even consists of a menu

bar that has one menu element names as file. This menu

consists of two menu elements named as resource allocation

and exit. The resource allocation option should be selected

only if the server needs to allocate resources dynamically at

the same time when the file is getting downloaded. The server

interface even consists of a drop down select menu which has

the default value of parallel. This states that the [9] data

distribution type is parallel and the data processing will be

parallel in nature. The server upon getting the request from

the client displays certain parameters in its command prompt

output. It is the name of the file that is downloaded, the port

numbers that will be involved during downloading, the total

number of packets sent and received etc. The server even

showed pictorially how the resources are allocated

dynamically from the job manager to task manager.

Fig 4: Client Download Interface

Job Manager

The job manager is an essential component of the server. It’s

like the master component of the entire client server layout.

The job manager [2] accepts the request that comes from the

client and is responsible for processing it. The job manager

follows divide and conquer approach for executing the job

that. The job manager has to schedule and control the

execution of the jobs and returning back a valid response to

the client as per its request.

In the first scenario upon achieving a request from the client

the job manager divides the job into many sub jobs or packets.

It distributes evenly and randomly all the sub jobs and

allocates it to the task managers. After the task managers

finish executing their individual sub jobs, they return the

resultant data to the job manager. All the sub jobs or packets

returned by the task manager to the job manager would not be

in sorted order and hence the job manager sorts all the packets

as they were allocated initially. After sorting all the packets

the job manager tries to merger all the executed packets into

one data so that it can return a single solution to the client.

The command prompt terminal output shows the time

instances at which the job manager sends a packet to the task

managers. It even shows the sorting and merging of packets

accordingly so as to return a single solution to the client.

During dynamic resource allocation to the task managers, the

job manager itself uploads the file to the task manager. The

job manager is responsible for uploading the files to the task

manager whenever there is a need of allocation of resources.

Fig 5: Job Manager

Task Manager

The task manager is an essential part of the server. It is like a

basic block of execution that helps the job manager to execute

the sub tasks and return it back to the job manager. The task

manager responsibility is to execute the individual packets

allocated to them and return it back to the job manager. When

a client requests for downloading a file, the task manager is

the one which is responsible for executing the operation and

performs efficient parallel data processing. Upon the use of

task managers with the job manager, the time for parallel data

processing is much more efficient and it even supports

dynamic resource allocation.

The task manager interface is a simple representation of the

operation it performs. It shows that whenever a client makes a

request to download the file, the server with the help of task

manager tries to execute the request and return an optimal

solution back to the client. It even represents the distributed

type data processing which is parallel in nature and states that

the file uploading is done with the task manager. After

uploading the necessary file in the back end database, it is

ready to return the request back to the client. In our proposed

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

6

project we have chose four task managers and each task

manager is represented with a unique port number. This port

number can be initialized by us but moreover it shows the

participation of each task manager in the parallel data

processing. It plays a major part even in allocating resources

dynamically.

Fig 6: Task Manager

7. CONCLUSION AND FUTURE SCOPE
Today’s digital generation executes its key ingredient at a

regular basis and that is data [1]. Everyday there are many

probabilities of parallel data processing. There are many

search engines like Google or Yahoo which has to process a

lot of data simultaneously for returning a response [3] to its

users and even at a faster rate. The reliability and feasibility

should not be hampered during this parallel data execution.

Presently the mechanisms used for parallel data execution

creates a homogeneous cluster setup within the network. The

homogeneous cluster setup states that when there is a parallel

downloading environment [8] under processing between the

client and server, if the client at the same time requests for

downloading a particular file and the server does not have it

currently in it back end database then it causes a huge

problem. The file cannot be uploaded until all the

downloading under progress stops its execution.

In order to avoid this kind of scenario and to decrease the

delay in response time from the server, we propose a

framework that represents efficient parallel data processing

with [10] no homogeneous cluster setup. It makes sure that

when a client request for a file that is not present in the server,

it can dynamically allocate that resource or file to the client

even at the same time all the parallel downloading scenario is

under progress. This improves the reliability and response

time since the client has to no more wait for its response. This

framework defines a new level in parallel data processing that

is not encountered in today’s world.

The experimental results demonstrating the comparison of

response time between the existing framework and the

proposed framework is shown in fig 7. It clearly states that the

existing framework takes more time to respond to a client

request comparatively to proposed framework. Due to the

obvious problem of homogeneous cluster setup, the existing

framework posses delay due to static nature. The dynamic

nature of the proposed framework enhances the response time.

As the size of the data increases, the response time is

demonstrated for both the framework.

Fig 8: Experimental analysis of existing v/s proposed framework

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.17, February 2013

7

8. REFERENCES
[1] “Parallel Data Processing with Map Reduce: A Survey”

by Kyong-Ha Lee and Yoon-Joon Lee, Department of

Computer Science KAIST, December 2011.

[2] Query Optimization for Massively Parallel Data

Processing by Sai Wu , Feng Li, Sharad Mehrotra, Beng

Chin Ooi School of Computing, National University of

Singapore, March 2012

[3] S. Babu. Towards automatic optimization of map reduce

programs. In Proceedings of the 1st ACM symposium on

Cloud computing, pages 137–142, 2010.

[4] Parallel Data Processing: http://server-demo-

ec2.cloveretl.com/clover/docs/clustering-parallel-

processing.html

[5] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.

Map-Reduce-Merge: Simplified Relational Data

Processing on Large clusters. In SIGMOD ’07:

Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 1029–1040,

New York, NY, USA, 2007. ACM.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI’04: Proceedings

of the 6th conference on Symposium on Opearting

Systems Design & Implementation, pages 10–10,

Berkeley, CA, USA, 2004. USENIX Association.

[7] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.

Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,

A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A

Framework for Mapping Complex Scientific Workflows

onto Distributed Systems. Sci. Program 13(3):219–237,

2005.

[8] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.

Interpreting the Data: Parallel Analysis with Sawzall.

Sci. Program., 13(4):277–298, 2005.

[9] B. Li et al . A Platform for Scalable One-Pass Analytics

using MapReduce. In Proceedings of the 2011 ACM

SIGMOD, 2011.

[10] D. Jiang et al. Map-join-reduce: Towards scalable and

efficient data analysis on large clusters. IEEE

Transactions on Knowledge and Data Engineering, 2010.

[11] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

David E. Culler, Joseph M. Hellerstein, and David A.

Patterson. High-performance sorting on networks of

workstations. In Proceedings of the 1997 ACM

SIGMOD International Conference on Management of

Data, Tucson, Arizona, May 1997.

[12] William Gropp, Ewing Lusk, and Anthony Skjellum.

Using MPI: Portable Parallel Programming with the

Message-Passing Interface. MIT Press, Cambridge, MA,

1999.

[13] Douglas Thain, Todd Tannenbaum, and Miron Livny.

Distributed computing in practice: The Condor

experience. Concurrency and Computation: Practice and

Experience, 2004.

[14] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.

Anthony, H. Liu, P. Wychoff, and R. Murthy, “Hive - a

warehousing solution over a map-reduce framework,” in

VLDB, 2009.

[15] D. DeWitt and J. Gray, “Parallel database systems: the

future of high performance database systems,” Commun.

ACM, 1992.

[16] S. Fushimi, M. Kitsuregawa, and H. Tanaka, “An

overview of the system software of a parallel relational

database machine grace,” in VLDB ’86: Proceedings of

the 12th International Conference on Very Large Data

Bases. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1986, pp. 209–219.

[17] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan,

“Interpreting the data: Parallel analysis with sawzall,”

Sci. Program., vol. 13, no. 4, pp. 277–298, 2005.

[18] M. Ziane, M. Za¨ıt, and P. Borla-Salamet, “Parallel query

processing with zigzag trees,” The VLDB Journal, vol. 2,

no. 3, pp. 277–302, 1993

[19] Homogeneous vs Heterogeneous Clustered Sensor

Networks: A Comparative Study by Vivek Mhatre,

Catherine Rosenberg School of Electrical and Computer

Eng., Purdue University, West Lafayette, IN 47907-

1285.

AUTHOR’S PROFILE

Praveen Kumar Assistant Professor, Amity University,

India. Qualified as M.Sc., M.Tech., Ph.D. (Pursuing) with

areas of interest in e-goverence / Java programming, Data

mining

Satyajit Padhy B.Tech, Mtech (CSE) pursuing. Published

two research papers on data processing in data warehousing

and services of cloud computing respectively. Areas of

interest lies in cloud computing, data warehousing and data

mining.

Piyush Saxena B.Tech, Mtech (CSE) pursuing. Published

two research papers on data processing in data warehousing

and services of cloud computing respectively. Areas of

interest lies in cloud computing, data warehousing and data

mining.

