
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

7

Cloud based Scaling of Grid Resources through
Grid Middleware

Mary Sumi Kurian

Post Graduate student, Department of Computer
Science and Engineering, Karunya University, India

S.P.Jeno Lovesum
Assistant professor (SG), Department of Computer
Science and Engineering, Karunya University, India

ABSTRACT

In Grid computing, a common task is performed by combining

the resources from different locations or domains. It will use

only the fixed number of resources available in different

locations. It doesn’t scale the resources according to the users’

demand. On the other hand cloud computing provides resources

to users according to their demand. Grid computing uses the

autoscaling capacity of cloud in resource scaling. That means,

cloud provides resources to grid and thereby achieving resource

autoscaling in grid computing. In this paper, grid resource

scaling using cloud is addressed. In this paper the combination

of grid and cloud is achieved thorough a middleware called as

DIET.

General Terms

Cloud, Integration, Middleware.

Keywords

Cloud computing, Grid computing, IaaS, Scaling, DIET,

Virtualization.

1. INTRODUCTION
Using cloud computing anyone can access very large pool of

resources in a cost effective way [1]. By using the virtualization

concept, cloud computing can support heterogeneous resources

and maintains flexibility. Another important advantage of cloud

computing is its scalability [2]. All these factors have

contributed to making cloud computing popular in the

‘computer world’. IaaS cloud is the basic and most popular

cloud type. IaaS cloud is the delivery of large computing

resources like networks, processors, storage etc. IaaS is mainly

accessed by the network and system administrators. Most

popular IaaS providers are, Amazon, GoGrid etc.

In order to perform complex computational tasks, different

resources are combined that are spread across different

geographical locations. This is achieved through grid

computing. The main advantage of grid computing is that it can

solve large and complex tasks with shorter time. These large

tasks have to be scheduled across different computers across the

network. Several scheduling and load balancing approaches are

already available in the field of grid computing. Grid computing

is mainly used for scientific applications.

These individual mechanisms have different advantages. If

these two mechanisms are combined, it will yield great benefits.

These can be integrated for different purpose. As cloud can

provide very large pool of resources, grid can use cloud for the

purpose of resource provisioning. Also, grid can achieve greater

flexibility through the heterogeneous resources provided by

cloud. In these paper, an integrated grid cloud architecture is

explained.

The paper is organized as follows: Section 1 provides and

introduction and background to cloud and grid computing.

Section 2 explains the related works present in the field of grid-

cloud integration. Section 3 explains the overall architecture

and working of the system. Section 4 contains the details of the

experiments conducted and their analysis results. Finally

section 6 discusses the conclusion and the future enhancement

of the work presented in this paper.

2. RELATED WORKS
Different Grid-Cloud integration is proposed in this section.

I.M. Llorente et al. [3] proposed a system in which grid directly

uses cloud as their resource provider. In this paper cloud is

integrated within virtualization. Grid computing is established

on top of the virtualization layer. The virtualization layer is the

combination of a virtual infrastructure manager and a cloud

provider. Through this approach resource management is totally

separated from infrastructure management. The architecture

uses OpenNebula [4] as the virtual machine manager and

Amazon EC2 as the cloud provider. The Function of the virtual

machine manager is to deploy, monitor and control VMs. They

have also considered virtualization overhead and

communication latency during the performance evaluation.

Almost same approach is proposed by Rafael Moreno-

Vozmediano et al. [5]. Cluster computing services are

deployed on top of virtualization infrastructure layer. Along

with that it integrates virtualization in the local site to improve

the flexibility. The main advantages of this setup are separation

of infrastructure management form resource management,

partitioning of physical infrastructure from other services and

heterogeneous configuration that support a number of services.

Eddy Caron et al. [6] use cloud system as a on-demand resource

for a grid middleware. They used DIET (Distributed Interactive

Engineering Toolbox) [7] as grid middleware and

EUCALYPTUS (Elastic Utility Computing Architecture for

Linking Your Programs To Useful Systems) [8] as the cloud

resource provider. DIET is having a hierarchical structure. The

DIET components are Master Agent (MA), Agent, Local Agent

(LA) and Server Daemon (SeD). Users submit their task request

to MA. MA will forward the request through to corresponding

SeD through the hierarchy. SeD will connect with the cloud

provider to get the resources. SeD will map the requested

services to virtual machines in order to achieve a greater

flexibility and scalability.

Claudia [9] is service abstraction layer implemented on top of

different cloud environments. It will provide a unique interface

to different cloud vendors. Generally, Service Provider (SP)

will serve the requests from the user. It will get the resources

from the Cloud Provider (CP). Each CP will be having different

mechanism to access resources. The burden on SP will increase

due to this. Claudia alleviates the problem by providing a

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

8

unique interface. This helps the service provider to handle the

requests efficiently. In this SGE is deployed on top of Claudia.

The main advantages of the system are automatic scaling, smart

scaling, appropriate service abstraction and avoidance of cloud

vendor lock in problem. In order to handle federated cloud

environments another model named InterCloud [10] is

developed.

There is no mechanism to control the level of detail in Grid.

Shantenu Jha et al. [11] use cloud to control the detail in grid.

The paper addresses the issue of interoperability between grid

and cloud. Different usage modes are introduced in the paper.

Cloud provides a wide range of applications and services to

grid. High level interfaces help the users to access the cloud

resources in a more efficient way. Using cloud affinity, internal

components are not visible in the external user environment. It

also helps in the management of heterogeneous clouds.

GridWay Metascheduler [12] is a single point access provided

for different complex infrastructures. Interoperability between

grid and cloud is mainly addressed in this paper. Workload is

scheduled across many cloud providers based on the heuristics

developed. The heuristics will be based on economic criteria

that will depend on both cost and time. Service Manager

monitors the metascheduler to find when to scale the resources.

The set of heuristics are specified by the Service Manger

component.

RightScale [13] works as an intermediary between users and

cloud providers by providing unified interfaces. Users can

interact with multiple cloud providers on one screen. Well

designed user interface and highly customized OS enable users

to deploy and manage their cloud applications quickly and

conveniently. RightScale allows full customization with

abstraction. Grid computing can be integrated with the

RightScale so that it can access cloud providers.

Luis Rodero-Merino et al. [14] proposed an efficient approach.

In this paper, grid uses cloud as the resource provider and an

economic mechanism is incorporated with this paper.. Grid

middleware DIET is integrated with cloud. TAM (Task

Allocation Module) is established between grid and cloud. User

request will reach TAM through the grid hierarchy and it will

compute different allocation offers according to the capacity

available with the cloud provider. All the allocation offers will

be sent to the user and the user will choose the best allocation

offer that is very much suitable to his requirement. Market

based approach is adopted in this paper. By this, each resource

is assigned with a price and each user is assigned with a budget.

The parameters considered for allocating resources are deadline

and cost. Through economic mechanism it also achieves

fairness. Fairness means no user will block the execution of

other user by holding too many resources. It also incorporated

the mechanism of assigning priority to task. The results show

that the system yields greater performance while considering

the tasks based on risk than the tasks based on their importance.

3. ARCHITECTURE AND WORKING
This experiment is based on the hybrid grid-cloud architecture.

That means, a grid middleware is built on the top of a cloud

infrastructure. Here the grid middleware used is the DIET. Eddy

Caron et al. used cloud system as aon-demand resource for a

grid middleware. In that paper, DIET architecture is combined

with the cloud provider EUCALYPTUS.

3.1 Diet Middleware
DIET is based on the gridRPC message passing mechanism.

The basic DIET component is the agent that is responsible for

scheduling and data management capabilities. The DIET

components are Master Agent (MA), Agent, Local Agent (LA)

and Server Daemon (SeD). Each DIET grid has one Master

Agent (MA), which is the root of the hierarchy. Users will

contact directly with the MA. Each request will be forwarded

through the DIET hierarchy until it reaches Server Daemons

(SeD) that is responsible for service execution. Each Agent

knows the services that can be executed by the corresponding

SeDs at the bottom of each one of its children agents. If the SeD

cannot execute the particular task, the request will not be

forwarded to the corresponding Agent. Each SeD is connected

with the DIET hierarchy through the Local Agent (LA).

When each request reaches the SeD, the corresponding SeD

will be building a reply according to their state. All the replies

will be ordered using some objective function to make the best

SeD to come in the first list. At last MA will send all the replies

to the user. When the replies reach the user, he will select the

best SeD according to some conditions or functions. After that

the user will directly contacts the particular SeD for the task

execution without the intervention of the DIET hierarchy.

Figure 1 shows the DIET hierarchy and message passing. It

contains one MA and that will interact with the user while

requesting the task as well as by providing the results.

Figure 1. DIET Middelware Architecture

3.2 Integrated Architecture

DIET architecture allows direct connection with IaaS cloud.

IaaS cloud will be connected to the SeD nodes, who will decide

when to allocate and release resources according to the users’

demand. Each service will be run in the VMs hosted in the

cloud. Once a VM is created, the SeD node will be connecting

to the corresponding VM in order to execute user tasks. The

user is totally unaware about the fact that SeDs may run tasks in

VMs supplied by IaaS cloud.

Figure 2 shows the integrated grid-cloud architecture. As the

DIET architecture will provide a number of offers while

MA

Agent Agent

LA

LA

LA

LA

SeD

SeD

SeD

SeD

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

9

requesting for a task, we built a new module named Offer

Computing System (OCS) for that. Using OCS, the DIET

middleware can interact with the IaaS cloud providers like

Amazon ec2, Eucalyptus etc. Another important function of

OCS is that it has to construct all the possible processing offers

using the resources available with the cloud providers. After

completion of the processing offers computation, it has to be

sent back to the SeD. This is done through the OCS.

Figure 2. Grid-Cloud Integrated Architecture

3.3 Working

Users will submit the task to the DIET middleware. Users will

interact directly with the MA. While receiving a task request

from the user, it will travel through the DIET hierarchical

architecture and reaches at SeD. When the request reaches SeD,

it will be forwarded to the OCS for computing the task offers

using the cloud resources.

Before computing the offers, OCS will check some preliminary

conditions. That means, it will check whether the received

resource request is available with the cloud providers. In our

system, it will first check inactive VMs, then active VMs and at

last in new VMs. Here the resource considered for the

experiment is CPU. The request will contain the amount of

CPU needed (expressed in MIPS).

As mentioned earlier, before computing the offers,

preconditions have to be satisfied. That means, first OCS has to

check whether the requested amount of CPU is available in the

active VM, then it will check in the active VM. If these two

options are not satisfying, it will go for starting a new VM. In

this case, two conditions have to be satisfied. First, it has to

check that the VM has the capacity to accomplish the request.

Next, it has to check that the new VM can be deployed in a

physical server or host. If the conditions are satisfying, the

offers have to be calculated. That means, the OCS has to

calculate the time required to complete a particular requested

task. Let’s denote the requested resource using ri. The

processing time taken for the particular task request is

calculated using the given formula:

Pt = ri/Cj (1)

Where, Cj represents the processing speed of the particular VM.

In the case of active VMs, some processes will be running

already in that. We have to consider both the currently running

task and the task residing in the VM’s queue. The processing

time in this case is calculated as follows:

Pt = (ri+Ri)/Cj (2)

Where, Ri represents the sum of all task execution time and the

remaining execution time of the current task. In the last case,

we have to find the processing time in a new VM. This is

calculated by adding VM starting time with the equation 1.

After completing the processing offers calculation, the offers

are sent through the DIET hierarchy upto the MA. When the

offer reaches MA, it will be forwarded to the corresponding

users. The user will select appropriate offers from the offer list

based on their preference. After selecting the appropriate offer,

user will contact the corresponding VM. At this stage, the user

will contact directly the VM. After the task execution in the

corresponding VM, it will send back the result to the

corresponding user.

4. EXPERIMENTAL RESULTS
The system is implemented using the popular simulator

GridSim [16]. This experiment is conducted with 3 users and 20

tasks. Tasks are randomly assigned to the users. Every task is

assigned with a deadline, time needed for the completion of the

task. Tasks are failed mainly due to few reasons. One, there is

no enough resources available to complete the task. Second one

is the processing offers send a processing time that is greater

than the deadline of the corresponding tasks.

The experiment is run based on two different algorithms. First,

the task requests from users are served based on the First Come

First Server (FCFS) basis. Next is based on the Earliest

Deadline First (EDF) Basis. Our research results show that the

EDF performs better than the FCFS.

4.1 FCFS
In the case of FCFS, the tasks are served in the arrival order.

That means, whichever tasks come first will get the first chance.

As per this algorithm, the experiment is performed. Out of the

20 tasks, 12 are completed without any problems. 8 tasks are

marked as filed. Out of the 8 failed tasks, 6 are failed because

the tasks missed their deadline. 2 of the tasks failed due to the

lack of resources thereby the OCS couldn’t find any processing

offers. The analysis is shown in figure 3.

4.2 EDF
Considering, EDF scheduling, the tasks are allocated based on

the deadline. If the deadline of the job is near, it will be served

first. Second round of experiments are performed absed on this

algorithm. Out of the 20 tasks, 15 are completed without any

problems. 8 tasks are marked as filed. Out of the 5 failed tasks,

3 are failed because the tasks missed their deadline. 2 of the

tasks failed due to the lack of resources thereby the OCS

couldn’t find any processing offers. EDF algorithm analysis is

shown in figure 4.

MA

Agent

LA

LA

SeD

SeD

IaaS Cloud

Provider

IaaS Cloud

Provider

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

10

Figure 3. Total and Failed Task Analysis based on FCFS

Figure 4. Total and Failed Task Analysis based on EDF

After the execution of both the algorithms, the results are

analyzed. Percentages of failed and completed tasks are

calculated. Using the FCFS algorithm, the percentage of

completed tasks is 60 and the percentage of failed tasks is 40.

In the case of EDF algorithm, completed jobs percentage is

increased to 75 and the failed tasks percentage is 25.

According to the results, majority of the tasks are failed due to

the missing their deadlines. There are many situations where a

task can be failed due to missing deadline in this architecture.

They are,

a. While the task in the request queue itself the deadline has

reached.

b. As this is an integrated architecture, we have to consider

the overhead of both the environments. DIET is a

hierarchical middleware system and the request passing

through it will take a longer time. Then both the

environments have to be connected with OCS. Finally, it

has to interact with the cloud environment. Because of

these reasons of time delay, the deadline may be missed.

The processing offers computation will take some time

as it is checking many preconditions and considering

many options like inactive VM, active VM and new VM.

During this time the deadline may be reached.

c. Next, the offers have to reach the user through the DIET

hierarchy and again the system may fail to reach the

tasks deadline during this period.

d. During the processing of offers, it may miss the deadline.

e. Finally, while submitting the tasks to the corresponding

VM for the execution, it may fail to meet the deadline.

Because of all these reason, the probability of task failure is

high due to missing deadline than other reasons. This system

has many advantages. That is, it will give the ability to the

user to select any offers according to their preference. It also

provides a number of options for task execution. It will collect

the processing offers altogether and sending to the user. This

will helps the user to

choose the best offer at the same time because the user won’t

wait for one offer after another.

5. CONCLUSION AND FUTURE WOK
The system presented in this paper combines grid with cloud

for resource provisioning. Cloud will provide resources to

grid for task execution. By this grid can also achieve

autoscaling mechanism. Because of the overhead of the two

architectures, the system is having some delay in processing

the requests. This is causing some of the tasks to miss their

deadlines. Regarding the future work, some mechanisms have

to develop to handle the deadline sensitive jobs.

6. ACKNOWLEDGMENTS
The Authors would like to thank all who have provided

support and guidelines throughout this work.

7. REFERENCES
[1] Luis M. Vaquero, Luis Rodero-Merino, Juan Cáceres,

Maik Lindner, “A break in the clouds: towards a cloud

definition”, ACM SIGCOMM Computer Communication

Review, vol.39, issue.1, pp. 50–55, January 2009.

[2] Luis M. Vaquero, Luis Rodero-Merino, Rajkumar

Buyya, “Dynamically scaling applications in the cloud”,

ACM SIGCOMM Computer Communication Review

vol.41, issue.1, pp. 45–52, January 2011.

[3] I.M. Llorente, R. Moreno-Vozmediano, R.S. Montero,

“Cloud computing for on demand grid resource

provisioning”, High Speed and Large Scale Scientific

0

2

4

6

8

10

12

14

Completed Failed

N
o

. o
f

Ta
sk

s

0

1

2

3

4

5

6

7

No offer Deadline Missed

N
o

. o
f

Fa
ile

d
 T

as
ks

0

5

10

15

20

Completed Failed

N
o

. o
f

Ta
sk

s

0

0.5

1

1.5

2

2.5

3

3.5

No offer Deadline Missed

N
o

. o
f

Fa
ile

d
 T

as
ks

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

11

Computing, in: Advances in Parallel Computing, vol. 18,

pp. 177–191, 2009.

[4] J. Fontan, T. Vazquez, L. Gonzalez, R. Montero, and I.

Llorente. OpenNEbula: The Open Source Virtual

Machine Manager for Cluster Computing. In

Proceedings of the Open Source Grid and Cluster

Software Conference, 2008.

[5] Rafael Moreno-Vozmediano, Rubén S. Montero, Ignacio

M. Llorente, “Elastic management of cluster-based

services in the cloud”, 1st Workshop on Automated

Control for Datacenters and Clouds, ICAC’09, ACM,

Barcelona, Spain, pp. 19–24, June 2009.

[6] Eddy Caron, Frédéric Desprez, David Loureiro, Adrian

Muresan, “Cloud computing resource management

through a grid middleware: a case study with DIET and

Eucalyptus”, 2nd IEEE International Conference on

Cloud Computing, Cloud’09, pp. 151–154, September

2009.

[7] Eddy Caron, Frédéric Desprez, “DIET: a scalable

toolbox to build network enabled servers on the grid,

High Performance Computing Applications”,

International Journal of High Performance Computing

Applications, vol. 20, issue. 3, pp. 335–352, 2006.

[8] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk,

Graziano Obertelli, Sunil Soman, Lamia Youseff, Dmitrii

Zagorodnov, “The Eucalyptus open-source cloud-

computing system”, 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid,

CCGRID’09,pp. 124–131, 2009.

[9] Luis Rodero-Merino, Luis M. Vaquero, Víctor Gil, Javier

Fontán, Fermín Galán, Rubén S. Montero, Ignacio M.

Llorente, “From infrastructure delivery to service

management in clouds”, Future Generation Computer

Systems, vol. 26, issue. 8, pp. 1226–1240, October 2010.

[10] Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros,

“InterCloud: utilityoriented federation of cloud

computing environments for scaling of application

services”, 10th International Conference on Algorithms

and Architectures for Parallel Processing, ICA3PP

2010, in: Lecture Notes in Computer Science, vol. 6081,

pp. 13–31, 2010.

[11] Shantenu Jha, Andre Merzky, Geoffrey Fox, “Using

clouds to provide grids with higher levels of abstraction

and explicit support for usage modes”, Concurrency and

Computation: Practice and Experience, vol. 21, issue. 8

21, pp.1087–1108., June 2009.

[12] Constantino Vázquez, Eduardo Huedoa, Rubén S.

Montero, Ignacio M. Llorente, “On the use of clouds for

grid resource provisioning”, Future Generation

Computer Systems, vol. 27, issue. 5, pp. 600–605, May

2011.

[13] Brian Adler, “RightScale Grid: Grid Computing

Applications in the Cloud”, A Technical White Paper.

[14] Luis Rodero-Merino, Eddy Caron, Adrian Muresan,

Frédéric Desprez, “Using clouds to scale grid resources:

An economic model”, Future Generation Computer

Systems, vol. 28, issue 4, pp. 633-646, April 2012.

[15] Rajkumar Buyya, Manzor Murshed, “GridSim: a toolkit

for the modeling and simulation of distributed resource

management and scheduling for grid computing”,

Concurrency and Computation: Practice and Experience

14, pp. 1175–1220, 2002.

